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Abstract

Disease is one of the fundamental entities in
biomedical research. Recognizing such en-
tities from biomedical text and then normal-
izing them to a standardized disease vocabu-
lary offer a tremendous opportunity for many
downstream applications. Previous studies
have demonstrated that joint modeling of the
two sub-tasks has superior performance than
the pipelined counterpart. Although the neu-
ral joint model based on multi-task learning
framework has achieved state-of-the-art perfor-
mance, it suffers from the boundary inconsis-
tency problem due to the separate decoding
procedures. Moreover, it ignores the rich in-
formation (e.g., the text surface form) of each
candidate concept in the vocabulary, which is
quite essential for entity normalization. In this
work, we propose a neural transition-based
joint model to alleviate these two issues. We
transform the end-to-end disease recognition
and normalization task as an action sequence
prediction task, which not only jointly learns
the model with shared representations of the
input, but also jointly searches the output by
state transitions in one search space. More-
over, we introduce attention mechanisms to
take advantage of the text surface form of each
candidate concept for better normalization per-
formance. Experimental results conducted on
two publicly available datasets show the effec-
tiveness of the proposed method.

1 Introduction

Disease is one of the fundamental entities in
biomedical research, thus it is one of the most
searched topics in the biomedical literature (Do-
gan et al., 2009) and the internet (Brownstein
et al., 2009). Automatically identifying diseases
mentioned in a text (e.g., a PubMed article or a
health webpage) and then normalizing these identi-
fied mentions to their mapping concepts in a stan-
dardized disease vocabulary (e.g., with primary

name, synonyms and definition, etc.) offers a
tremendous opportunity for many downstream ap-
plications, such as mining chemical-disease rela-
tions from the literature (Wei et al., 2015), and
providing much more relevant resources based
on the search queries (Dogan et al., 2014), etc.
Examples of such disease vocabularies includes
MeSH (http://www.nlm.nih.gov/mesh/) and OMIM
(http://www.ncbi.nlm.nih.gov/omim).

Previous studies (Leaman and Lu, 2016; Lou
et al., 2017; Zhao et al., 2019) show the effective-
ness of the joint methods for the end-to-end disease
recognition and normalization (aka linking) task
to alleviated the error propagation problem of the
traditional pipelined solutions (Strubell et al., 2017;
Leaman et al., 2013; Xu et al., 2016, 2017). Al-
though TaggerOne (Leaman and Lu, 2016) and the
discrete transition-based joint model (Lou et al.,
2017) successfully alleviate the error propaga-
tion problem, they heavily rely on hand-craft fea-
ture engineering. Recently, Zhao et al. (Zhao
et al., 2019) proposes a neural joint model based
on the multi-task learning framework (i.e., MTL-
feedback) which significantly outperforms previ-
ous discrete joint solutions. MTL-feedback jointly
shares the representations of the two sub-tasks (i.e.,
joint learning with shared representations of the in-
put), however, their method suffers from the bound-
ary inconsistency problem due to the separate de-
coding procedures (i.e., separate search in two dif-
ferent search spaces). Moreover, it ignores the rich
information (e.g., the text surface form) of each
candidate concept in the vocabulary, which is quite
essential for entity normalization.

In this work, we propose a novel neural
transition-based joint model named NeuJoRN for
disease named entity recognition and normaliza-
tion, to alleviate these two issues of the multi-task
learning based solution (Zhao et al., 2019). We
transform the end-to-end disease recognition and
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normalization task as an action sequence prediction
task. More specifically, we introduce four types
of actions (i.e., OUT, SHIFT, REDUCE, SEG-
MENT) for the recognition purpose and one type
of action (i.e., LINKING) for the normalization
purpose. Our joint model not only jointly learns
the model with shared representations, but also
jointly searches the output by state transitions in
one search space. Moreover, we introduce attention
mechanisms to take advantage of text surface form
of each candidate concept for better linking action
prediction.

We summarize our contributions as follows.

• We propose a novel neural transition-based
joint model, NeuJoRN, for disease named en-
tity recognition and normalization, which not
only jointly learns the model with shared rep-
resentations, but also jointly searches the out-
put by state transitions in one search space.

• We introduce attention mechanisms to take ad-
vantage of text surface form of each candidate
concept for normalization performance.

• We evaluate our proposed model on two pub-
lic datasets, namely the NCBI and BC5CDR
datasets. Extensive experiments show the ef-
fectiveness of the proposed model.

2 Task Definition

We define the end-to-end disease recognition and
normalization task as follows. Given a sentence
x from a document d (e.g., a PubMed abstract)
and a controlled vocabulary KB (e.g., MeSH and
OMIM) which consists of a set of disease con-
cepts, the task of end-to-end disease recognition
and normalization is to identify all disease men-
tions M = {m1,m2, ...,m|M |} mentioned in x
and to link each of the identified disease mention
mi with its mapping concept ci in KB, mi → ci.
If there is no mapping concept in KB for mi, then
mi → NIL, where NIL denotes that mi is un-
linkable.

3 Neural Transition-based Joint Model

We first introduce the transition system used in the
model, and then introduce the neural transition-
based joint model for this task.

3.1 Transition System
We propose a novel transition system, inspired
by the arc-eager transition-based shift-reduce

Table 1: Defined transition actions used in the proposed
model. We use the subscript i ∈ {0, 1, ...} to denote the
item index in stack σ and buffer β, starting from right
and left, respectively.

Actions Change of State

OUT (σ|σ0,β0|β,O)
(σ|σ0,β′,O)

SHIFT (σ|σ1|σ0,β0|β,O)
(σ|σ0|β0,β′,O)

REDUCE (σ|σ1|σ0,β0|β,O)
(σ|σ1σ0,β0|β,O)

SEGMENT-t (σ|σ0,β0|β,O)
(σ′,β0|β,O∪σt

0)

LINKING-c (σ|σ0,β0|β,O|σt
0)

(σ|σ0,β0|β,O|σt,c
0 )

parser (Watanabe and Sumita, 2015; Lample et al.,
2016), which constructs the output of each given
sentence x and controlled vocabulary KB through
state transitions with a sequence of actions A.

We define a state as a tuple (σ, β,O), which
consists of the following three structures:

• stack (σ): the stack is used to store tokens
being processed.

• buffer (β): the buffer is used to store tokens to
be processed.

• output (O): the output is used to store the
recognized and normalize mentions.

We define a start state with the stack σ and the
output O being both empty, and the buffer β con-
taining all the tokens of a given sentence x. Simi-
larly, we define an end state with the stack σ and
buffer β being both empty, and the output O sav-
ing the recognized and normalized entity mention.
The transition system begins with a start state and
ends with an end state. The state transitions are ac-
complished by a set of transition actions A, which
consume the tokens in β and build the output O
step by step.

As shown in Table 1, we define 5 types of tran-
sition actions for state transitions, and their logics
are summarized as follows:

• OUT pops the first token β0 from the buffer,
which indicates that this token does not belong
to any entity mention.

• SHIFT moves the first token β0 from the
buffer to the stack, which indicates that this
token is part of an entity mention.
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Table 2: An example of state transitions for the recognition and normalization of disease mentions given a sentence
“Most colon cancers arise from mutations” and a controlled vocabulary MeSH. State 0 and 9 are the start state and
end state, respectively, and φ denotes empty.

State Actions A Stack σ Buffer β Output O
0 φ Most colon cancers arise from mutations φ
1 OUT φ colon cancers arise from mutations φ
2 SHIFT colon cancers arise from mutations φ
3 SHIFT colon | cancers arise from mutations φ
4 REDUCE colon cancers arise from mutations φ

5 SEGMENT-disease φ arise from mutations colon cancersdisease

6 LINKING-D003110 φ arise from mutations colon cancersdisease,D003110

7 OUT φ from mutations colon cancersdisease,D003110

8 OUT φ mutations colon cancersdisease,D003110

9 OUT φ φ colon cancersdisease,D003110

• REDUCE pops the top two tokens (or spans)
σ0 and σ1 from the stack and concatenates
them as a new span, which is then pushed
back to the stack.

• SEGMENT-t pops the top token (or span) σ0
from the stack and creates a new entity men-
tion σt0 with entity type t, which is then added
to the output.

• LINKING-c links the previous recognized but
unnormalized mention σt0 in the output with
its mapping concept with id c and updates the
mention with σt,c0 .

Table 2 shows an example of state transitions
for the recognition and normalization of disease
mentions given a sentence “Most colon cancers
arise from mutations” and a controlled vocabulary
MeSH. State 0 is the start state where φ denotes
that the stack σ and output O are initially empty,
and the buffer β is initialized with all the tokens
of the given sentence. State 9 is the end state
where φ denotes that the stack σ and buffer β are
finally empty, and colon cancersdisease,D003110 in
the output O denote that the mention “colon can-
cers” is a disease mention and is normalized to the
concept with id D003110 in MeSH. More specifi-
cally, state 5 creates a new disease mention colon
cancersdisease and add it to the output. State 6 links
the previous recognized but unnormalized disease
mention in the output with its mapping concept
with id D003110 in MeSH.

3.2 Action Sequence Prediction
Based on the introduced transition system, the end-
to-end disease recognition and normalization task
becomes a new sequence to sequence task, i.e.,
the action sequence prediction task. The input is

a sequence of words xn1 = (w1, w2, ..., wn) and
a controlled vocabulary KB, and the output is a
sequence of actions Am1 = (a1, a2, ..., am). The
goal of the task is to find the most probable output
action sequence A∗ given the input word sequence
xn1 and KB, that is

A∗ = arg max
A

p(Am1 |xn1 ,KB) (1)

Formally, at each step t, the model predicts the
next action based on the current state St and the
action history At−11 . Thus, the task is models as

(A∗, S∗) = argmaxA,S
∏
t

p(at, St+1|At−11 , St)

(2)
where at is the generated action at step t, and St+1

is the new state according to at.
Let rt denote the representation for computing

the probability of the action at at step t, thus

p(at|rt) =
exp(wᵀ

atrt + bat)

Σa′∈A(St)exp(w
ᵀ
a′rt + ba′)

(3)

where wa and ba denote the learnable parameter
vector and bias term, respectively, and A(St) de-
notes the next possible valid actions that may be
taken given the current state St.

Finally, the overall optimization function of the
action sequence prediction task can be written as

(A∗, S∗) = argmaxA,S
∏
t

p(at, St+1|At−11 , St)

= argmaxA,S
∏
t

p(at|rt)

(4)
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3.3 Dense Representations

We now introduce neural networks to learn the
dense representations of an input sentence x and
each state in the whole transition process to predict
the next action.

Input Representation We represent each word xi
in a sentence x by concatenating its character-level
word representation, non-contextual word represen-
tation, and contextual word representation:

xi = [vchari ; vwi ; ELMoi] (5)

where vchari denotes its character-level word repre-
sentation learned by using a CNN network (Ma and
Hovy, 2016), vwi denotes its non-contextual word
representation initialized with Glove (Pennington
et al., 2014) embeddings, which is pre-trained on
6 billion words from Wikipedia and web text, and
ELMoi denotes its contextual word representation
initialized with ELMo (Peters et al., 2018). We
can also explore the contextual word representation
from BERT (Devlin et al., 2018) by averaging the
embeddings of the subwords of each word. We
leave it to the future work.

We then run a BiLSTM (Graves et al., 2013) to
derive the contextual representation of each word
in the sentence x.

State Representation At each step t in the tran-
sition process, let’s consider the representation
of the current state St = (σt, βt, At), where
σt = (..., σ1, σ0), βt = (β0, β1, ...) and At =
(at−1, at−2, ...).

The buffer βt is represented with BiL-
STM (Graves et al., 2013) to represent the words
in the buffer:

bt = BiLSTM([β0, β1, ...]) (6)

The stack σt and the actions At are represented
with StackLSTM (Dyer et al., 2015):

st = StackLSTM([..., σ1, σ0])

at = StackLSTM([at−1, at−2, ...])
(7)

We classify all the actions defined in Table 1 into
two categories corresponding to two different pur-
poses, i.e., the recognition and normalization pur-
poses. OUT, SHIFT, REDUCE, SEGMENT-t are
used for the recognition purpose, and LINKING-c
is used for the normalization purpose. As shown
in Figure 1(a) and 1(b), we define two different

state representations for predicting the actions in
different purposes.

Specifically, for predicting the actions in the
recognition purpose, we represent the state as

rNERt = ReLU(W [s1t ; s
0
t ; b

0
t ; a
−1
t ] + d) (8)

where ReLU is an activation function, W and d de-
note the learnable parameter matrix and bias term,
respectively, and

• s0t and s1t denote the first and second represen-
tations of the stack σ.

• b0t denotes the first representation of the buffer
β.

• a−1t denotes the last representation of the ac-
tion history A.

For predicting the actions in the normalization
purpose, we represent the state as

rNORMt = ReLU(W [l′m; r′m;m′; c′; c; a−1t ] + d)
(9)

where ReLU is an activation function, W and d de-
note the learnable parameter matrix and bias term,
respectively, and

• l′m and r′m denotes the left-side and right-side
context representations by (i) first applying
attention with the concept representation c to
highlight the relevant parts in mentions’ local
context, and (ii) then applying max-pooling
operation to aggregate the reweighted repre-
sentations of all the context words.

• m′ and c′ are the representations of the men-
tion and candidate concept by applying CoAt-
tention mechanism (Tay et al., 2018; Jia et al.,
2020).

• c denotes the candidate concept representation
by (i) first run a BiLSTM (Graves et al., 2013)
to derive the contextual representation of each
word in the candidate concept, and (ii) then
applying max-pooling operation to aggregate
the representations of all concept words.

• a−1t denotes the last representation of the ac-
tion history A.
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Figure 1: State representations for predicting actions in different purposes (i.e., recognition and normalization).

3.4 Search and Training

Decoding is the key step in both training and test,
which is to search for the best output structure (i.e.,
action sequence) under the current model param-
eters. In this work, we use two different search
strategies with different optimizations.

Greedy Search For efficient decoding, a widely-
used greedy search algorithm (Wang et al., 2017)
can be adopted to minimize the negative log-
likelihood of the local action classifier in Equa-
tion (3, 8, 9).

Beam Search The main drawback of greedy search
is error propagation (Wang et al., 2017). An incor-
rect action will fail the following actions, leading
to an incorrect output sequence. One solution to
alleviate this problem is to apply beam search. In
this work, we use the Beam-Search Optimization
(BSO) method with LaSO update (Wiseman and
Rush, 2016) to train our beam-search model, where
the max-margin loss is adopted.

4 Experiments

4.1 Datasets

We use two public available datasets in this study,
namely NCBI - the NCBI disease corpus (Dogan
et al., 2014) and BC5CDR - the BioCreative V
CDR task corpus (Li et al., 2016b). NCBI dataset
contains 792 PubMed abstracts, which was split
into 692 abstracts for training and development,
and 100 abstracts for testing. A disorder mention
in each PubMed abstract was manually annotated
with its mapping concept identifier in the MEDIC

Table 3: Overall statistics of the datasets.

corpus #documents #mentions #concepts
NCBI 792 6,881 1,049

BC5CDR 1,500 12,852 5,818

lexicon. BC5CDR dataset contains 1,500 PubMed
abstracts, which was equally split into three parts
for training, development and test, respectively. A
disease mention in each abstract is manually anno-
tated with the concept identifier to which it refers
to a controlled vocabulary. In this study, we use the
July 6, 2012 version of MEDIC, which contains
7,827 MeSH identifiers and 4,004 OMIM identi-
fiers, grouped into 9,664 disease concepts. Table3
show the overall statistics of the two datasets.

To facilitate the generation of candidate linking
actions, we perform some preprocessing steps of
each candidate mention and each concept in KB
with the following strategies: (i) Spelling Correc-
tion - for each candidate mention in the datasets,
we replace all the misspelled words using a spelling
check list as in previous work (D’Souza and Ng,
2015; Li et al., 2017). (ii) Abbreviation Resolu-
tion - we use Ab3p (Sohn et al., 2008) toolkit to
detect and replace the abbreviations with their long
forms within each document and also expand all
possible abbreviated disease mentions using a dic-
tionary collected from Wikipedia as in previous
work (D’Souza and Ng, 2015; Li et al., 2017). (iii)
Numeric Synonyms Resolutions - we replace all the
numerical words in the mentions and concepts to
their corresponding Arabic numerals as in previous
work (D’Souza and Ng, 2015; Li et al., 2017).
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Table 4: Architecture hyper-parameters.

Architecture hyper-parameters
word embedding size 100
character embedding size 16
ELMo embedding size 1024
action embedding size 20
LSTM cell size 200
LSTM layers 2
dropout rate 0.2
learning rate 0.001
AdamW weight decay 0.00001
search top k 10

We generate candidate linking actions (i.e., can-
didate concepts) for each mention with the com-
monly used information retrieval based method,
which includes the following two steps. We first
index all the concept names and training mentions
with their concept ids. Then, the widely-used
BM25 model provided by Lucene is employed to
retrieve the top 10 candidate concepts {ci}10i=1 for
each mention m.

4.2 Evaluation Metrics and Settings

Following previous work (Leaman and Lu, 2016;
Lou et al., 2017; Zhao et al., 2019), we utilize
the evaluation kit1 for evaluating the model perfor-
mances. We report F1 score for the recognition
task at the mention level, and F1 score for the nor-
malization task at the abstract level.

We use the AdamW optimizer (Loshchilov and
Hutter, 2019) for parameter optimization. Most of
the model hyper-parameters are listed in Table 4.
Since increasing the beam size will increase the
decoding time, we only report results with beam
size 1, 2, and 4.

4.3 Results and Discussion

4.3.1 Main results
Table 5 shows the overall comparisons of differ-
ent models for the end-to-end disease named entity
recognition and normalization task. The first part
shows the performance of different pipelined meth-
ods for the task. DNorm (Leaman et al., 2013)
is a traditional method, which needs feature engi-
neering. IDCNN (Strubell et al., 2017) is a neu-
ral model based on BiLSTM-CRF, which requires
few effort of feature engineering. The second part

1http://www.biocreative.org/tasks/biocreative-v/track-3-
cdr

shows the performance of different joint models
for the task. TaggerOne (Leaman et al., 2013) is a
joint solution based on semi-CRF. Transition-based
Model (Lou et al., 2017) is a joint solution based
on discrete transition-based method. Both of these
two models rely heavily on feature engineering.
MTL-feedback (Zhao et al., 2019) is neural joint
solution based on multi-task learning. NeuJoRN
is our neural transition-based joint model for the
whole task.

From the comparisons, we find that (1) IDCNN
does not perform well enough although it relies few
efforts of feature engineering. (2) All the joint mod-
els significantly outperform the pipelined methods.
(3) The deep-learning based joint models signifi-
cantly outperform the traditional machine learning
based methods. (4) Our proposed NeuJoRN outper-
forms MTL-feedback by at least 0.57% and 0.59%
on the recognition and normalization tasks, respec-
tively.

4.3.2 Effectiveness of different search
strategies

Table 6 shows the comparisons of different search
strategies of our proposed NeuJoRN. From the re-
sults, we find that (1) The methods based on beam
search strategies outperforms the greedy search
strategy, which indicates that the beam search solu-
tions could alleviate the error propagation problem
of the greedy search solution. (2) The model with
beam size 4 achieves the best performance. The
larger the beam size, the better the performance,
however the lower the decoding speed. (3) Our
greedy search based solution doesn’t outperform
the MLT-feedback method.

4.3.3 Effectiveness of attention mechanisms

Table 7 shows the effectiveness of the proposed
attention mechanisms. When we remove the atten-
tion mechanism for representing the left-side and
right-side local context, the performance dropped
a little bit. However, when we remove the CoAt-
tention mechanism, which is used for directly mod-
eling the matching between the mention and can-
didate concept, the performance dropped signifi-
cantly. This group of comparisons indicates that
importance of the matching between the mention
and candidate concept for the entity normalization
task.
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Table 5: Overall comparisons of different models for disease named entity recognition and normalization.

Method NCBI BC5CDR
Recognition Normalization Recognition Normalization

DNorm (Leaman et al., 2013) 0.7980 0.7820 - 0.8064
IDCNN (Strubell et al., 2017) 0.7983 0.7425 0.8011 0.8107
TaggerOne (Leaman et al., 2013) 0.8290 0.8070 0.8260 0.8370
Transition-based Model (Lou et al., 2017) 0.8205 0.8262 0.8382 0.8562
MTL-feedback (Zhao et al., 2019) 0.8743 0.8823 0.8762 0.8917
NeuJoRN (Ours) 0.8857 0.8882 0.8819 0.8986

Table 6: Performance comparisons of different search strategies.

Method NCBI BC5CDR
Recognition Normalization Recognition Normalization

greedy (b1) 0.8682 0.8792 0.8735 0.8866
beam (b1) 0.8734 0.8818 0.8765 0.8910
beam (b2) 0.8779 0.8843 0.8794 0.8949
beam (b4) 0.8857 0.8882 0.8819 0.8986

5 Related Work

Disease Named Entity Recognition DNER has
been widely studied in the literature. Most previous
studies (Leaman et al., 2013; Xu et al., 2015, 2016)
transform this task as a sequence labeling task, and
conditional random fields (CRF) based methods
are widely adopted to achieve good performance.
However, these methods heavily rely on hand-craft
feature engineering. Recently, neural models such
as BiLSTM-CRF based methods (Strubell et al.,
2017; Wang et al., 2019) and BERT-based meth-
ods (Kim et al., 2019) have achieved state-of-the-
art performance.

Disease Named Entity Normalization DNEN
has also been widely studied in the literature. Most
studies assume that the entity mentions are pre-
detected by a separate DNER model, and focus on
developing methods to improve the normaliation
accuracy (Lou et al., 2017), resulting in developing
rule-based methods (D’Souza and Ng, 2015), ma-
chine learning-based methods (Leaman et al., 2013;
Xu et al., 2017), and recent deep learning-based
methods (Li et al., 2017; Ji et al., 2020; Wang et al.,
2020; Vashishth et al., 2021; Chen et al., 2021).
However, the pipeline architecture which performs
DNER and DNEN separately suffers from the error
propagation problem. In this work, we propose a
neural joint model to alleviate this issue.

Joint DNER and DNEN Several studies (Leaman
and Lu, 2016; Lou et al., 2017; Zhao et al., 2019)
show the effectiveness of the joint methods to al-
leviated the error propagation problem. Although

TaggerOne (Leaman and Lu, 2016) and the discrete
transition-based joint model (Lou et al., 2017) suc-
cessfully alleviated the error propagation problem,
they heavily rely on hand-craft feature engineer-
ing. Recently, Zhao et al. (Zhao et al., 2019) pro-
pose a neural joint model based on the multi-task
learning framework (i.e., MTL-feedback) which
significantly outperforms previous discrete joint
solutions. However, their method suffers from the
boundary inconsistency problem due to the sepa-
rate decoding procedures (i.e., separate search in
two different search spaces). Moreover, it ignores
the rich information (e.g., the text surface form) of
each candidate concept in the vocabulary, which
is quite essential for entity normalization. In this
work, we propose a neural joint model to alleviate
these two issues.

Transition-based Models Transition-based mod-
els are widely used in parsing and transla-
tion (Watanabe and Sumita, 2015; Wang et al.,
2018; Meng and Zhang, 2019). Recently, these
models are successfully applied to information ex-
traction tasks, such as joint POS tagging and depen-
dency parsing (Yang et al., 2018), joint entity and
relation extraction (Li and Ji, 2014; Li et al., 2016a;
Ji et al., 2021). Several studies propose discrete
transition-based joint model for entity recognition
and normalization(Qian et al., 2015; Ji et al., 2016;
Lou et al., 2017). In this work, we propose a neu-
ral transition-based joint model for disease named
entity recognition and normalization.
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Table 7: Performance comparisons of different attention mechanisms.

Method NCBI BC5CDR
Recognition Normalization Recognition Normalization

beam (b4) 0.8857 0.8882 0.8819 0.8986
-Attention 0.8827 0.8868 0.8803 0.8964
-CoAttention 0.8673 0.8779 0.8729 0.8853

6 Conclusions

In this work, we proposed a novel neural transition-
based joint model for disease named entity recogni-
tion and normalization. Experimental results con-
ducted on two public available datasets show the
effectiveness of the proposed method. In the future,
we will apply this joint model to more different
types of datasets, such as the clinical notes, drug
labels, and tweets, etc.
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