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Abstract

Ordinal Classification (OC) is an important
classification task where the classes are or-
dinal. For example, an OC task for senti-
ment analysis could have the following classes:
highly positive, positive, neutral, negative,
highly negative. Clearly, evaluation measures
for an OC task should penalise misclassifica-
tions by considering the ordinal nature of the
classes (e.g., highly positive misclassified as
positive vs. misclassifed as highly negative).
Ordinal Quantification (OQ) is a related task
where the gold data is a distribution over or-
dinal classes, and the system is required to es-
timate this distribution. Evaluation measures
for an OQ task should also take the ordinal na-
ture of the classes into account. However, for
both OC and OQ, there are only a small num-
ber of known evaluation measures that meet
this basic requirement. In the present study,
we utilise data from the SemEval and NTCIR
communities to clarify the properties of nine
evaluation measures in the context of OC tasks,
and six measures in the context of OQ tasks.

1 Introduction

In NLP and many other experiment-oriented re-
search disciplines, researchers rely heavily on eval-
uation measures. Whenever we observe an im-
provement in the score of our favourite measure,
we either assume or hope that this implies that we
have managed to moved our system a little towards
what we ultimately want to achieve. Hence it is of
utmost importance to examine whether evaluation
measures are measuring what we want to measure,
and to understand their properties.

This paper concerns evaluation measures for Or-
dinal Classification (OC) and Ordinal Quantifica-
tion (OQ) tasks. In an OC task, the classes are
ordinal, not nominal. For example, Task 4 (Senti-
ment Analysis in Twitter) Subtask C in SemEval-
2016/2017 is defined as: given a set of tweets about

a particular topic, estimate the sentiment conveyed
by each tweet towards the topic on a five-point scale
(highly negative, negative, neutral, positive, highly
positive) (Nakov et al., 2016; Rosenthal et al.,
2017). On the other hand, an OQ task involves
a gold distribution of labels over ordinal classes
and the system’s estimated distribution. For exam-
ple, Task 4 Subtask E of the SemEval-2016/2017
workshops is defined as: given a set of tweets about
a particular topic, estimate the distribution of the
tweets across the five ordinal classes already men-
tioned above (Nakov et al., 2016; Rosenthal et al.,
2017). The Dialogue Breakdown Detection Chal-
lenge (Higashinaka et al., 2017) and the Dialogue
Quality subtasks of the NTCIR-14 Short Text Con-
versation (Zeng et al., 2019) and the NTCIR-15
Dialogue Evaluation (Zeng et al., 2020) tasks are
also OQ tasks. 1

Clearly, evaluation measures for OC and OQ
tasks should take the ordinal nature of the classes
into account. For example, in OC, when a highly
positive item is misclassified as highly negative,
that should be penalised more heavily than when it
is misclassified as positive. Surprisingly, however,
there are only a small number of known evaluation
measures that meet this requirement. In the present
study, we use data from the SemEval and NTCIR
communities to clarify the properties of nine eval-
uation measures in the context of OC tasks, and
six measures in the context of OQ tasks. Some of
these measures satisfy the aforementioned basic
requirement for ordinal classes; others do not.

1In terms of data structure, we observe that the relationship
between OC and OQ are similar to that between paired data
and two-sample data in statistical significance testing. In OC,
we examine which item is classified by the system into which
class, and build a confusion matrix of gold and estimated
classes. In contrast, in OQ, we compare the system’s distribu-
tion of items with the gold distribution, but we do not concern
ourselves with which item in one distribution corresponds to
which item in the other.
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Section 2 discusses prior art. Section 3 provides
formal definitions of the measures we examine,
as this is of utmost importance for reproducibility.
Section 4 describes the data we use to evaluate the
measures. Sections 5 and 6 report on the results
on the OC and OQ measures, respectively. Finally,
Section 7 concludes this paper.

2 Prior Art

2.1 Evaluating Ordinal Classification

As we have mentioned in Section 1, Task 4 Sub-
task C of the SemEval-2016/2017 workshops is an
OC task with five ordinal classes (Nakov et al.,
2016; Rosenthal et al., 2017). While SemEval
also features other OC tasks with fewer classes
(e.g., Task 4 Subtask A from the same years, with
three classes), we use the Subtask C data as having
more classes should enable us to see more clearly
the difference between measures that consider or-
dinal classes and those that do not.2 Note that
if there are only two classes, OC is reduced to
nominal classification. Subtask C used two evalu-
ation measures that consider the ordinal nature of
the classes: macroaveraged Mean Absolute Error
(MAEM ) and the standard Mean Absolute Error
(MAEµ) (Baccianella et al., 2009).

At ACL 2020, Amigó et al. (2020) proposed
a measure specifically designed for OC, called
Closeness Evaluation Measure (CEMORD ), and
discussed its axiomatic properties. Their meta-
evaluation experiments primarily focused on com-
paring it with other measures in terms of how each
measure agrees simultaneously with all of pre-
selected “gold” measures. However, while their
results showed that CEMORD is similar to all of
these gold measures, the outcome may differ if we
choose a different set of gold measures. Indeed, in
the context of evaluating information retrieval eval-
uation measures, Sakai and Zeng (2019) demon-
strated that a similar meta-evaluation approach
called unanimity (Amigó et al., 2018) depends
heavily on the choice of gold measures. Moreover,
while Amigó et al. (2020) reported that CEMORD

also performs well in terms of consistency of sys-
tem rankings across different data (which they refer
to as “robustness”), experimental details were not
provided in their paper. Hence, to complement their
work, the present study conducts extensive and re-

2SemEval-2018 Task 1 (Affect in Tweets) featured an OC
task with four classes (Mohammad et al., 2018). However, the
run submission files of this task are not publicly available.

producible experiments for OC measures. Our OC
meta-evaluation experiments cover nine measures,
including MAEM , MAEµ, and CEMORD .

2.2 Evaluating Ordinal Quantification

As we have mentioned in Section 1, Task 4 Sub-
task E of the SemEval-2016/2017 workshops is
an OQ task with five ordinal classes (Nakov et al.,
2016; Rosenthal et al., 2017).3 Subtask E used
Earth Mover’s Distance (EMD), remarking that
this is “currently the only known measure for ordi-
nal quantification” (Nakov et al., 2016; Rosenthal
et al., 2017). Subsequently, however, Sakai (2018a)
proposed a new suite of OQ measures based on
Order-aware Divergence (OD),4 and compared
them with Normalised Match Distance (NMD), a
normalised version of EMD. Sakai utilised data
from the Third Dialogue Breakdown Detection
Challenge (DBDC3) (Higashinaka et al., 2017),
which features three ordinal classes, and showed
that his Root Symmetric Normalised OD (RSNOD)
measure behaves similarly to NMD. However, his
experiments relied on the run submission files from
his own team, as he did not have access to the en-
tire set of DBDC3 submission files. On the other
hand, the organisers of DBDC3 (Tsunomori et al.,
2020) compared RSNOD, NMD, and the official
measures of DBDC (namely, Mean Squared Er-
ror and Jensen-Shannon Divergence, which ignore
the ordinal nature of the classes) using all the run
submission files from DBDC3. They reported that
RSNOD was the overall winner in terms of system
ranking consistency and discriminative power, i.e.,
the ability of a measure to obtain many statistical
significant differences (Sakai, 2006, 2007, 2014).

In addition to the aforementioned two Subtask E
data sets from SemEval, the present study utilises
three data sets from the Dialogue Quality (DQ) Sub-
tasks of the recent NTCIR-15 Dialogue Evaluation
(DialEval-1) Task (Zeng et al., 2020). Each DQ
subtask is defined as: given a helpdesk-customer
dialogue, estimate the probability distribution over
the five-point Likert-scale Dialogue Quality ratings
(See Section 4). Our OQ meta-evaluation exper-
iments cover six measures, including NMD and
RSNOD.

3The Valence Ordinal Classification subtask of SemEval-
2018 Task 1 (Affect in Tweets) is also an OQ task, with seven
classes (Mohammad et al., 2018). However, the submission
files of this task are not publicly available.

4See also Sakai (2017) for an earlier discussion on OD.
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3 Evaluation Measure Definitions

3.1 Classification Measures

In the OC tasks of SemEval-2016/2017, a set of top-
ics was given to the participating systems, where
each topic is associated with N tweets. (N varies
across topics.) Given a set C of ordinal classes rep-
resented by consecutive integers, each OC system
yields a |C| × |C| confusion matrix for each topic.
From this, we can calculate evaluation measures
described below. Finally, the systems are evaluated
in terms of mean scores over the topic set.

Let cij denote the number of items (e.g., tweets)
whose true class is j, classified by the system into
i (i, j ∈ C) so that N =

∑
j

∑
i cij . Let c•j =∑

i cij , ci• =
∑

j cij , and C+ = {j ∈ C | c•j >
0}. That is, C+ is the set of gold classes that are
not empty. We compute MAE’s as follows.

MAEM =
1

|C+|
∑
j∈C+

∑
i∈C |i− j|cij

c•j
, (1)

MAEµ =

∑
j∈C

∑
i∈C |i− j|cij
N

. (2)

Unlike the original formulation of MAEM by Bac-
cianella et al. (2009), ours explicitly handles cases
where there are empty gold classes (i.e., j s.t.
c•j = 0). Empty gold classes actually do exist
in the SemEval data used in our experiments.

It is clear from the weights used above (|i− j|)
that MAEs assume equidistance, although this is
not guaranteed for ordinal classes. Hence Amigó
et al. (2020) propose the following alternative:

CEMORD =

∑
j∈C

∑
i∈C prox ijcij∑

j∈C prox jjc•j
, (3)

where prox ij = − log2(max{0.5,Kij}/N), and

Kij =

{
c•i/2 +

∑j
l=i+1 c•l (i ≤ j)

c•i/2 +
∑i−1

l=j c•l (i > j)
. (4)

Our formulation of prox ij with a max operator
ensures that it is a finite value even if Kij = 0.

We also consider Weighted κ (Cohen, 1968). We
first compute the expected agreements when the
system and gold labels are independent: eij =
ci•c•j/N . Weighted κ is then defined as:

κ = 1−
∑

j∈C
∑

i∈C wijcij∑
j∈C

∑
i∈C wijeij

, (5)

where wij is a predefined weight for penalising
misclassification. In the present study, we follow
the approach of MAEs (Eqs. 1-2) and consider
Linear Weighted κ: wij = |i − j|. However, it
should be noted here that κ is not useful if the
OC task involves baseline systems such as the ones
included in the aforementioned SemEval tasks: that
is, a system that always returns Class 1, a system
that always returns Class 2, and so on. It is easy to
mathematically prove that κ returns a zero for all
topics for all such baseline systems.

We also consider applying Krippendorff’s
α (Krippendorff, 2018) to OC tasks. The α is a
measure of data label reliability, and can handle
any types of classes by plugging in an appropriate
distance function. Instead of the |C| × |C| confu-
sion matrix, the α requires a |C|×N class-by-item
matrix that contains label counts ni(u), which rep-
resents the number of labels which say that item u
belongs to Class i. For an OC task, ni(u) = 2 if
both the gold and system labels for u is i; ni(u) = 1
if either the gold or system label (but not both) for
u is i; ni(u) = 0 if neither label says u belongs to
i. Thus, this matrix ignores which labels are from
the gold data and which are from the system.

For comparing two complete sets of labels (one
from the gold data and the other from the sys-
tem), the definition of Krippendorff’s α is rela-
tively simple. Let ni =

∑
u ni(u); this is the to-

tal number of labels that Class i received from
the two sets of labels. The observed coincidence
for Classes i and j (i, j ∈ C, i 6= j) is given by
Oij =

∑
u ni(u)nj(u), while the expected coinci-

dence is given by Eij = ninj/(2N − 1). The α is
defined as:

α = 1−
∑

i

∑
j>iOijδ

2
ij∑

i

∑
j>iEijδ

2
ij ,

(6)

where, for ordinal data,

δ2ij = (

j∑
k=i

nk −
ni + nj

2
)2 , (7)

and for interval data, δ2ij = |i− j|2 (Krippendorff,
2018). We shall refer to these two versions of α as
α-ORD and α-INT, respectively. Unlike κ, the α’s
can evaluate the aforementioned baseline systems
without any problems.

The three measures defined below ignore the
ordinal nature of the classes. That is, they are
axiomatically incorrect as OC evaluation measures.
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First, let us consider two different definitions of
“Macro F1” found in the literature (Opitz and Burst,
2019): to avoid confusion, we give them different
names in this paper. For each j ∈ C+, let Precj =
cjj/cj• if cj• > 0, and Precj = 0 if cj• = 0 (i.e.,
the system never chooses Class j). Let Recj =
cjj/c•j . Also, for any positive values p and r, let
f1(p, r) = 2pr/(p + r) if p + r > 0, and let
f1(p, r) = 0 if p = r = 0. Then:

F1M =
1

|C+|
∑
j∈C+

f1(Precj ,Recj) . (8)

Now, let PrecM =
∑

j∈C+ Precj/|C+|,
RecM =

∑
j∈C+ Recj/|C+|, and

HMPR = f1(PrecM ,RecM ) . (9)

HMPR stands for Harmonic mean of Macroaver-
aged Precision and macroaveraged Recall. Opitz
and Burst (2019) recommend what we call F1M

over what we call HMPR. Again, note that our for-
mulations useC+ to clarify that empty gold classes
are ignored.

Finally, we also consider Accuracy:5

Accuracy =

∑
j∈C cjj

N
. (10)

From Eqs. 2 and 10, it is clear that MAEµ and Ac-
curacy ignore class imbalance (Baccianella et al.,
2009), unlike the other measures.

3.2 Quantification Measures
In an OQ task, a comparison of an estimated dis-
tribution and the gold distribution over |C| ordi-
nal classes yields one effectiveness score, as de-
scribed below. The systems are then evaluated
by mean scores over the test instances, e.g., top-
ics (Nakov et al., 2016; Rosenthal et al., 2017) or
dialogues (Zeng et al., 2019, 2020). Let pi de-
note the estimated probability for Class i, so that∑

i∈C pi = 1. Similarly, let p∗i denote the true
probability. We also denote the entire probability
distributions by p and p∗, respectively.

Let cpi =
∑

k≤i pk, and cp∗i =
∑

k≤i p
∗
k. Nor-

malised Match Distance (NMD) used in the NT-
CIR Dialogue Quality Subtasks (Zeng et al., 2019,
2020) is given by (Sakai, 2018a):

NMD(p, p∗) =

∑
i∈C |cpi − cp∗i |
|C| − 1

. (11)

5Since the system and the gold data have the same total
number of items to classify (i.e., N ), accuracy is the same as
microaveraged F1/recall/precision.

This is simply a normalised version of EMD used in
the OQ tasks of SemEval (See Section 2.2) (Nakov
et al., 2016; Rosenthal et al., 2017).

We also consider two measures that can handle
OQ tasks from Sakai (2018a). First, a Distance-
Weighted sum of squares for Class i is defined as:

DW i =
∑
j∈C
|i− j|(pj − p∗j )2 . (12)

Note that the above assumes equidistance. Let
C∗ = {i ∈ C|p∗i > 0}. That is, C∗ is the set
of classes with a positive gold probability. Order-
aware Divergence is defined as:

OD(p ‖ p∗) = 1

|C∗|
∑
i∈C∗

DW i , (13)

with its symmetric version SOD(p, p∗) =
(OD(p ‖ p∗) +OD(p∗ ‖ p))/2. Root (Symmetric)
Normalised Order-aware Divergence is defined as:

RNOD(p ‖ p∗) =

√
OD(p ‖ p∗)
|C| − 1

, (14)

RSNOD(p, p∗) =

√
SOD(p, p∗)

|C| − 1
. (15)

The other three measures defined below ignore
the ordinal nature of the classes (Sakai, 2018a);
they are axiomatically incorrect as OQ measures.
Normalised Variational Distance (NVD) is essen-
tially the Mean Absolute Error (MAE):

NVD(p, p∗) =
1

2

∑
i∈C
|pi − p∗i | . (16)

Root Normalised Sum of Squares (RNSS) is essen-
tially the Root Mean Squared Error (RMSE):

RNSS (p, p∗) =

√∑
i∈C(pi − p∗i )2

2
. (17)

The advantages of RMSE over MAE is discussed
in Chai and Draxler (2014).

The Kullback-Leibler divergence (KLD) for sys-
tem and gold probability distributions over classes
is given by:

KLD(p ‖ p∗) =
∑

i∈C s.t. pi>0

pi log2
pi
p∗i
. (18)

As this is undefined if p∗i = 0, we use the more con-
venient Jensen-Shannon divergence (JSD) instead,
which is symmetric (Lin, 1991):

JSD(p, p∗) =
KLD(p ‖ pM ) +KLD(p∗ ‖ pM )

2
,

(19)
where pMi = (pi + p∗i )/2.
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Short name Evaluation Task/subtask Task language #ordinal test data #runs used
in this paper venue Type classes sample size
Sem16T4C SemEval-2016 Task 4 Subtask C OC E 5 100 12
Sem17T4C SemEval-2017 Task 4 Subtask C OC E 5 125 20
Sem16T4E SemEval-2016 Task 4 Subtask E OQ E 5 100 12
Sem17T4E SemEval-2017 Task 4 Subtask E OQ E 5 125 14
DQ-{A, E, S} NTCIR-15 (2020) DialEval-1 DQ OQ C+E 5 300 22 (13+9)

Table 1: Task data used in our OC and OQ meta-evaluation experiments (C: Chinese, E: English).

(I) Sem16T4C α-INT HMPR F1M MAEM κ CEMORD Accuracy MAEµ

α-ORD 1.000 0.818 0.879 0.818 0.879 0.606 −0.030 −0.152
α-INT - 0.818 0.879 0.818 0.879 0.606 −0.030 −0.152
HMPR - - 0.818 0.879 0.939 0.606 −0.030 −0.152
F1M - - - 0.818 0.879 0.727 0.091 −0.030

MAEM - - - - 0.879 0.727 0.091 −0.030
κ - - - - - 0.667 0.030 −0.091

CEMORD - - - - - - 0.364 0.242
Accuracy - - - - - - - 0.879

(II) Sem17T4C α-INT HMPR F1M MAEM κ CEMORD Accuracy MAEµ

α-ORD 0.989 0.821 0.821 0.789 0.758 0.695 0.453 0.337
α-INT - 0.811 0.811 0.800 0.768 0.684 0.442 0.326
HMPR - - 0.895 0.926 0.832 0.789 0.526 0.432
F1M - - - 0.863 0.768 0.789 0.526 0.453

MAEM - - - - 0.842 0.842 0.579 0.484
κ - - - - - 0.747 0.463 0.368

CEMORD - - - - - - 0.716 0.600
Accuracy - - - - - - - 0.863

Table 2: System ranking similarity in terms of Kendall’s τ for each OC task. Correlation strengths are visualised
in colour (τ ≥ 0.8, 0.6 ≤ τ < 0.8, and τ < 0.6) to clarify the trends.

4 Task Data

Table 1 provides an overview of the SemEval and
NTCIR task data that we leveraged for our OC and
OQ meta-evaluation experiments. From SemEval-
2016/2017 Task 4 (Sentiment Analysis in Twit-
ter) (Nakov et al., 2016; Rosenthal et al., 2017), we
chose Subtask C as our OC tasks, and Subtask E as
our OQ tasks for the reason given in Section 2.1.6

Moreover, for the OQ meta-evaluation experiments,
we also utilise the DQ (Dialogue Quality) subtask
data from NTCIR-15 DialEval-1 (Zeng et al., 2020).
As these subtasks require participating systems to
estimate three different dialogue quality score dis-
tributions, namely, A-score (task accomplishment),
E-score (dialogue effectiveness), and S-score (cus-
tomer satisfaction), we shall refer to the subtasks
as DQ-A, DQ-E, and DQ-S hereafter. We utilise
both Chinese and English DQ runs for our OQ
meta-evaluation (22 runs in total), as the NTCIR
task evaluates all runs using gold distributions that
are based on the Chinese portion of the parallel
dialogue corpus (Zeng et al., 2020). As the three
NTCIR data sets are larger than the two SemEval
data sets both in terms of sample size and the num-

6We do not use the Arabic data from 2017 as only two runs
were submitted to Subtasks C and E (Rosenthal et al., 2017).

ber of systems, we shall focus on the OQ meta-
evaluation results with the NTCIR data; the results
with Sem16T4E and Sem17T4E can be found in
the Appendix.

5 Meta-evaluation with Ordinal
Classification Tasks

5.1 System Ranking Similarity

Table 2 shows, for each OC task, the Kendall’s τ
rank correlation values (Sakai, 2014) between two
system rankings for every pair of measures. We
can observe that: (A) the α’s, the two “Macro F1”
measures (F1M and HMPR), MAEM and κ pro-
duce similar rankings; (B) MAEµ and Accuracy
(i.e., the two measures that ignore class imbalance)
produce similar rankings, which are drastically dif-
ferent from those of Group A; and (C) CEMORD

produces a ranking that is substantially different
from the above two groups, although the ranking is
closer to those of Group A. The huge gap between
Groups A and B strongly suggests that MAEµ and
Accuracy are not useful even as secondary mea-
sures for evaluating OC systems.

It should be noted that the SemEval 2016/2017
Task 4 Subtask C actually reported MAEµ scores
in addition to the primary MAEM scores, and the
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Measure Mean τ Measure Mean τ
Sem16T4C

(a) Full split (50 vs. 50) (b) 10 vs. 10
VE2 = 0.00211 VE2 = 0.00730

κ 0.976] α-ORD 0.872♠
α-ORD 0.962[ κ 0.868♠
α-INT 0.935♣ α-INT 0.863♠
MAEµ 0.929♣ HMPR 0.799♣
HMPR 0.904♦ MAEM 0.780♥
MAEM 0.901♦ F1M 0.758‡
F1M 0.884‡ MAEµ 0.753‡
CEMORD 0.806 Accuracy 0.625†
Accuracy 0.799 CEMORD 0.595

Sem17T4C
(c) Full split (62 vs. 63) (d) 10 vs. 10

VE2 = 0.00114 VE2 = 0.00503
α-ORD 0.910♠ HMPR 0.768♠
F1M 0.908♠ α-INT 0.761♣
α-INT 0.907♠ F1M 0.760♣
HMPR 0.901♣ κ 0.751♥
CEMORD 0.871‡ α-ORD 0.742♥
MAEµ 0.869‡ CEMORD 0.729♦
κ 0.866‡ MAEµ 0.700†
MAEM 0.850† MAEM 0.697†
Accuracy 0.818 Accuracy 0.663

Table 3: System ranking consistency for the OC tasks.
]/[/♠/♣/♥/♦/ ‡ /† means “statistically significantly
outperforms the worst 8/7/6/5/4/3/2/1 measure(s),” re-
spectively. VE2 is the residual variance computed from
each 1000 × 9 trial-by-measure matrix of τ scores,
which can be used for computing effect sizes. For ex-
ample, from Part (a), the effect size for the difference
between α-ORD and CEMORD can be computed as
(0.962− 0.806)/

√
0.00211 = 3.40.

system rankings according to these two measures
were completely different even in the official re-
sults. For example, in the 2016 results (Table 12
in Nakov et al. (2016)), while the baseline run that
always returns neutral is ranked at 10 among the 12
runs according to MAEM , the same run is ranked
at the top according to MAEµ. Similarly, in the
2017 results (Table 10 in Rosenthal et al. (2017)), a
run ranked at 10 (tied with another run) among the
20 runs according to MAEM is ranked at the top
according to MAEµ. Our results shown in Table 2
generalise these known discrepancies between the
rankings.

5.2 System Ranking Consistency

For each measure, we evaluate its system ranking
consistency (or “robustness” (Amigó et al., 2020))
across two topic sets as follows (Sakai, 2021):
(1) randomly split the topic set in half, produce
two system rankings based on the mean scores over
each topic subset, and compute a Kendall’s τ score
for the two rankings; (2) repeat the above 1,000
times and compute the mean τ ; (3) conduct a ran-

domised paired Tukey HSD test at α = 0.05 with
5,000 trials on the mean τ scores to discuss statisti-
cal significance.7

Table 3 (a) and (c) show the consistency results
with the OC tasks. For example, Part (a) shows that
when the 100 topics of Sem16T4C were randomly
split in half 1,000 times, κ statistically significantly
outperformed all other measures, as indicated by
a “].” Table 3 (b) and (d) show variants of these
experiments where only 10 topics are used in each
topic subset, to discuss the robustness of measures
to small sample sizes. If we take the averages of (a)
and (c), the top three measures are the two α’s and
κ, while the worst two measures are CEMORD and
Accuracy; we obtain the same result if we take the
averages of (b) and (d). Thus, although Amigó et al.
(2020) reported that CEMORD performed well in
terms of “robustness,” this is not confirmed in our
experiments.

Recall that κ has a practical inconvenience: it
cannot distinguish between baseline runs that al-
ways return the same class. While SemEval16T4C
contains one such run (which always returns neu-
tral), SemEval17T4C contains as many as five such
runs (each always returning one of the five ordinal
classes). This is probably why κ performs well in
Table 3(a) and (b) but not in (c) and (d).

5.3 Discriminative Power
In the information retrieval research community,
discriminative power (Sakai, 2006, 2007, 2014) is a
widely-used method for comparing evaluation mea-
sures (e.g., Anelli et al. (2019); Ashkan and Metzler
(2019); Chuklin et al. (2013); Clarke et al. (2020);
Golbus et al. (2013); Lu et al. (2016); Kanoulas and
Aslam (2009); Leelanupab et al. (2012); Robertson
et al. (2010); Valcarce et al. (2020)). Given a set
of systems, a p-value for the difference in means
is obtained for every system pair (preferrably with
a multiple comparison procedure (Sakai, 2018b));
highly discriminative measures are those than can
obtain many small p-values. While highly discrim-
inative measures are not necessarily correct, we
do want measures to be sufficiently discriminative
so that we can draw some useful conclusions from
experiments. Again, we use randomised paired

7The Tukey HSD (Honestly Significant Differences) test
is a multiple comparison procedure: that is, it is like the t-
test, but can compare the means of more than two systems
while ensuring that the familywise Type I error rate is α. The
randomised version of this test is free from assumptions such
as normality and random sampling from a population (Sakai,
2018b).
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Figure 1: Discriminative power with randomised Tukey
HSD tests (B = 5, 000 trials) for each OC task.

(I) (II) (III) (IV) (V) (VI)
κ X X A good good

α-ORD X X X A good fair
α-INT

CEMORD X X X A/B poor poor
MAEM X X X A fair poor

F1M X X A fair fair
HMPR X X A fair fair
MAEµ X X B fair poor

Accuracy X B poor poor

Table 4: Summary of the properties of OC measures.
(I) handles ordinal classes; (II) handles systems that al-
ways return the same class; (III) handles class imbal-
ance; (IV) system ranking similarity; (V) system rank-
ing consistency; (VI) discriminative power.

Tukey HSD tests with 5,000 trials for obtaining the
p-values.

Figure 1 shows the discriminative power curves
for the OC tasks. Curves that are closer to the
origin (i.e., those with small p-values for many
system pairs) are considered good. We can ob-
serve that (i) CEMORD , Accuracy, MAEM , and
MAEµ are the least discriminative measures in both
tasks. (ii) Among the other measures that perform
better, κ performs consistently well. Again, the
fact that κ distinguishes itself from others in the
SemEval16T4C results probably reflects the fact
that the data set contains only one run that always
returns the same class, which cannot be handled
properly by κ.

5.4 Recommendations for OC Tasks

Table 4 summarises the properties of the nine mea-
sures we examined in the context of OC tasks. Col-
umn (IV) shows that, for example, the Group A
measures produce similar rankings. Based on this
table, we recommend (Linear Weighted) κ as the
primary measure for OC tasks if the tasks do not in-

(I) DQ-A RSNOD RNOD NVD JSD NMD
RNSS 0.835 0.913 0.939 0.905 0.636

RSNOD - 0.870 0.861 0.827 0.766
RNOD - - 0.939 0.939 0.723
NVD - - - 0.931 0.680
JSD - - - - 0.714

(II) DQ-E RSNOD RNOD NVD JSD NMD
RNSS 0.931 0.922 0.913 0.913 0.688

RSNOD - 0.957 0.948 0.948 0.758
RNOD - - 0.957 0.991 0.749
NVD - - - 0.948 0.758
JSD - - - - 0.758

(III) DQ-S RSNOD RNOD NVD JSD NMD
RNSS 0.861 0.974 0.957 0.922 0.558

RSNOD - 0.887 0.887 0.853 0.662
RNOD - - 0.983 0.948 0.584
NVD - - - 0.965 0.584
JSD - - - - 0.619

Table 5: System ranking similarity in terms of
Kendall’s τ for each OQ task (NTCIR). Correlation
strengths are visualised in colour (τ ≥ 0.9, 0.8 ≤ τ <
0.9, and τ < 0.8) to clarify the trends.

volve multiple baseline runs that always return the
same class. Such runs are unrealistic, so this lim-
itation may not be a major problem. On the other
hand, if the tasks do involve such baseline runs (as
in SemEval), we recommend α-ORD as the pri-
mary measure. In either case, it would be good
to use both κ and α-ORD to examine OC systems
from multiple angles. According to our consis-
tency and discriminative power experiments, using
α-INT instead of α-ORD (i.e., assuming equidis-
tance) does not seem beneficial for OC tasks.

6 Meta-evaluation with Ordinal
Quantification Tasks

6.1 System Ranking Similarity

Table 5 shows, for each OQ task from NTCIR, the
Kendall’s τ between two system rankings for ev-
ery pair of measures. It is clear from the “NMD”
column that NMD is an outlier among the six mea-
sures. In other words, among the only axiomati-
cally correct measures for OQ tasks, RNOD and
RSNOD are the ones that produce rankings that are
similar to those produced by well-known measures
such as JSD and NVD (i.e., normalised MAE; see
Eq. 16). Also, in Table 5(I) and (III), it can be
observed that the ranking by RSNOD lies some-
where between that by NMD (let us call it “Group
X”) and those by the other measures (“Group Y”).
However, this is not true in Table 5(II), nor with
our SemEval results (See Appendix Table 8).
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DQ-A
(a) Full split (150 vs. 150) (b) 10 vs. 10

VE2 = 0.00130 VE2 = 0.00871
RNOD 0.909♣ JSD 0.558♣
RNSS 0.885‡ RNOD 0.507♦
NVD 0.882‡ NVD 0.497♦
JSD 0.879‡ RNSS 0.456‡
RSNOD 0.820† NMD 0.424†
NMD 0.717 RSNOD 0.404

DQ-E
(c) Full split (150 vs. 150) (d) 10 vs. 10

VE2 = 0.000519 VE2 = 0.00403
NMD 0.865♣ JSD 0.624♣
JSD 0.842♥ RNOD 0.610♥
RNSS 0.835♦ RNSS 0.594‡
NVD 0.819‡ NVD 0.592‡
RNOD 0.813 RSNOD 0.563†
RSNOD 0.811 NMD 0.502

DQ-S
(e) Full split (150 vs. 150) (f) 10 vs. 10

VE2 = 0.00105 VE2 = 0.00656
RNSS 0.906♥ JSD 0.580♣
JSD 0.901♦ RNOD 0.547♥
RNOD 0.897♦ NVD 0.523‡
NVD 0.870‡ RNSS 0.514‡
RSNOD 0.861† RSNOD 0.448†
NMD 0.745 NMD 0.421

Table 6: System ranking consistency for the OQ tasks
(NTCIR). ♣/♥/♦/ ‡ /† means “statistically signifi-
cantly outperforms the worst 5/4/3/2/1 measure(s),” re-
spectively. VE2 is the residual variance computed from
each 1000 × 6 trial-by-measure matrix of τ scores,
which can be used for computing effect sizes. For ex-
ample, Part (a), the effect size for the difference be-
tween RNOD and NMD can be computed as (0.909 −
0.717)/

√
0.00130 = 5.33 (i.e., over five standard devi-

ations apart).

6.2 System Ranking Consistency

Table 6 shows the system ranking consistency re-
sults with the OQ tasks from NTCIR. These exper-
iments were conducted as described in Section 5.2.
If we take the averages of (a), (c), and (e) (i.e., ex-
periments where the 300 dialogues are split in half),
the worst measure is NMD, followed by RSNOD.
Moreover, the results are the same if we take the av-
erages of (b), (d), and (f) (i.e., experiments where
two disjoint sets of 10 dialogues are used), we
obtain the same result. Hence, among the axiomat-
ically correct measures for OQ tasks, RNOD ap-
pears to be the best in terms of system ranking
consistency, and that introducing symmetry (Com-
pare Eqs. 14 and 15) may not be a good idea from
a statistical stability point of view. Note that, for
comparing a system distribution with a gold distri-
bution, symmetry is not a requirement.
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Figure 2: Discriminative power with randomised Tukey
HSD tests (B = 5, 000 trials) for each OQ task from
NTCIR.

6.3 Discriminative Power

Figure 2 shows the discriminative power curves for
the OQ tasks from NTCIR. We can observe that:
(i) NMD performs extremely poorly in (I) and (III),
which is consistent with the full-split consistency
results in Table 6(a) and (e); (ii) RNOD outper-
forms RSNOD in (I) and (III). Although RSNOD
appears to perform well in (II), if we consider the
5% significance level (i.e., 0.05 on the y-axis), the
number of statistically significantly different pairs
(out of 231) is 117 for RNOD, 116 for RSNOD,
NMD, and NVD, and 115 for RNSS and JSD. That
is, RNOD performs well in (II) also. These results
also suggest that introducing symmetry to RNOD
(i.e., using RSNOD instead) is not beneficial.

6.4 Recommendations for OQ Tasks

Table 7 summarises the properties of the six mea-
sures we examined in the context of OQ tasks. Col-
umn (III) indicates that NMD is an outlier in terms
of system ranking. Based on this table, we recom-
mend RNOD as the primary measure of OQ tasks,
as evaluating OQ systems do not require the mea-
sures to be symmetric. As a secondary measure,
we recommend NMD (i.e., a form of Earth Mover’s
Distance) to examine the OQ systems from a differ-
ent angle, although its statistical stability (in terms
of system ranking consistency and discriminative
power) seems relatively unpredictable. Although
the NTCIR Dialogue Quality subtasks (Zeng et al.,
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(I) (II) (III) (IV) (V)
NMD X X X poor poor

RSNOD X X Y poor fair
RNOD X Y good fair
NVD X Y good fair
RNSS X Y good fair
JSD X Y good fair

Table 7: Summary of the properties of OQ measures.
(I) handles ordinal classes; (II) symmetric; (III) system
ranking similarity; (IV) system ranking consistency;
(V) discriminative power.

2019, 2020) have used NMD and RSNOD as the
official measures, it may be beneficial for them to
replace RSNOD with RNOD.

7 Conclusions

We conducted extensive evaluations of nine mea-
sures in the context of OC tasks and six measures in
the context of OQ tasks, using data from SemEval
and NTCIR. As we have discussed in Sections 5.4
and 6.4, our recommendations are as follows.

OC tasks Use (Linear Weighted) κ as the primary
measure if the task does not involve multi-
ple runs that always return the same class
(e.g., one that always returns Class 1, another
that always returns Class 2, etc.). Otherwise,
use α-ORD (i.e., Krippendorff’s α for ordi-
nal classes) as the primary measure. In either
case, use both measures.

OQ tasks Use RNOD as the primary measure, and
NMD as a secondary measure.

All of our evaluation measure score matrices
are available from https://waseda.box.com/

ACL2021PACKOCOQ, to help researchers reproduce
our work.

Among the above recommended measures, re-
call that Linear Weighted κ and RNOD assume
equidistance (i.e., they rely on wij = |i − j|),
while α-ORD and NMD do not. Hence, if re-
searchers want to avoid relying on the equidis-
tance assumption (i.e., satisfy the ordinal invari-
ance property (Amigó et al., 2020)), α-ORD can
be used for OC tasks and NMD can be used for OQ
tasks. However, we do not see relying on equidis-
tance as a practical problem. For example, note
that the Linear Weighted κ is just an instance of
the Weighted κ family: if necessary, the weight
wij can be set for each pair of Classes i and j ac-
cording to practical needs. Similarly, wij = |i− j|

(Eq. 12) for RNOD (and other equidistance-based
measures) may be replaced with a different weight-
ing scheme (e.g., something similar to the prox ij
weights of CEMORD ) if need be.

Our final and general remark is that it is of ut-
most importance for researchers to understand the
properties of evaluation measures and ensure that
they are appropriate for a given task. Our future
work includes evaluating and understanding evalu-
ation measures for tasks other than OC and OQ.
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Appendix

For completeness, this appendix reports on the
OQ experiments based on SemEval16T4E and Se-
mEval17T4E, which we omitted in the main body
of the paper. However, we view the OQ results
based on the three NTCIR data sets as more reli-
able than these additional results, as the SemEval
score matrices are much smaller than those from
NTCIR (See Table 1).

Table 8 shows the system ranking similarity re-
sults with SemEval16T4E and SemEval17T4E; this
table complements Table 5 in the paper.

Table 9 shows the system ranking consistency
results with SemEval16T4E and SemEval17T4E;
this table complements Table 6 in the paper.

Figure 3 shows the discriminative power curves
for SemEval16T4E and SemEval17T4E; this figure
complements Figure 2 in the paper.
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#Systems: 14
(91 system pairs)

Figure 3: Discriminative power with randomised Tukey
HSD tests (B = 5, 000 trials) for each OQ task (Se-
mEval).

(I) Sem16T4E RSNOD RNOD NVD JSD NMD
RNSS 0.848 0.909 0.818 0.788 0.818

RSNOD - 0.939 0.909 0.879 0.848
RNOD - - 0.909 0.879 0.909
NVD - - - 0.970 0.939
JSD - - - - 0.909

(II) Seml17T4E RSNOD RNOD NVD JSD NMD
RNSS 0.912 0.912 0.890 0.868 0.780

RSNOD - 1.000 0.978 0.956 0.868
RNOD - - 0.978 0.956 0.868
NVD - - - 0.978 0.890
JSD - - - - 0.912

Table 8: System ranking similarity in terms of
Kendall’s τ for each OQ task (SemEval). Correlation
strengths are visualised in colour (τ ≥ 0.9, 0.8 ≤ τ <
0.9, and τ < 0.8) to clarify the trends.

Measure Mean τ Measure Mean τ
(I) Sem16T4E

Full split (50 vs. 50) 10 vs. 10
VE2 = 0.00175 VE2 = 0.00368

JSD 0.934♣ JSD 0.771♣
RNOD 0.847♥ RNOD 0.708♦
NVD 0.831♦ NVD 0.705♦
RNSS 0.815‡ RNSS 0.690‡
NMD 0.788† NMD 0.674
RSNOD 0.767 RSNOD 0.673

(II) Sem17T4E
Full split (62 vs. 63) 10 vs. 10
VE2 = 0.00107 VE2 = 0.00342

NMD 0.905♣ NMD 0.705♣
NVD 0.878♥ JSD 0.672♥
JSD 0.867♦ NVD 0.601♦
RSNOD 0.859‡ RNOD 0.588†
RNOD 0.826† RSNOD 0.583†
RNSS 0.765 RNSS 0.557

Table 9: System ranking consistency for the OQ tasks
(SemEval). ♣/♥/♦/ ‡ /† 5 4 3 2 1 means “statisti-
cally significantly outperforms the worst 5/4/3/2/1 mea-
sure(s),” respectively. VE2 is the residual variance com-
puted from each 1000 × 6 split-by-measure matrix of
τ scores, which can be used for computing effect sizes.
For example, from (I) Left, the effect size for the dif-
ference between JSD and RNOD can be computed as
(0.934−0.847)/

√
0.00175 = 2.08 (i.e., about two stan-

dard deviations apart).


