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Abstract

Event extraction is challenging due to the com-
plex structure of event records and the semantic
gap between text and event. Traditional meth-
ods usually extract event records by decompos-
ing the complex structure prediction task into
multiple subtasks. In this paper, we propose
TEXT2EVENT, a sequence-to-structure gener-
ation paradigm that can directly extract events
from the text in an end-to-end manner. Specif-
ically, we design a sequence-to-structure net-
work for unified event extraction, a constrained
decoding algorithm for event knowledge injec-
tion during inference, and a curriculum learning
algorithm for efficient model learning. Exper-
imental results show that, by uniformly mod-
eling all tasks in a single model and univer-
sally predicting different labels, our method
can achieve competitive performance using
only record-level annotations in both super-
vised learning and transfer learning settings.

1 Introduction

Event extraction is an essential task for natural
language understanding, aiming to transform the
text into event records (Doddington et al., 2004;
Ahn, 2006). For example, in Figure 1, mapping
“The man returned to Los Angeles from Mexico
following his capture Tuesday by bounty hunters.”
into two event records {Type: Transport, Trigger:
returned, Arg1 Role: Artifact, Arg1: The man,
Arg2 Role: Destination, Arg2: Los Angeles, ...
} and {Type: Arrest-Jail, Trigger: capture, Arg1
Role: Person, Arg1: The man, Arg2 Role: Agent,
Arg2: bounty hunters, ... }.

Event extraction is challenging due to the com-
plex structure of event records and the semantic
gap between text and event. First, an event record
contains event type, trigger, and arguments, which
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Figure 1: The framework of TEXT2EVENT. Here,
TEXT2EVENT takes raw text as input and generates
a Transport event and an Arrest-Jail event.

form a table-like structure. And different event
types have different structures. For example, in
Figure 1, Transport and Arrest-Jail have entirely
different structures. Second, an event can be ex-
pressed using very different utterances, such as
diversified trigger words and heterogeneous syntac-
tic structures. For example, both “the dismission of
the man” and “the man departed his job” express
the same event record {Type: End-Position, Arg1
Role: PERSON, Arg1: the man}.

Currently, most event extraction methods em-
ploy the decomposition strategy (Chen et al., 2015;
Nguyen and Nguyen, 2019; Wadden et al., 2019;
Zhang et al., 2019b; Du and Cardie, 2020; Li et al.,
2020; Paolini et al., 2021), i.e., decomposing the
prediction of complex event structures into mul-
tiple separated subtasks (mostly including entity
recognition, trigger detection, argument classifica-
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tion), and then compose the components of differ-
ent subtasks for predicting the whole event struc-
ture (e.g., pipeline modeling, joint modeling or
joint inference). The main drawbacks of these
decomposition-based methods are: (1) They need
massive and fine-grained annotations for different
subtasks, often resulting in the data inefficiency
problem. For example, they need different fine-
grained annotations for Transport trigger detection,
for Person entity recognition, for Transport.Artifact
argument classification, etc. (2) It is very challeng-
ing to design the optimal composition architecture
of different subtasks manually. For instance, the
pipeline models often lead to error propagation.
And the joint models need to heuristically predefine
the information sharing and decision dependence
between trigger detection, argument classification,
and entity recognition, often resulting in subopti-
mal and inflexible architectures.

In this paper, we propose a sequence-to-
structure generation paradigm for event extraction
– TEXT2EVENT, which can directly extract events
from the text in an end-to-end manner. Specifi-
cally, instead of decomposing event structure pre-
diction into different subtasks and predicting la-
bels, we uniformly model the whole event extrac-
tion process in a neural network-based sequence-to-
structure architecture, and all triggers, arguments,
and their labels are universally generated as natural
language words. For example, we generate a subse-
quence “Attack fire” for trigger extraction, where
both “Attack” and “fire” are treated as natural lan-
guage words. Compared with previous methods,
our method is more data-efficient: it can be learned
using only coarse parallel text-record annotations,
i.e., pairs of 〈sentence, event records〉, rather than
fine-grained token-level annotations. Besides, the
uniform architecture makes it easy to model, learn
and exploit the interactions between different un-
derlying predictions, and the knowledge can be
seamlessly shared and transferred between differ-
ent components.

Furthermore, we design two algorithms for effec-
tive sequence-to-structure event extraction. First,
we propose a constrained decoding algorithm,
which can guide the generation process using event
schemas. In this way, the event knowledge can
be injected and exploited during inference on-the-
fly. Second, we design a curriculum learning al-
gorithm, which starts with current pre-trained lan-
guage models (PLMs), then trains them on simple

event substructure generation tasks such as trigger
generation and independent argument generation,
finally trains the model on the full event structure
generation task.

We conducted experiments1 on ACE and ERE
datasets, and the results verified the effectiveness
of TEXT2EVENT in both supervised learning and
transfer learning settings. In summary, the contri-
butions are as follows:

1. We propose a new paradigm for event ex-
traction -– sequence-to-structure generation,
which can directly extract events from the text
in an end-to-end manner. By uniformly model-
ing all tasks in a single model and universally
predicting different labels, our method is ef-
fective, data-efficient, and easy to implement.

2. We design an effective sequence-to-structure
architecture, which is enhanced with a con-
strained decoding algorithm for event knowl-
edge injection during inference and a curricu-
lum learning algorithm for efficient model
learning.

3. Many information extraction tasks can be for-
mulated as structure prediction tasks. Our
sequence-to-structure method can motivate
the learning of other information extraction
models.

2 TEXT2EVENT: End-to-end Event
Extraction as Controllable Generation

Given the token sequence x = x1, ..., x|x| of the
input text, TEXT2EVENT directly generate the
event structures E = e1, ..., e|E| via an encoder-
decoder architecture. For example, in Figure 1,
TEXT2EVENT take the raw text as input and out-
put two event records including {Type: Transport,
Trigger: returned, Arg1 Role: Artifact, Arg1: The
man, ...} and {Type: Arrest-Jail, Trigger: capture,
..., Arg2 Role: Agent, Arg2: bounty hunters, ...}.

For end-to-end event extraction, TEXT2EVENT

first encodes input text, then generates the lin-
earized structure using the constrained decoding
algorithm. In the following, we first introduce how
to reformulate event extraction as structure gener-
ation via structure linearization, then describe the
sequence-to-structure model and the constrained
decoding algorithm.

1Our source codes are openly available at
https://github.com/luyaojie/text2event

https://github.com/luyaojie/text2event
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(c) Linearized format.

Figure 2: Examples of three event representations. The red solid line indicates the event-role relation; the blue
dotted line indicates the label-span relation where the head is a label and the tail is a text span. For example,
“Transport-returned” is a label-span relation edge, which head is “Transport” and tail is “returned”.

2.1 Event Extraction as Structure Generation

This section describes how to linearize event struc-
ture so that events can be generated in an end-to-
end manner. Specifically, the linearized event rep-
resentations should: (1) be able to express multiple
event records in a text as one expression; (2) be
easy to reversibly converted to event records in a
deterministic way; (3) be similar to the token se-
quence of general text generation tasks so that text
generation models can be leveraged and transferred
easily.

Concretely, the process of converting from
record format to linearized format is shown in Fig-
ure 2. We first convert event records (Figure 2a)
into a labeled tree (Figure 2b) by: 1) first labeling
the root of the tree with the type of event (Root -
Transport, Root - Arrest-Jail), 2) then connecting
multiple event argument role types with event types
(Transport - Artifact, Transport - Origin, etc.), and
3) finally linking the text spans from the raw text
to the corresponding nodes as leaves (Transport -
returned, Transport - Origin - Mexico, Transport
- Artifact - The man, etc.). Given the converted
event tree, we linearize it into a token sequence
(Figure 2c) via depth-first traversal (Vinyals et al.,
2015), where “(” and “)” are structure indicators
used to represent the semantic structure of linear
expressions. The traversal order of the same depth
is the order in which the text spans appear in the
text, e.g., first “return” then “capture” in Figure 2b.
Noted that each linearized form has a virtual root –
Root. For a sentence that contains multiple event
records, each event links to Root directly. For a
sentence that doesn’t express any event, its tree
format will be linearized as “()”.

2.2 Sequence-to-Structure Network

Based on the above linearization strategy,
TEXT2EVENT generates the event structure via

a transformer-based encoder-decoder architecture
(Vaswani et al., 2017). Given the token sequence
x = x1, ..., x|x| as input, TEXT2EVENT outputs
the linearized event representation y = y1, ..., y|y|.
To this end, TEXT2EVENT first computes the hid-
den vector representation H = h1, ...,h|x| of the
input via a multi-layer transformer encoder:

H = Encoder(x1, ..., x|x|) (1)

where each layer of Encoder(·) is a transformer
block with the multi-head attention mechanism.

After the input token sequence is encoded, the
decoder predicts the output structure token-by-
token with the sequential input tokens’ hidden vec-
tors. At the step i of generation, the self-attention
decoder predicts the i-th token yi in the linearized
form and decoder state hd

i as:

yi,h
d
i = Decoder([H;hd

1, ...,h
d
i−1], yi−1) (2)

where each layer of Decoder(·) is a transformer
block that contains self-attention with decoder state
hd
i and cross-attention with encoder state H.
The generated output structured sequence starts

from the start token “〈bos〉” and ends with the end
token “〈eos〉”. The conditional probability of the
whole output sequence p(y|x) is progressively com-
bined by the probability of each step p(yi|y<i, x):

p(y|x) =
|y|∏
i

p(yi|y<i, x) (3)

where y<i = y1...yi−1, and p(yi|y<i, x) is the
probability over the target vocabulary V normal-
ized by softmax(·) .

Because all tokens in linearized event represen-
tations are also natural language words, we adopt
the pre-trained language model T5 (Raffel et al.,
2020) as our transformer-based encoder-decoder ar-
chitecture. In this way, the general text generation
knowledge can be directly reused.
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2.3 Constrained Decoding
Given the hidden sequence H, the sequence-to-
structure network needs to generate the linearized
event representations token-by-token. One straight-
forward solution is to use a greedy decoding al-
gorithm, which selects the token with the highest
predicted probability p(yi|y<i, x) at each decod-
ing step i. Unfortunately, this greedy decoding
algorithm cannot guarantee the generation of valid
event structures. In other words, it could end up
with invalid event types, mismatch of argument-
type, and incomplete structure. Furthermore, the
greedy decoding algorithm ignores the useful event
schema knowledge, which can be used to guide
the decoding effectively. For example, we can con-
strain the model to only generate event type tokens
in the type position.

To exploit the event schema knowledge, we pro-
pose to employ a trie-based constrained decoding
algorithm (Chen et al., 2020a; Cao et al., 2021) for
event generation. During constrained decoding, the
event schema knowledge is injected as the prompt
of the decoder and ensures the generation of valid
event structures.

Concretely, unlike the greedy decoding algo-
rithm that selects the token from the whole tar-
get vocabulary V at each step, our trie-based con-
strained decoding method dynamically chooses and
prunes a candidate vocabulary V ′ based on the cur-
rent generated state. A complete linearized form
decoding process can be represented by executing a
trie tree search, as shown in Figure 3a. Specifically,
each generation step of TEXT2EVENT has three
kinds of candidate vocabulary V ′:

• Event schema: label names of event types T
and argument rolesR;

• Mention strings: event trigger word and argu-
ment mention S , which is the text span in the
raw input;

• Structure indicator: “(” and “)” which are
used to combine event schemas and mention
strings.

The decoding starts from the root “〈bos〉” and
ends at the terminator “〈eos〉”. At the generation
step i, the candidate vocabulary V ′ is the children
nodes of the last generated node. For instance, at
the generation step with the generated string “〈bos〉
(”, the candidate vocabulary V ′ is {“(”, “)”} in
Figure 3a. When generating the event type name

〈bos〉 (

) 〈eos〉

( T S

) ) 〈eos〉

( R S )

( ...

) ...

(a) The trie of event structure.

Attack

Die
∙∙∙
Transfer

Ownership

Money
∙∙∙
Start

Position
Org

(

(b) The trie of event type T .

Figure 3: The prefix tree (trie) of the constrained de-
coding algorithm for controllable structure generation.
T and R indicate the label name of event type and ar-
gument role. S indicates the text span in the raw text,
which is the event trigger or argument mention of the
extracted event.

T , argument role name R and text span S, the
decoding process can be considered as executing
search on a subtree of the trie tree. For example,
in Figure 3b, the candidate vocabulary V ′ for “(
Transfer” is {“Ownership”, “Money”}.

Finally, the decoder’s output will be transformed
to event records and used as final extraction results.

3 Learning

This section describes how to learn the
TEXT2EVENT neural network in an end-to-
end manner. Our method can be learned using
only the coarse parallel text-record annotations,
i.e., pairs of 〈sentence, event records〉, with no
need for fine-grained token-level annotation
used in traditional methods. Given a training
dataset D = {(x1, y1), ...(x|D|, y|D|)} where each
instance is a 〈sentence, event records〉 pair, the
learning objective is the negative log-likelihood
function as:

L = −
∑

(x,y)∈D

log p(y|x, θ) (4)

where θ is model parameters.
Unfortunately, unlike general text-to-text gener-

ation models, the learning of sequence-to-structure
generation models is more challenging: 1) There is
an output gap between the event generation model
and the text-to-text generation model. Compared
with natural word sequences, the linearized event
structure contains many non-semantic indicators
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such as “(” and “)”, and they don’t follow the syntax
constraints of natural language sentences. 2) The
non-semantic indicators “(” and “)” appear very
frequently but contain little semantic information,
which will mislead the learning process.

To address the above challenges, we employ a
curriculum learning (Bengio et al., 2009; Xu et al.,
2020) strategy. Specifically, we first train PLMs
using simple event substructure generation tasks
so that they would not overfit in non-semantic in-
dicators; then we train the model on the full event
structure generation task.

Substructure Learning. Because event represen-
tations often have complex structures and their to-
ken sequences are different from natural language
word sequences, it is challenging to train them with
the full sequence generation task directly. There-
fore, we first train TEXT2EVENT on simple event
substructures.

Specifically, we learn our model by starting from
generating only “(label, span)” substructures, in-
cluding “(type, trigger words)” and “(role, argu-
ment words)” substructures. For example, we will
extract substructure tasks in Figure 2c in this stage
as: (Transport returned) (Artifact
The man) (Arrest-Jail capture), etc.
We construct a 〈sentence, substructures〉 pair for
each extracted substructures, then train our model
using the loss in equation 4.

Full Structure Learning. After the substructure
learning stage, we further train our model for the
full structure generation task using the loss in equa-
tion 4. We found the curriculum learning strategy
uses data annotation more efficiently and makes
the learning process more smooth.

4 Experiments

This section evaluates the proposed TEXT2EVENT

model by conducting experiments in both super-
vised learning and transfer learning settings.

4.1 Experimental Settings

Datasets. We conducted experiments on the
event extraction benchmark – ACE2005 (Walker
et al., 2006), which has 599 English annotated doc-
uments and 33 event types. We used the same split
and preprocessing step as the previous work (Zhang
et al., 2019b; Wadden et al., 2019; Du and Cardie,
2020), and we denote it as ACE05-EN.

Dataset Split #Sents #Events #Roles

ACE05-EN

Train 17,172 4,202 4,859
Dev 923 450 605
Test 832 403 576

ACE05-EN+

Train 19,216 4,419 6,607
Dev 901 468 759
Test 676 424 689

ERE-EN

Train 14,736 6,208 8,924
Dev 1,209 525 730
Test 1,163 551 822

Table 1: Dataset statistics.

In addition to ACE05-EN, we also conducted ex-
periments on two other benchmarks: ACE05-EN+

and ERE-EN, using the same split and preprocess-
ing step in the previous work (Lin et al., 2020).
Compared to ACE05-EN, ACE05-EN+ and ERE-
EN further consider pronoun roles and multi-token
event triggers. ERE-EN contains 38 event cate-
gories and 458 documents.

Statistics of all datasets are shown in Table 1.
For evaluation, we used the same criteria in pre-

vious work (Zhang et al., 2019b; Wadden et al.,
2019; Lin et al., 2020). Since TEXT2EVENT is
a text generation model, we reconstructed the off-
set of predicted trigger mentions by finding the
matched utterance in the input sequence one by
one. For argument mentions, we found the nearest
matched utterance to the predicted trigger mention
as the predicted offset.

Baselines. Currently, event extraction supervi-
sion can be conducted at two different levels:
1) Token-level annotation, which labels each to-
ken in a sentence with event labels, e.g., “The/O
dismission/B-End-Position of/O ..”; 2) Parallel text-
record annotation, which only gives 〈sentence,
event〉 pairs but without expensive token-level an-
notations, e.g., 〈The dismission of ..., {Type: End-
Position, Trigger: dismission, ...}〉. Furthermore,
some previous works also leverage golden entity
annotation for model training, which marks all en-
tity mentions with their golden types, to facilitate
event extraction. Introducing more supervision
knowledge will benefit the event extraction but is
more label-intensive. The proposed Text2Event
only uses parallel text-record annotation, which
makes it more practical in a real-world application.

To verify TEXT2EVENT, we compare our
method with the following groups of baselines:

1. Baselines using token annotation: TANL is the
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Models Trig-C Arg-C PLM
P R F1 P R F1

Models using Token Annotation + Entity Annotation

Joint3EE (Nguyen and Nguyen, 2019) 68.0 71.8 69.8 52.1 52.1 52.1 -
DYGIE++ (Wadden et al., 2019) - - 69.7 - - 48.8 BERT-large

GAIL (Zhang et al., 2019b) 74.8 69.4 72.0 61.6 45.7 52.4 ELMo
OneIEw/o Global (Lin et al., 2020) - - 73.5 - - 53.9 BERT-large

OneIE (Lin et al., 2020) - - 74.7 - - 56.8 BERT-large

Models using Token Annotation

EEQA (Du and Cardie, 2020) 71.1 73.7 72.4 56.8 50.2 53.3 2×BERT-base
MQAEE (Li et al., 2020) - - 71.7 - - 53.4 3×BERT-large

Generation-based Baselines using Token Annotation

TANL (Paolini et al., 2021) - - 68.4 - - 47.6 T5-base
Multi-Task TANL (Paolini et al., 2021) - - 68.5 - - 48.5 T5-base

Our Model using Parallel Text-Record Annotation

TEXT2EVENT 67.5 71.2 69.2 46.7 53.4 49.8 T5-base
TEXT2EVENT 69.6 74.4 71.9 52.5 55.2 53.8 T5-large

Table 2: Experiment results on ACE05-EN. Trig-C indicates trigger identification and classification. Arg-C indicates
argument identification and classification. PLM represents the pre-trained language models used by each model.

SOTA sequence generation-based method that mod-
els event extraction as a trigger-argument pipeline
manner (Paolini et al., 2021); Multi-task TANL ex-
tends TANL by transferring structure knowledge
from other tasks; EEQA (Du and Cardie, 2020)
and MQAEE (Li et al., 2020) are QA-based models
which use machine reading comprehension model
for trigger detection and argument extraction.

2. Baselines using both token annotation and
entity annotation: Joint3EE is a joint entity, trigger,
argument extraction model based on the shared hid-
den representations (Nguyen and Nguyen, 2019);
DYGIE++ is a BERT-based model which captures
both within-sentence and cross-sentence context
(Wadden et al., 2019); GAIL is an inverse rein-
forcement learning-based joint entity and event ex-
traction model (Zhang et al., 2019b); OneIE is an
end-to-end IE system which employs global feature
and beam search to extract globally optimal event
structures (Lin et al., 2020).

Implementations. We optimized our model us-
ing label smoothing (Szegedy et al., 2016; Müller
et al., 2019) and AdamW (Loshchilov and Hutter,
2019) with learning rate=5e-5 for T5-large, 1e-4
for T5-base. For curriculum learning, the epoch of
substructure learning is 5, and full structure learn-

ing is 30. We conducted each experiment on a
single NVIDIA GeForce RTX 3090 24GB. Due to
GPU memory limitation, we used different batch
sizes for different models: 8 for T5-large and 16 for
T5-base; and truncated the max length of raw text
to 256 and linearized form to 128 during training.
We added the task name as the prefix for the T5
default setup.

4.2 Results in Supervised Learning Setting

Table 2 presents the performance of all base-
lines and TEXT2EVENT on ACE05-EN. And
Table 3 shows the performance of SOTA and
TEXT2EVENT on ACE05-EN+ and ERE-EN. We
can see that:

1) By uniformly modeling all tasks in a
single model and predicting labels universally,
TEXT2EVENT can achieve competitive perfor-
mance with weaker supervision and simpler ar-
chitecture. Our method, only using the weak paral-
lel text-record annotations, surpasses most of the
baselines using token and entity annotations and
achieves competitive performance with SOTA. Fur-
thermore, using the simple encoder-decoder archi-
tecture, TEXT2EVENT outperforms most of the
counterparts with complicated architectures.
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Datasets
Trig-C Arg-C

P R F1 P R F1

SOTA (Token + Entity Annotation)

ACE05-EN+ - - 72.8 - - 54.8
ERE-EN∗ 56.9 58.7 57.8 51.9 47.8 49.8

TEXT2EVENT (Parallel Text-Record Annotation)

ACE05-EN+ 71.2 72.5 71.8 54.0 54.8 54.4
ERE-EN 59.2 59.6 59.4 49.4 47.2 48.3

Table 3: Experiment results on ACE05-EN+ and ERE-
EN. SOTA indicates the state-of-the-art system – OneIE.
* The result of SOTA for ERE-EN is reproduced by the
official release code because of the slightly different
dataset statistic result on ERE-EN.

2) By directly generating event structure from the
text, TEXT2EVENT can significantly outperform
sequence generation-based methods. Our method
improves Arg-C F1 by 4.6% and 2.7% over the
SOTA generation baseline and its extended multi-
task TANL. Compared with sequence generation,
structure generation can be effectively guided us-
ing event schema knowledge during inference, and
there is no need to generate irrelevant information.

3) By uniformly modeling and sharing infor-
mation between different tasks and labels, the
sequence-to-structure framework can achieve ro-
bust performance. From Table 2 and Table 3, we
can see that the performance of OneIE decreases on
the harder dataset ACE05-EN+, which has more
pronoun roles and multi-token triggers. By contrast,
the performance of TEXT2EVENT remains nearly
the same on ACE05-EN. We believe this may be
because the proposed sequence-to-structure model
is a universal model that doesn’t specialize in labels
and can better share information between different
labels.

4.3 Results in Transfer Learning Setting

TEXT2EVENT is a universal model, therefore
can facilitate the knowledge transfer between dif-
ferent labels. To verify the transfer ability of
TEXT2EVENT, we conducted experiments in the
transfer learning setting, and the results are shown
in Table 4. Specifically, we first randomly split the
sentences which length larger than 8 in ACE05-
EN+ into two equal-sized subsets src and tgt: src
only retains the annotations of the top 10 frequent
event types, and tgt only retains the annotations of
the remaining 23 event types. For both src and tgt,
we use 80% of the dataset for model training and

Settings Trig-C Arg-C

P R F1 P R F1

OneIE (Token + Entity Annotation)

Non-transfer 78.1 62.3 69.3 50.9 37.9 43.5
Transfer 78.9 61.7 69.2 57.1 40.0 47.0

Gain -0.1 +3.5

EEQA (Token Annotation)

Non-transfer 69.9 67.3 68.6 36.5 37.4 36.9
Transfer 79.5 61.7 69.5 33.9 41.2 37.2

Gain +0.9 +0.3

TEXT2EVENT (Parallel Text-Record Annotation)

Non-transfer 79.4 61.1 69.0 58.4 40.9 48.0
Transfer 82.1 65.3 72.7 58.8 45.4 51.2

Gain +3.7 +3.2

Table 4: Experiment results on the tgt subset of ACE05-
EN+ in the transfer learning setting.

20% for evaluation. For transfer learning, We first
pre-trained an event extraction model on the src
dataset, then fine-tuned the pre-trained model for
extracting the new event types in tgt. From Table 4,
we can see that:

1) Data-efficient TEXT2EVENT can make bet-
ter use of supervision signals. Even training on
tgt from scratch, the proposed method also outper-
forms strong baselines. We believe that this may
because baselines using token and entity annota-
tion require massive fine-grained data for model
learning. Different from baselines, TEXT2EVENT

uniformly models all subtasks, thus the knowledge
can be seamlessly transferred, which is more data-
efficient.

2) TEXT2EVENT can effectively transfer knowl-
edge between different labels. Compared with the
non-transfer setting, which is directly trained on tgt
training set, the transfer setting of TEXT2EVENT

can achieve significant F1 improvements of 3.7 and
3.2 on Trig-C and Arg-C, respectively. By contrast,
the other two baselines cannot obtain significant
F1 improvements of both Trig-C and Arg-C via
transfer learning. Note that the information of en-
tity annotation is shared across src and tgt. As
a result, OneIE can leverage such information to
better argument prediction even with worse trigger
prediction. However, even without using entity an-
notation, the proposed method can still achieve a
similar improvement in the transfer learning setting.
This is because the labels are provided universally
in TEXT2EVENT, so the parameters are not label-
specific.
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Trig-C F1 1% 5% 25% 100%

TEXT2EVENT + CL 24.6 52.8 65.5 71.4
TEXT2EVENT 17.9 52.1 65.0 69.6

w/o CD 13.2 46.8 64.3 68.6
w/o ES 0.0 24.3 31.6 55.5

Arg-C F1 1% 5% 25% 100%

TEXT2EVENT + CL 8.6 33.6 44.0 53.3
TEXT2EVENT 3.7 30.9 44.7 52.6

w/o CD 2.3 27.3 44.4 52.3
w/o ES 0.0 7.0 8.2 28.9

Table 5: Experiment results of variants trained with
different-sized training set on the development set of
ACE05-EN.

4.4 Detailed Analysis

This section analyzes the effects of event schema
knowledge, constrained decoding, and curriculum
learning algorithm in TEXT2EVENT. We designed
four ablated variants based on T5-base:

• “TEXT2EVENT” is the base model that is di-
rectly trained with the full structure learning.

• “+ CL” indicates training TEXT2EVENT with
the proposed curriculum learning algorithm.

• “w/o CD” discards the constrained decoding
during inference and generates event struc-
tures as an unconstrained generation model.

• “w/o ES” replaces the names of event types
and roles with meaningless symbols, which
is used to verify the effect of event schema
knowledge.

Table 5 shows the results on the development set
of ACE05-EN using different training data sizes.
We can see that: 1) Constrained decoding can ef-
fectively guide the generation with event schemas,
especially in low-resource settings. Comparing
to “w/o CD”, constrained decoding improves the
performance of TEXT2EVENT, especially in low-
resource scenarios, e.g., using 1%, 5% training set.
2) Curriculum learning is useful for model learning.
Substructure learning improves 4.7% Trig-C F1
and 5.8% Arg-C F1 on average. 3) It is crucial to
encode and generate event labels as words, rather
than meaningless symbols. Because by encoding
labels as natural language words, our method can
effectively transfer knowledge from pre-trained lan-
guage models.

5 Related Work

Our work is a synthesis of two research directions:
event extraction and structure prediction via neural
generation model.

Event extraction has received widespread atten-
tion in recent years, and mainstream methods usu-
ally use different strategies to obtain a complete
event structure. These methods can be divided
into: 1) pipeline classification (Ahn, 2006; Ji and
Grishman, 2008; Liao and Grishman, 2010; Hong
et al., 2011, 2018; Huang and Riloff, 2012; Chen
et al., 2015; Sha et al., 2016; Lin et al., 2018;
Yang et al., 2019; Wang et al., 2019; Ma et al.,
2020; Zhang et al., 2020c), 2) multi-task joint mod-
els (McClosky et al., 2011; Li et al., 2013, 2014;
Yang and Mitchell, 2016; Nguyen et al., 2016; Liu
et al., 2018; Zhang et al., 2019a; Zheng et al.,
2019), 3) semantic structure grounding (Huang
et al., 2016, 2018; Zhang et al., 2020a), and 4)
question-answering (Chen et al., 2020b; Du and
Cardie, 2020; Li et al., 2020; Liu et al., 2020).

Compared with previous methods, we model all
subtasks of event extraction in a uniform sequence-
to-structure framework, which leads to better de-
cision interactions and information sharing. The
neural encoder-decoder generation architecture
(Sutskever et al., 2014; Bahdanau et al., 2015) has
shown its strong structure prediction ability and
has been widely used in many NLP tasks, such as
machine translation (Kalchbrenner and Blunsom,
2013), semantic parsing (Dong and Lapata, 2016;
Song et al., 2020), entity extraction (Straková et al.,
2019), relation extraction (Zeng et al., 2018; Zhang
et al., 2020b), and aspect term extraction (Ma et al.,
2019). Like TEXT2EVENT in this paper, TANL
(Paolini et al., 2021) and GRIT (Du et al., 2021)
also employ neural generation models for event
extraction, but they focus on sequence generation,
rather than structure generation. Different from
previous works that extract text span via labeling
(Straková et al., 2019) or copy/pointer mechanism
(Zeng et al., 2018; Du et al., 2021), TEXT2EVENT

directly generate event schemas and text spans to
form event records via constrained decoding (Cao
et al., 2021; Chen et al., 2020a), which allows
TEXT2EVENT to handle various event types and
transfer to new types easily.

6 Conclusions

In this paper, we propose TEXT2EVENT, a
sequence-to-structure generation paradigm for
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event extraction. TEXT2EVENT directly learns
from parallel text-record annotation and uniformly
models all subtasks of event extraction in a
sequence-to-structure framework. Concretely, we
propose an effective sequence-to-structure network
for event extraction, which is further enhanced by
a constrained decoding algorithm for event knowl-
edge injection during inference and a curriculum
learning algorithm for efficient model learning. Ex-
perimental results in supervised learning and trans-
fer learning settings show that TEXT2EVENT can
achieve competitive performance with the previous
SOTA using only coarse text-record annotation.

For future work, we plan to adapt our method to
other information extraction tasks, such as N-ary
relation extraction.
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