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Abstract
In this paper, we aim to explore an uncharted
territory, which is Chinese multimodal named
entity recognition (NER) with both textual and
acoustic contents. To achieve this, we con-
struct a large-scale human-annotated Chinese
multimodal NER dataset, named CNERTA.
Our corpus totally contains 42,987 anno-
tated sentences accompanying by 71 hours of
speech data. Based on this dataset, we propose
a family of strong and representative base-
line models, which can leverage textual fea-
tures or multimodal features. Upon these base-
lines, to capture the natural monotonic align-
ment between the textual modality and the
acoustic modality, we further propose a sim-
ple multimodal multitask model by introduc-
ing a speech-to-text alignment auxiliary task.
Through extensive experiments, we observe
that: (1) Progressive performance boosts as we
move from unimodal to multimodal, verifying
the necessity of integrating speech clues into
Chinese NER. (2) Our proposed model yields
state-of-the-art (SoTA) results on CNERTA,
demonstrating its effectiveness. For further re-
search, the annotated dataset is publicly avail-
able at http://github.com/DianboWork/
CNERTA.

1 Introduction

“Speech is a part of thought.”
— Oliver Sacks, Seeing Voices

As a fundamental subtask of information extraction,
named entity recognition (NER) aims to locate and
classify named entities mentioned in unstructured
texts into predefined semantic categories, such as
person names, locations and organizations. NER
plays a crucial role in many natural language pro-
cessing (NLP) tasks, including relation extraction
(Zelenko et al., 2003), question answering (Mollá
et al., 2006) and summarization (Aramaki et al.,
2009).

南京市

南京市(LOC)
Nanjing city

长江大桥(LOC)
Yangtze River Bridge南 京 市 长 江 大 桥

The Nanjing Yangtze River Bridge

Speech:

Sentence:

南京市

南京(LOC)
Nanjing

江大桥(PER)
Daqiao Jiang南 京 市长 江 大 桥

Nanjing Mayor Daqiao Jiang

Speech:

Sentence:

Sentence: 南 京 市 长 江 大 桥
South Capital City Long  Rive  Big   Bridge

Figure 1: The given sentence “南京市长江大桥” can
be segmented into “[南京市] [长江大桥]” or “[南京]
[市长] [江大桥]”. Only based on textual contents, it is
difficult to infer NER tags. But the speech waveforms
of these two segmentations are radically different.

Most of the research on NER, such as Lam-
ple et al. (2016); Ma and Hovy (2016); Chiu and
Nichols (2016), only relies on the textual modal-
ity to infer tags. However, when texts are noisy
or short, and it is not sufficient to locate and clas-
sify named entities accurately only based on tex-
tual information (Baldwin et al., 2015; Lu et al.,
2018). One promising solution is to introduce other
modalities as the supplement of the textual modal-
ity. So far, some studies on multimodal NER, such
as Moon et al. (2018); Zhang et al. (2018); Lu et al.
(2018); Arshad et al. (2019); Asgari-Chenaghlu
et al. (2020); Yu et al. (2020); Chen et al. (2020);
Sun et al. (2020), have attempted to couple the
textual modality with the visual modality and wit-
nessed a stable improvement.

In this work, we also focus on multimodal NER.
But differently from previous studies, we pay spe-
cial attention to Chinese multimodal NER with
both textual and acoustic contents. The motivation
comes from two aspects:

http://github.com/DianboWork/CNERTA
http://github.com/DianboWork/CNERTA
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First, despite much recent success in multimodal
NER, current studies on this topic are limited in
English, and totally skirt other languages. Mean-
while, previous work on Chinese NER, such as Xu
et al. (2013); Peng and Dredze (2016a); Zhang and
Yang (2018); Cao et al. (2018); Sui et al. (2019);
Gui et al. (2019); Ma et al. (2020); Li et al. (2020),
totally ignores valuable multimodal information.
With around 1.3 billion native speakers and the
wide spread of short-form video apps in China, it
is necessary and urgent to carry out research on
Chinese multimodal NER.

Second, unlike the static visual modality, the
time-varying acoustic modality plays a unique role
in Chinese NER, especially in providing precise
word segmentation information. In detail, different
from English, Chinese is an ideographic language
featured by no word delimiter between words in
written. This language characteristic is one of the
major roadblocks in Chinese NER, since named en-
tity boundaries are usually word boundaries (Zhang
and Yang, 2018). Fortunately, cues contained in the
fluent acoustic modality, especially pauses between
adjacent words, are able to aid the NER model in
discovering word boundaries. A classic example
shown in Figure 1 can perfectly illustrate this point.
In this example, the sentence with ambiguous word
segmentation would be disambiguated with the aid
of the acoustic modality, which would absolutely
assist the model to infer correct NER tags.

In this work, we make the following efforts to
advance multimodal NER:

First, we construct a large-scale human-
annotated Chinese NER dataset with Textual and
Acoustic contents, named CNERTA. Specifically,
we annotate all occurrences of 3 entity types (per-
son name, location and organization) in 42,987 sen-
tences originating from the transcripts of Aishell-1
(Bu et al., 2017), a corpus that has been widely em-
ployed in Mandarin speech recognition research in
recent years (Shan et al., 2019; Li et al., 2019; Tian
et al., 2020). In particular, unlike previous mul-
timodal NER datasets (Moon et al., 2018; Zhang
et al., 2018; Lu et al., 2018) are all flatly annotated,
not only the topmost entities but also nested entities
are annotated in CNERTA.

Second, based on CNERTA, we establish a fam-
ily of strong and representative baselines. In de-
tail, we first investigate the performance of several
classic text-only models on our dataset, including
BiLSTM-CRF (Lample et al., 2016) and BERT-

CRF (Devlin et al., 2019). Then, since introduc-
ing a lexicon has been proven as an effective way
to incorporate word information in Chinese NER
(Zhang and Yang, 2018), we implement several
lexicon-enhanced models, such as Lattice-LSTM
(Zhang and Yang, 2018) and ZEN (Diao et al.,
2020), to explore whether the acoustic modality can
provide word information beyond the lexicon. Fi-
nally, to verify the effectiveness of introducing the
acoustic modality, we test some widely used mul-
timodal models, such as CMA (Tsai et al., 2019)
and MMI (Yu et al., 2020), on our dataset.

Third, upon these strong baselines, we further
propose a simple Multi-Modal Multi-Task model
(short for M3T) to make better use of the pause
information in the acoustic modality. Specifically,
different from coupling the visual modality with
the textual modality, there is a monotonic align-
ment between the acoustic modality and the textual
modality. Armed with such an alignment, the po-
sition of each Chinese character in the continuous
speech would be determined, which would make
it easy to discover pauses between adjacent words.
Therefore, to automatically estimate this desired
alignment, we introduce a speech-to-text alignment
auxiliary task and propose a hybrid CTC/Tagging
loss. In the hybrid loss, a masked CTC loss (Graves
et al., 2006) is designed for enforcing a monotonic
alignment between speech and text sequences.

The primary contributions of this work can be
summarized as follows:

• We construct CNERTA, the first human-
annotated Chinese multimodal NER dataset,
where each annotated sentence is paired with
its corresponding speech data. To our best
knowledge, this dataset is not only the largest
multimodal NER dataset, but also the largest
Chinese nested NER dataset.

• We establish a family of baselines to lever-
age textual features or multimodal features.
Through various experiments, we observe con-
sistent performance boosts originating from
acoustic features, which verifies the signifi-
cant merits of integrating acoustic features for
Chinese NER.

• We further propose a multimodal multitask
method by introducing a speech-to-text align-
ment auxiliary task. By jointly solving the tag-
ging task and the alignment task, the proposed
method can yield SoTA results on CNERTA.
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2 Related Work

Mutlimodal NER: As multimedia technology
evolves, processing multimodal data is becom-
ing a burning issue. As a basic NLP tool, mul-
timodal NER attracts increasing attention in re-
cent years. Most of studies on multimodal NER
focus on leveraging the associate images to bet-
ter identify the named entities contained in the
text. Specifically, Moon et al. (2018) propose a
multimodal NER network with modality attention
to fuse textual and visual information. To model
inter-modal interactions and filter out the noise in
the visual context, Zhang et al. (2018) propose
an adaptive co-attention network and a gated vi-
sual attention mechanism for multimodal NER. As
transformer-based models (Vaswani et al., 2017;
Devlin et al., 2019) become the mainstream method
in NLP, researchers turn to study how to fuse vi-
sual clues in transformers structure. Chen et al.
(2020) use captions to represent images as text and
adopt transformer-based sequence labeling mod-
els to connect multimodal information. Yu et al.
(2020) propose a Multimodal Transformer model,
which empowers transformer with a multimodal
interaction module to capture the inter-modality
dynamics between words and images. But differ-
ent from them, we aim to explore an unexplored
territory in this work, which is Chinese multimodal
NER with both speech and textual contents.

Chinese NER: Compared with English NER, Chi-
nese NER is more complicated since the written
text in Chinese is not naturally segmented. There-
fore, how to incorporate word information is the
key challenge in Chinese NER. There are three
main ways to fuse word information in Chinese
NER. The first one is the pipeline method. In
the pipeline method, Chinese word segmentation
(CWS) is first applied and then a word-based NER
model is used. The second one is to learn CWS
and NER tasks jointly (Xu et al., 2013; Peng and
Dredze, 2016b; Cao et al., 2018; Wu et al., 2019).
In such a way, the word boundary information in
the CWS task can be transferred to the NER model.
The third one is to resort to an automatically con-
structed lexicon (Zhang and Yang, 2018; Ding et al.,
2019; Liu et al., 2019a; Sui et al., 2019; Gui et al.,
2019; Li et al., 2020; Ma et al., 2020; Xue et al.,
2020). Different from all previous studies, we fo-
cus on use speech clues to incorporate word infor-
mation in Chinese NER.

Train Dev Test

Audio Duration 56.68h 7.50h 7.59h
Avg Sent Len 19.69 19.77 19.75
Max Sent Len 39 44 39
Prop Nested Ent 31.25% 29.50% 28.35%
# Instance 34,102 4,440 4,445
# Entity 23,805 5,889 7,263
# ORG 7,066 2,187 2,794
# PER 5,846 1,116 1,072
# LOC 10,893 2,586 3,397

Table 1: The statistics of training, development and test
folds of the annotated corpus. Here, “Avg” denotes av-
erage, “Sent” denotes sentence, “Len” denotes length,
“Prop” denotes proportion, “Ent” denotes entity and “#”
denotes number.

3 Dataset Acquisition and Comparison

In this work, we aim to explore Chinese NER with
both speech and textual clues. But we are not aware
of any such existing corpus, hence we are motivated
to collect one. In this section, we will discuss
the data acquisition process, subsequently present
statistics of the dataset and compare the annotated
dataset with other widely-used NER datasets.

3.1 Dataset Acquisition

The main challenge in data acquisition is to find
a large-scale dataset, which includes texts and the
corresponding speech data. One possible way is to
attach speech data to current existing Chinese NER
datasets. However, it is costly to gather hundreds
of participants in the recording. Therefore, we take
a different way, manually annotating NER tags
on a speech recognition dataset from scratch. In
detail, our annotated dataset is based on Aishell-
1 (Bu et al., 2017) dataset, which is a large-scale
Mandarin automatic speech recognition dataset. In
this dataset, text transcriptions are chosen from five
domains: “Finance”, “Science and Technology”,
“Sport”, “Entertainments” and “News”. There are
400 participants in the recording, and the gender of
participants is balanced with 47% male and 53%
female. Speech utterances are recorded via three
categories of devices in parallel, which are a high
fidelity microphone working at 44.1 kHz, 16-bit,
Android phones working at 16 kHz, 16-bit, and
Apple iPhones working at 16 kHz, 16-bit.

To ensure the quality of annotation, we design
two rounds in the annotation procedure. In the first
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Dataset # Train # Dev # Test # Total Language Structure Modality

MSRA 46,364 - 4,365 50,729 Chinese Flat Text
OntoNotes 15,724 4301 4,346 24,371 Chinese Flat Text

Weibo NER 1,350 271 270 1,891 Chinese Flat Text
Resume 3,821 463 477 4,761 Chinese Flat Text

GENIA 15,022 1,669 1,854 18,545 English Nested Text
JNLPBA 20,546 - 4,260 24,806 English Nested Text

ACE-2004 6,198 742 809 7,749 English Nested Text
ACE-2005 7,285 968 1,058 9,311 English Nested Text

Twitter-2015 4,000 1,000 3,257 8,257 English Flat Text + Image
Twitter-2017 3,373 723 723 4,819 English Flat Text + Image

CNERTA 34,102 4,440 4,445 42,987 Chinese Nested Text + Speech

Table 2: A comparison between CNERTA and other existing widely-used NER datasets.

round, we use Brat (Stenetorp et al., 2012) as the
annotation tool and ask 3 internal annotators (in-
cluding the first author of this paper) to perform
annotation, who are very familiar with this task.
They independently identify and classify named en-
tities in the transcriptions with more than 17 char-
acters. Cohen’s kappa coefficient (Cohen, 1960)
is used to measure the inter-annotator agreements.
After the first round, κ = 0.965, which shows the
quality of CNERTA is satisfactory. But there are
still some sentences for which annotators give out
different annotations. For those sentences, the an-
notators check the disagreed annotations carefully
and discuss to reach the agreements for all cases.

After we finish the annotation process, we split
the dataset into three parts: training, development,
and test set. Table 1 shows the high level statistics
of data splits for CNERTA.

3.2 Dataset Comparison

We compare CNERTA with several widely used
NER datasets in Table 2. Specifically, we first
compare our corpus with some Chinese NER
datasets, such as MSRA (Levow, 2006), OntoNotes
(Weischedel et al., 2011), Weibo NER (Peng and
Dredze, 2016a) and Resume (Zhang and Yang,
2018). Then, we compare our corpus with sev-
eral widely used nested NER datasets, like GE-
NIA (Kim et al., 2003), JNLPBA (Collier and
Kim, 2004), ACE-2004 (Doddington et al., 2004)
and ACE-2005 (Walker et al., 2004). Finally,
multimodal NER datasets, including Twitter-2015
(Zhang et al., 2018) and Twitter-2017 (Lu et al.,
2018), are compared with our corpus.

From Table 2, we observe that our corpus has
unique value compared with the existing datasets.
The value is reflected in the following aspects: (1)
CNERTA is a large-scale dataset; (2) CNERTA is
the first Chinese multimodal dataset; (3) Not only
the topmost entities but also nested entities are
annotated; (4) Among these datasets, the acoustic
modality is only introduced in CNERTA.

4 Preliminaries

4.1 Task Description

Given a text X = x1, x2, ..., xn and its correspond-
ing speech S = s1, s2, ..., st, where xi denotes
the i-th Chinese character and sj denotes the j-th
waveform frame, the goal of the task is to leverage
textual and speech clues to identify and classify all
named entities contained in the text.

4.2 Nested Structure Linearization

Unlike flat NER, named entities may overlap and
also be labeled with more than one label in nested
NER. To solve nested NER, we follow Straková
et al. (2019) to encode the nested entity structure
into a CoNLL-like, per-character BIO encoding
(Ramshaw and Marcus, 1995). There are two
rules to guide the linearization: (1) entity mentions
starting earlier have priority over entities starting
later, and (2) for mentions with the same beginning,
longer entity mentions have priority over shorter
ones. A multilabel for a given Chinese character is
a concatenation of all intersecting entity mentions,
from the highest priority to the lowest. For more
details, we refer readers to Straková et al. (2019).
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4.3 Acoustic Encoder

The acoustic encoder is used to map raw speech sig-
nals into continuous space. There are three parts in
the proposed acoustic encoder: a speech processing
layer, a convolution front end and a transformer-
based encoder.

Specifically, in the speech processing layer, a
speech signal first goes through a pre-emphasis
filter; then gets sliced into frames and a window
function is applied to each frame; afterwards, a
Short-Time Fourier transform (Kwok and Jones,
2000) is employed on each frame and the power
spectrum is calculated; and subsequently, the filter
banks (Ravindran et al., 2003) are computed. Then,
we use a convolution front end to down-sample the
long acoustic features. In the convolution front end,
following Dong et al. (2018); Tian et al. (2020),
two 3×3 CNN layers with stride 2 are stacked
for both time and frequency dimensions. After-
wards, in order to enable the acoustic encoder to
attend by relative positions, the positional encod-
ing is added to the output of the convolution front
end. Finally, to effectively capture long-term de-
pendencies, down-sampled acoustic features flow
through the transformer-based encoder (Vaswani
et al., 2017). The transformer-based encoder is
a stack of 6 identical layers, each of which is
composed of a self-attention sub-layer and a feed-
forward network.

5 Baselines

Based on the annotated dataset, a family of strong
and representative baselines is established, includ-
ing (1) text-only models presented in Section 5.1,
(2) lexicon-enhanced models shown in Section 5.2
and (3) multimodal models introduced in Section
5.3.

5.1 Text-Only Model

Open-Source NLP Toolkit: Many open-source
NLP toolkits, such as spaCy (Honnibal et al., 2020)
and Stanza (Qi et al., 2020), support Chinese NER.
In spaCy, a multitask CNN is employed. In Stanza,
a contextualized string representation based tagger
from Akbik et al. (2018) is adopted. In both spaCy
and Stanza, the tagger is trained on OntoNote
(Weischedel et al., 2011). To map the output of
taggers to CNERTA’s label space, expert-designed
rules are used, such as PERSON → PER. Since
these toolkits are only designed for flat structure,
we do not evaluate these toolkits in nested settings.

BiLSTM-CRF: Featured by a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) as
the textual encoder and conditional random fields
(CRF) (Lafferty et al., 2001) as the decoder, the
widely used BiLSTM-CRF (Lample et al., 2016) is
adopted as an important baseline.

PLM-CRF: Instead of training a model from
scratch, we also adopt the framework of fine-tuning
a pretrained language model (PLM) on a down-
stream task (Radford et al., 2018). In this frame-
work, we adopt BERT (Devlin et al., 2019) as the
textual encoder and use CRF as the decoder. In
addition to initializing the textual encoder with
the original pretrained BERT model, a SoTA Chi-
nese pretrained language model, called MacBERT
(Cui et al., 2020), is used. Compared with BERT,
MacBERT is built upon RoBERTa (Liu et al.,
2019b) and the original MLM task in BERT is
replaced with the MLM as correction task. For
more details, we refer readers to Cui et al. (2020).

5.2 Lexicon-Enhanced Model:

A drawback of the text-only methods mentioned
above is that explicit word and word sequence infor-
mation is not fully exploited, which can be poten-
tially useful. With this consideration, we also adopt
lexicon-enhance models to incorporate word lexi-
cons. (1) Lattice-LSTM (Zhang and Yang, 2018)
is a classic method that can encode a sequence of
input characters as well as all potential words that
match a lexicon. (2) ZEN (Diao et al., 2020) is
a pretrained Chinese text encoder enhanced by an
n-gram lexicon. In ZEN, n-gram contexts are ex-
tracted, encoded and integrated with the character
encoder. For more details about Lattice-LSTM and
ZEN, we refer readers to Zhang and Yang (2018)
and Diao et al. (2020).

5.3 Multimodal Model

To leverage the acoustic modality, several multi-
modal models are introduced. In these models,
fusion modules are built on the top of the acous-
tic encoder and the textual encoder, which are de-
signed for capturing the interaction between the
textual hidden representations X = [x1, x2, ..., xn];
xi ∈ Rd and the acoustic representations S =
[s1, s2, ..., st′ ]; sj ∈ Rd. We present two repre-
sentative fusion modules, which are Cross-Modal
Attention (CMA) module (Tsai et al., 2019) and
Multimodal Interaction (MMI) module (Yu et al.,
2020).



2812

Cross-Modal Attention Module (CMA): Given
the textual hidden representations X ∈ Rd×n and
the acoustic representations S ∈ Rd×t′ , we first em-
ploy a m-head cross-modal attention mechanism
(Tsai et al., 2019), by treating X as queries, and S
as keys and values:

CAi(X,S) = softmax(
[WqiX]T[WkiS]√

d/m
)[WviS]

MH-CA(X,S) = W′[CA1(X,S), ...,CAm(X,S)]

where CAi refers to the i-th head of cross-modal
attention, and {Wqi ,Wki ,Wvi} ∈ Rd/m×d, W′ ∈
Rd×d denote the weight matrices for the query, key,
value and multi-head attention, respectively. Then,
we stack the following sub-layers on top:

F̂ = LN(X + MH-CA(X,S))

F = LN(F̂ + FFN(F̂))
(1)

where LN means layer normalization (Ba et al.,
2016) and FFN means a fully connected feed-
forward network, which consists of two linear trans-
formation with a ReLU activation (Nair and Hin-
ton, 2010). Finally, the new textual representations
F ∈ Rd×n, which are enhanced by acoustic fea-
tures, are fed into the CRF decoder to infer NER
tags.

Multimodal Interaction Module (MMI): A
stack of cross-modal attention layer mentioned
above makes up the multimodal interaction module.
Since the architecture of MMI is too complex and
is not the core of this paper, we will not introduce
it in the main text. For more details about MMI,
we refer readers to Yu et al. (2020).

6 Proposed Method

Previous multimodal methods ignore a natural
monotonic alignment between the acoustic modal-
ity and the textual modality. To capture this
alignment, we propose a multimodal multitask
model, called M3T. The framework of the pro-
posed method is shown in Figure 2.

In the M3T model, we adopt the CMA module
to fuse acoustic information into the textual repre-
sentations. Besides, a CTC project layer is built
upon the acoustic encoder, and the loss function is
a combination of masked CTC loss and CRF loss.
Specifically, through the CTC project layer, each
acoustic representation si ∈ Rd is first mapped
to the total size of model units (in this paper, the

2D Conv Layer

Add & Norm

Multi-Head
Self-Attention

Feed Forward 

CTC Project LayerCRF Layer

Positional
Encoding

Add & Norm

Textual 
Encoder x2

Feed Forward

Add & Norm

Add & Norm

Multi-Head
 Cross-Modal 

Attention

南 京 市 长 江 大 桥

+

x6

Q K V

+

Joint Training

Masked CTC LossCRF Loss

Figure 2: Overall architecture of the proposed multi-
modal multitask model.

model unit is the Chinese character) and then is
passed through a logit function:

G = logit(WT
v S) (2)

where Wv ∈ Rd×|V | and |V | is the total size of Chi-
nese characters. Unlike automatic speech recogni-
tion, only the characters in the given text need to be
aligned rather than the entire model units. There-
fore, we only keep these rows unchanged, whose
corresponding characters are contained in the given
text, and fill the other rows in G ∈ R|V |×t′ with the
value −∞. The masked tensor G is then fed into
CTC loss. Finally, to jointly solve the tagging task
and the alignment task, a hybrid loss of combining
the masked CTC loss with the CRF loss is used:

L = Lcrf + λLctc (3)

where λ is a hyperparameter.

7 Experiments

In this section, we carry out various experiments
to investigate the effectiveness of introducing the
acoustic modality. In addition, we empirically com-
pare the proposed model and these baselines under
different settings. Following previous studies in
NER (Zhang and Yang, 2018), standard precision
(P), recall (R) and F1-score (F1) are used as evalu-
ation metrics.
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Model Resource
Flat NER Nested NER

P R F1 ∆ P R F1 ∆

spaCy Text 64.74 23.01 33.94 - - - - -
Stanza Text 49.65 27.34 35.27 - - - - -

BiLSTM-CRF Text 64.43 62.58 63.49 - 70.72 59.16 64.43 -
Lattice LSTM Text+Lexicon 67.13 68.34 67.73 - 77.92 60.89 68.36 -

BERT-CRF Text 74.47 76.34 75.39 - 80.03 72.34 75.99 -
MacBERT-CRF Text 75.10 78.70 76.86 - 81.22 73.67 77.26 -

ZEN-CRF Text+Lexicon 74.85 77.78 76.28 - 81.18 72.12 76.38 -

BiLSTM-CMA-CRF Text+Speech 66.56 65.28 65.92 ↑ 2.43 75.28 61.25 67.54 ↑ 3.11
BERT-CMA-CRF Text+Speech 75.67 78.49 77.05 ↑ 1.66 81.50 74.48 77.83 ↑ 1.84

MacBERT-CMA-CRF Text+Speech 75.94 81.37 78.56 ↑ 1.70 81.20 76.80 78.94 ↑ 1.68
ZEN-CMA-CRF Text+Lexicon+Speech 77.26 78.07 77.66 ↑ 1.38 81.56 74.94 78.11 ↑ 1.73

BiLSTM-MMI-CRF Text+Speech 66.63 64.78 65.82 ↑ 2.33 77.78 59.11 67.17 ↑ 2.74
BERT-MMI-CRF Text+Speech 75.37 79.62 77.44 ↑ 2.05 80.95 74.98 77.85 ↑ 1.86

MacBERT-MMI-CRF Text+Speech 76.75 80.91 78.77 ↑ 1.91 81.18 77.21 79.14 ↑ 1.88
ZEN-MMI-CRF Text+Lexicon+Speech 76.30 79.45 77.84 ↑ 1.56 81.11 75.36 78.13 ↑ 1.75

BiLSTM-M3T Text+Speech 69.85 66.24 68.00 ↑ 4.51 79.17 60.39 68.52 ↑ 4.09
BERT-M3T Text+Speech 77.71 80.60 79.13 ↑ 3.74 83.46 75.81 79.45 ↑ 3.46

MacBERT-M3T Text+Speech 78.74 82.02 80.35 ↑ 3.49 83.99 77.46 80.59 ↑ 3.33
ZEN-M3T Text+Lexicon+Speech 78.66 79.78 79.21 ↑ 2.93 82.99 76.41 79.57 ↑ 3.19

Table 3: Precision (%) , Recall (%) and F1 score (%) of baselines and our proposed method on CNERTA. ∆ means
the points higher than the corresponding baselines without using the acoustic modality.

7.1 Implementation Details

LSTM-Based Baselines: We use the 50-
dimensional character embeddings, which are pre-
trained on Chinese Giga-Word * using word2vec
(Mikolov et al., 2013). The dimensionality of
LSTM hidden states is set to 300 and the initial
learning rate is set to 0.001. We train the models
using 100 epochs with a batch size of 16.

Lexicon: The lexicon used in Lattice-LSTM is
the same as Zhang and Yang (2018) and the lexi-
con used in ZEN is the same as Diao et al. (2020).
Due to low speed in training and inference, we only
employ Lattice-LSTM in unimodal settings.

Pretrained Language Model Fine-Tuning: We
use the base models of BERT (Devlin et al., 2019),
MacBERT (Cui et al., 2020) and ZEN (Diao et al.,
2020). The initial learning rate of pretrained lan-
guage model is set to 1× 10−5. We fine-tune mod-
els using 10 epochs with a batch size of 16.

Computing Infrastructure: All experiments are
conducted on an NVIDIA GeForce RTX 2080 Ti
(11 GB of memory).

*https://catalog.ldc.upenn.edu/
LDC2011T13

7.2 Main Results

Table 3 shows the results of baselines and our pro-
posed model on CNERTA. From the table, we find:

(1) Introducing the acoustic modality can sig-
nificantly boost the performance of the character-
based models, such as BiLSTM-CRF, BERT-CRF
and MacBERT-CRF. With the simple CMA mod-
ule to introduce the acoustic modality, there is a
more than 1.6% improvement in both flat NER and
nested NER. Furthermore, by using the M3T model
to leverage the acoustic modality, a more than 3%
improvement can be brought in all cases. These
experimental results demonstrate the effectiveness
of introducing the acoustic modality in character-
based NER models.

(2) Introducing the acoustic modality can im-
prove the performance of lexicon-based models,
such as ZEN-CRF. By introducing the acoustic
modes in ZEN-CRF with the CMA module, the
performance in flat NER and nested NER can be im-
proved by 1.38% and 1.73%, respectively. Armed
with the M3T model, the performance in flat NER
and nested NER can be further improved by 2.93%
and 3.19%. Although not as significant as the im-
provement of the character-based models, these

https://catalog.ldc.upenn.edu/LDC2011T13
https://catalog.ldc.upenn.edu/LDC2011T13
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Sentence Gold BERT-M3T BERT-CRF

沙特阿拉伯选手马斯拉赫以四十三秒
九三预获得预赛第一
(Maslakh, from Saudi Arabia, won the first place

in the preliminary contest with 43.93 seconds)

沙特阿拉伯(LOC)
马斯拉赫(PER)

沙特阿拉伯(LOC)
马斯拉赫(PER)

沙特(LOC)
阿拉伯(LOC)
马斯拉赫(PER)

与她在首都机场吃了一碗牛肉面有很
大关系
(It has a lot to do with a bowl of beef noodles

eaten at the Capital Airport)

首都机场(LOC) 首都机场(LOC) 首都(LOC)

国际米兰日文官方推特公布了选手抵
达时的照片
(Inter Milan’s official Japanese Twitter released

photos of the players when they arrived)

国际米兰(ORG) 国际米兰(ORG) 国际米兰日文(ORG)

卡巴里罗在毕尔巴鄂掷出了七十米六
五的好成绩
(Kabariro threw a good result of 70.65m in Bilbao)

卡巴里罗(PER)
毕尔巴鄂(LOC)

卡巴里罗(PER)
毕尔(LOC)
巴鄂(PER)

卡巴里罗(PER)
毕尔巴鄂(LOC)

Table 4: Case studies to illustrate the effectiveness of introducing the acoustic modality. Note that both BERT-M3T
and BERT-CRF are trained in flat NER settings.

Structure Model # Type
Error

# Boundary
Error Total

Flat
NER

BERT-CRF
97

(10.68%)
811

(89.32%)
908

BERT-M3T
94

(11.93%)
694

(88.07%)
788

Nested
NER

BERT-CRF
125

(13.79%)
781

(86.20%)
906

BERT-M3T
129

(15.21%)
719

(84.78%)
848

Table 5: The statistics of different errors that occur in
the output of NER models on the development set.

results still prove that the acoustic modality can
provide lexicon-based models with some informa-
tion that does not contain in the large-scale lexicon.

(3) Our proposed method (M3T) can achieve the
SoTA results on CNERTA. Compared with CMA
(Tsai et al., 2019) and MMI (Yu et al., 2020), there
is a significant improvement. We conjecture that
is due to that the monotonic alignment between
the acoustic modality and the textual modality is
captured by the masked CTC loss and armed with
this alignment, precise word boundary information
contained in speech is leveraged by the model.

7.3 Error Analysis

As NER models established here are not yet as ac-
curate as one would hope, some analyses of the
errors that occur in the output of NER models are

performed. We divide the error into type error and
boundary error. The type error is defined as that
the boundary of the predicted entity is correct but
the predicted type is wrong, and the other errors
are classified as boundary errors. The statistics of
boundary errors and type errors are shown in Ta-
ble 5. From the table, we find that: (1) Errors are
mainly caused by mistakenly locating boundaries
of entities. Therefore, discovering entity bound-
aries is the main challenge in Chinese NER. (2)
Leveraging the acoustic modality can effectively
reduce boundary errors. In nested NER, the num-
ber of errors decreases from 906 to 848, totally
owning to the reduction of boundary errors, but the
number of type errors increases, which may be due
to overfitting or some random factors.

7.4 Case Studies

To visually show the effectiveness of introducing
the acoustic modality, case studies on compar-
ing the output of BERT-CRF and BERT-M3T are
present in Table 4. From the table, we can observe
that: without the acoustic modality, BERT-CRF is
prone to locate some ambiguous entities mistak-
enly, such as “沙特阿拉伯” (Saudi Arabia), “首都
机场”(Capital Airport), “国际米兰” (Inter Milan).
But armed with the acoustic modality, these entities
are located with complete accuracy. In the last case,
BERT-M3T makes some mistakes. We listen to the
corresponding audio clip and find that there is a
long pause between “毕尔” and “巴鄂”.
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8 Conclusion and Future Work

In this paper, we explore Chinese multimodal NER
with both textual and acoustic contents. To achieve
this, we construct a large-scale manually annotated
multimodal NER dataset，named CNERTA. Based
on this dataset, we establish a family of baseline
models. Furthermore, we propose a simple multi-
modal multitask method by introducing a speech-
to-text alignment auxiliary task. Through extensive
experiments, we prove that Chinese NER models
can benefit from introducing the acoustic modality
and our proposed model is effective.

In the future, we are interested in mining other
information contained in speech, such as rhythm,
emotion, pitch, accent and stress, to boost NER.
Meanwhile, we will also work on designing some
speech-text pretraining tasks for building a large-
scale pretrained model with multimodal capabili-
ties.
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