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Abstract

Statutory reasoning is the task of determin-
ing whether a legal statute, stated in natural
language, applies to the text description of a
case. Prior work introduced a resource that ap-
proached statutory reasoning as a monolithic
textual entailment problem, with neural base-
lines performing nearly at-chance. To address
this challenge, we decompose statutory reason-
ing into four types of language-understanding
challenge problems, through the introduction
of concepts and structure found in Prolog pro-
grams. Augmenting an existing benchmark,
we provide annotations for the four tasks, and
baselines for three of them. Models for statu-
tory reasoning are shown to benefit from the
additional structure, improving on prior base-
lines. Further, the decomposition into subtasks
facilitates finer-grained model diagnostics and
clearer incremental progress.

1 Introduction

As more data becomes available, Natural Language
Processing (NLP) techniques are increasingly be-
ing applied to the legal domain, including for the
prediction of case outcomes (Xiao et al., 2018;
Vacek et al., 2019; Chalkidis et al., 2019a). In
the US, cases are decided based on previous case
outcomes, but also on the legal statutes compiled
in the US code. For our purposes, a case is a
set of facts described in natural language, as in
Figure 1, in blue. The US code is a set of docu-
ments called statutes, themselves decomposed into
subsections. Taken together, subsections can be
viewed as a body of interdependent rules specified
in natural language, prescribing how case outcomes
are to be determined. Statutory reasoning is the
task of determining whether a given subsection of
a statute applies to a given case, where both are
expressed in natural language. Subsections are im-
plicitly framed as predicates, which may be true or

false of a given case. Holzenberger et al. (2020) in-
troduced SARA, a benchmark for the task of statu-
tory reasoning, as well as two different approaches
to solving this problem. First, a manually-crafted
symbolic reasoner based on Prolog is shown to per-
fectly solve the task, at the expense of experts writ-
ing the Prolog code and translating the natural lan-
guage case descriptions into Prolog-understandable
facts. The second approach is based on statistical
machine learning models. While these models can
be induced computationally, they perform poorly
because the complexity of the task far surpasses
the amount of training data available.

We posit that statutory reasoning as presented
to statistical models is underspecified, in that it
was cast as Recognizing Textual Entailment (Da-
gan et al., 2005) and linear regression. Taking
inspiration from the structure of Prolog programs,
we re-frame statutory reasoning as a sequence of
four tasks, prompting us to introduce a novel ex-
tension of the SARA dataset (Section 2), referred
to as SARA v2. Beyond improving the model’s per-
formance, as shown in Section 3, the additional
structure makes it more interpretable, and so more
suitable for practical applications. We put our re-
sults in perspective in Section 4 and review related
work in Section 5.

2 SARA v2

The symbolic solver requires experts translating the
statutes and each new case’s description into Pro-
log. In contrast, a machine learning-based model
has the potential to generalize to unseen cases and
to changing legislation, a significant advantage for
a practical application. In the following, we argue
that legal statutes share features with the symbolic
solver’s first-order logic. We formalize this connec-
tion in a series of four challenge tasks, described
in this section, and depicted in Figure 1. We hope



2743

they provide structure to the problem, and a more
efficient inductive bias for machine learning algo-
rithms. The annotations mentioned throughout the
remainder of this section were developed by the au-
thors, entirely by hand, with regular guidance from
a legal scholar1. Examples for each task are given
in Appendix A. Statistics are shown in Figure 2
and further detailed in Appendix B.

Argument identification This first task, in con-
junction with the second, aims to identify the ar-
guments of the predicate that a given subsection
represents. Some terms in a subsection refer to
something concrete, such as “the United States” or
“April 24th, 2017”. Other terms can take a range of
values depending on the case at hand, and act as
placeholders. For example, in the top left box of
Figure 1, the terms “a taxpayer” and “the taxable
year” can take different values based on the context,
while the terms “section 152” and “this paragraph”
have concrete, immutable values. Formally, given
a sequence of tokens t1, ..., tn, the task is to return
a set of start and end indices (s, e) ∈ {1, 2, ..., n}2
where each pair represents a span. We borrow from
the terminology of predicate argument alignment
(Roth and Frank, 2012; Wolfe et al., 2013) and
call these placeholders arguments. The first task,
which we call argument identification, is tagging
which parts of a subsection denote such placehold-
ers. We provide annotations for argument identifi-
cation as character-level spans representing argu-
ments. Since each span is a pointer to the corre-
sponding argument, we made each span the short-
est meaningful phrase. Figure 2(b) shows corpus
statistics about placeholders.

Argument coreference Some arguments de-
tected in the previous task may appear multiple
times within the same subsection. For instance,
in the top left of Figure 1, the variable represent-
ing the taxpayer in §2(a)(1)(B) is referred to twice.
We refer to the task of resolving this coreference
problem at the level of the subsection as argu-
ment coreference. While this coreference can span
across subsections, as is the case in Figure 1, we
intentionally leave it to the next task. Keeping
the notation of the above paragraph, given a set
of spans {(si, ei)}Si=1, the task is to return a ma-
trix C ∈ {0, 1}S×S where Ci,j = 1 if spans (si, ei)
and (sj , ej) denote the same variable, 0 otherwise.

1The dataset can be found under https://nlp.jhu.
edu/law/

Corpus statistics about argument coreference can
be found in Figure 2(a). After these first two tasks,
we can extract a set of arguments for every sub-
section. In Figure 1, for §2(a)(1)(A), that would
be {Taxp, Taxy, Spouse, Years}, as shown in
the bottom left of Figure 1.

Structure extraction A prominent feature of le-
gal statutes is the presence of references, implicit
and explicit, to other parts of the statutes. Re-
solving references and their logical connections,
and passing arguments appropriately from one sub-
section to the other, are major steps in statutory
reasoning. We refer to this as structure extrac-
tion. This mapping can be trivial, with the taxpayer
and taxable year generally staying the same across
subsections. Some mappings are more involved,
such as the taxpayer from §152(b)(1) becoming the
dependent in §152(a). Providing annotations for
this task in general requires expert knowledge, as
many references are implicit, and some must be re-
solved using guidance from Treasury Regulations.
Our approach contrasts with recent efforts in break-
ing down complex questions into atomic questions,
with the possibility of referring to previous answers
(Wolfson et al., 2020). Statutes contain their own
breakdown into atomic questions. In addition, our
structure is interpretable by a Prolog engine.

We provide structure extraction annotations for
SARA in the style of Horn clauses (Horn, 1951),
using common logical operators, as shown in the
bottom left of Figure 1. We also provide charac-
ter offsets for the start and end of each subsection.
Argument identification and coreference, and struc-
ture extraction can be done with the statutes only.
They correspond to extracting a shallow version of
the symbolic solver of Holzenberger et al. (2020).

Argument instantiation We frame legal statutes
as a set of predicates specified in natural language.
Each subsection has a number of arguments, pro-
vided by the preceding tasks. Given the descrip-
tion of a case, each argument may or may not be
associated with a value. Each subsection has an
@truth argument, with possible values True or
False, reflecting whether the subsection applies or
not. Concretely, the input is (1) the string represen-
tation of the subsection, (2) the annotations from
the first three tasks, and (3) values for some or all
of its arguments. Arguments and values are rep-
resented as an array of key-value pairs, where the
names of arguments specified in the structure an-

https://nlp.jhu.edu/law/
https://nlp.jhu.edu/law/
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§2(a)(1) (Taxp1, Taxy2, Spouse3, Years4, Household5, Dependent6, Deduction7, Cost8) :
    §2(a)(1)(A) (Taxp1, Taxy2, Spouse3, Years4) AND
    §2(a)(1)(B) (Taxp1, Taxy2, Household5, Dependent6, Deduction7)

§2(a)(1)(B) (Taxp1, Taxy2, Household5, Dependent6, Deduction7) :
    §151(c) (Taxp1, Taxy2, S24=Dependent6)

§2. Definitions and special rules
(a) Definition of surviving spouse
    (1) In general

    For purposes of section 1, the term "surviving spouse" means a taxpayer1-

        (A) whose1 spouse3 died during either of the two years4 immediately preceding the 
taxable year2, and

        (B) who maintains as his home a household5 which constitutes for the taxable year2 
the principal place of abode (as a member of such household5) of a dependent6 (i) who 
(within the meaning of section 152) is a son, stepson, daughter, or stepdaughter of the 
taxpayer1, and (ii) with respect to whom the taxpayer1 is entitled to a deduction7 for the 
taxable year2 under section 151.

    For purposes of this paragraph, an individual1 shall be considered as maintaining a 
household5 only if over half of the cost8 of maintaining the household5 during the 
taxable year2 is furnished by such individual1.

Alice married Bob on May 29th, 2008. Their son 
Charlie was born October 4th, 2004. Bob died 
October 22nd, 2016. Alice's gross income for the 
year 2016 was $113580. In 2017, Alice's gross 
income was $567192. In 2017, Alice and Charlie 
lived in a house maintained by Alice, and Alice 
was allowed a deduction of $59850 for donating 
cash to a charity. Charlie had no income in 2017.
Does Section 2(a)(1) apply to Alice in 2017?

Input values. Taxp1 = Alice, Taxy2 = 2017

Expected output. Spouse3 = Bob, Years4 = 2016, 
Household5 = house, Dependent6 = Charlie, 
Deduction7 = Charlie, @truth = True

Alice employed Bob from Jan 2nd, 2011 to Oct 
10, 2019, paying him $1513 in 2019. On Oct 10, 
2019 Bob was diagnosed as disabled and retired. 
Alice paid Bob $298 because she had to terminate 
their contract due to Bob's disability. In 2019, 
Alice's gross income was $567192. In 2019, Alice 
lived together with Charlie, her father, in a house 
that she maintains. Charlie had no income in 2019. 
Alice takes the standard deduction in 2019.
Does Section 2(a)(1) apply to Alice in 2019?

Input values. Taxp1 = Alice, Taxy2 = 2019
Expected output. @truth = False

argument 
identification

argument 
coreference

structure 
extraction

argument 
instantiation

Figure 1: Decomposing statutory reasoning into four tasks. The flowchart on the right indicates the ordering, inputs
and outputs of the tasks. In the statutes in the yellow box, argument placeholders are underlined, and superscripts
indicate argument coreference. The green box shows the logical structure of the statutes just above it. In blue are
two examples of argument instantiation.
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Figure 2: Corpus statistics about arguments. “Random statutes” are 9 sections sampled from the US code.

notations are used as keys. In Figure 1, compare
the names of arguments in the green box with the
key names in the blue boxes. The output is val-
ues for its arguments, in particular for the @truth
argument. In the example of the top right in Fig-
ure 1, the input values are taxpayer = Alice and
taxable year = 2017, and one expected output
is @truth = True. We refer to this task as argu-
ment instantiation. Values for arguments can be
found as spans in the case description, or must be
predicted based on the case description. The latter
happens often for dollar amounts, where incomes
must be added, or tax must be computed. Figure 1
shows two examples of this task, in blue.

Before determining whether a subsection applies,
it may be necessary to infer the values of unspec-
ified arguments. For example, in the top of Fig-
ure 1, it is necessary to determine who Alice’s
deceased spouse and who the dependent mentioned
in §2(a)(1)(B) are. If applicable, we provide values
for these arguments, not as inputs, but as additional
supervision for the model. We provide manual an-
notations for all (subsection, case) pairs in SARA.
In addition, we run the Prolog solver of Holzen-
berger et al. (2020) to generate annotations for all
possible (subsection, case) pairs, to be used as a
silver standard, in contrast to the gold manual an-
notations. We exclude from the silver data any
(subsection, case) pair where the case is part of
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the test set. This increases the amount of available
training data by a factor of 210.

3 Baseline models

We provide baselines for three tasks, omitting struc-
ture extraction because it is the one task with the
highest return on human annotation effort2. In other
words, if humans could annotate for any of these
four tasks, structure extraction is where we posit
their involvement would be the most worthwhile.
Further, Pertierra et al. (2017) have shown that the
related task of semantic parsing of legal statutes is
a difficult task, calling for a complex model.

3.1 Argument identification

We run the Stanford parser (Socher et al., 2013) on
the statutes, and extract all noun phrases as spans –
specifically, all NNP, NNPS, PRP$, NP and NML
constituents. While de-formatting legal text can
boost parser performance (Morgenstern, 2014), we
found it made little difference in our case.

As an orthogonal approach, we train a BERT-
based CRF model for the task of BIO tagging. With
the 9 sections in the SARA v2 statutes, we create
7 equally-sized splits by grouping §68, 3301 and
7703 into a single split. We run a 7-fold cross-
validation, using 1 split as a dev set, 1 split as a test
set, and the remaining as training data. We embed
each paragraph using BERT, classify each contex-
tual subword embedding into a 3-dimensional logit
with a linear layer, and run a CRF (Lafferty et al.,
2001). The model is trained with gradient descent
to maximize the log-likelihood of the sequence of
gold tags. We experiment with using Legal BERT
(Holzenberger et al., 2020) and BERT-base-cased
(Devlin et al., 2019) as our BERT model. We freeze
its parameters and optionally unfreeze the last layer.
We use a batch size of 32 paragraphs, a learning
rate of 10−3 and the Adam optimizer (Kingma and
Ba, 2015). Based on F1 score measured on the dev
set, the best model uses Legal BERT and unfreezes
its last layer. Test results are shown in Table 1.

3.2 Argument coreference

Argument coreference differs from the usual coref-
erence task (Pradhan et al., 2014), even though we
are using similar terminology, and frame it in a
similar way. In argument coreference, it is equally

2Code for the experiments can be found under https:
//github.com/SgfdDttt/sara_v2

Parser-based avg ± stddev macro
precision 17.6 ± 4.4 16.6
recall 77.9 ± 5.0 77.3
F1 28.6 ± 6.2 27.3
BERT-based avg ± stddev macro
precision 64.7 ± 15.0 65.1
recall 69.0 ± 24.2 59.8
F1 66.2 ± 20.5 62.4

Table 1: Argument identification results. Average and
standard deviations are computed across test splits.

as important to link two coreferent argument men-
tions as it is not to link two different arguments. In
contrast, regular coreference emphasizes the pre-
diction of links between mentions. We thus report
a different metric in Tables 2 and 4, exact match
coreference, which gives credit for returning a clus-
ter of mentions that corresponds exactly to an argu-
ment. In Figure 1, a system would be rewarded for
linking together both mentions of the taxpayer in
§2(a)(1)(B), but not if any of the two mentions were
linked to any other mention within §2(a)(1)(B).
This custom metric gives as much credit for cor-
rectly linking a single-mention argument (no links),
as for a 5-mention argument (10 links).

Single mention baseline Here, we predict no
coreference links. Under usual coreference met-
rics, this system can have low performance.

String matching baseline This baseline predicts
a coreference link if the placeholder strings of two
arguments are identical, up to the presence of the
words such, a, an, the, any, his and every.

Single mention avg ± stddev macro
precision 81.7 ± 28.9 68.2
recall 86.9 ± 21.8 82.7
F1 83.8 ± 26.0 74.8
String matching avg ± stddev macro
precision 91.2 ± 20.0 85.5
recall 92.8 ± 16.8 89.4
F1 91.8 ± 18.6 87.4

Table 2: Exact match coreference results. Average and
standard deviations are computed across subsections.

We also provide usual coreference metrics in Ta-
ble 3, using the code associated with Pradhan et al.
(2014). This baseline perfectly resolves corefer-
ence for 80.8% of subsections, versus 68.9% for
the single mention baseline.

https://github.com/SgfdDttt/sara_v2
https://github.com/SgfdDttt/sara_v2
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Single mention String matching
MUC 0 / 0 / 0 82.1 / 64.0 / 71.9
CEAFm 82.5 / 82.5 / 82.5 92.1 / 92.1 / 92.1
CEAFe 77.3 / 93.7 / 84.7 90.9 / 95.2 / 93.0
BLANC 50.0 / 50.0 / 50.0 89.3 / 81.0 / 84.7

Table 3: Argument coreference baselines scored with
usual metrics. Results are shown as Precision / Re-
call / F1.

In addition, we provide a cascade of the best
methods for argument identification and corefer-
ence, and report results in Table 4. The cascade
perfectly resolves a subsection’s arguments in only
16.4% of cases. This setting, which groups the first
two tasks together, offers a significant challenge.

Cascade avg ± stddev macro
precision 54.5 ± 35.6 58.0
recall 53.5 ± 37.2 52.4
F1 54.7 ± 33.4 55.1

Table 4: Exact match coreference results for BERT-
based argument identification followed by string
matching-based argument coreference. Average and
standard deviations are computed across subsections.

3.3 Argument instantiation

Argument instantiation takes into account the in-
formation provided by previous tasks. We start
by instantiating the arguments of a single subsec-
tion, without regard to the structure of the statutes.
We then describe how the structure information is
incorporated into the model.

Algorithm 1 Argument instantiation for a single
subsection
Require: argument spans with coreference information A,

input argument-value pairs D, subsection text s, case
description c

Ensure: output argument-value pairs P
1: function ARGINSTANTIATION(A,D, s, c)
2: P ← ∅
3: for a in A \ {@truth} do
4: r ← INSERTVALUES(s,A,D, P )
5: y ← BERT(c, r)
6: x← COMPUTEATTENTIVEREPS(y, a)
7: v ← PREDICTVALUE(x)
8: P ← P ∪ (a, v)
9: end for

10: r ← INSERTVALUES(s,A,D, P )
11: y ← BERT CLS(c, r)
12: t← TRUTHPREDICTOR(y)
13: P ← P ∪ (@truth, t)
14: return P
15: end function

Single subsection We follow the paradigm of
Chen et al. (2020), where we iteratively modify the
text of the subsection by inserting argument values,
and predict values for uninstantiated arguments.
Throughout the following, we refer to Algorithm 1
and to its notation.

For each argument whose value is provided, we
replace the argument’s placeholders in subsection
s by the argument’s value, using INSERTVALUES

(line 4). This yields mostly grammatical sentences,
with occasional hiccups. With §2(a)(1)(A) and
the top right case from Figure 1, we obtain “(A)
Alice spouse died during either of the two years
immediately preceding 2017”.

We concatenate the text of the case c with
the modified text of the subsection r, and
embed it using BERT (line 5), yielding a
sequence of contextual subword embeddings
y = {yi ∈ R768 | i = 1...n}. Keeping with the no-
tation of Chen et al. (2020), assume that the em-
bedded case is represented by the sequence of
vectors t1, ..., tm and the embedded subsection
by s1, ..., sn. For a given argument a, compute
its attentive representation s̃1, ..., s̃m and its aug-
mented feature vectors x1, ...,xm. This operation,
described by Chen et al. (2020), is performed by
COMPUTEATTENTIVEREPS (line 6). The aug-
mented feature vectors x1, ...,xm represent the
argument’s placeholder, conditioned on the text
of the statute and case.

Based on the name of the argument span, we
predict its value v either as an integer or a span
from the case description, using PREDICTVALUE

(line 7). For integers, as part of the model training,
we run k-means clustering on the set of all integer
values in the training set, with enough centroids
such that returning the closest centroid instead of
the true value yields a numerical accuracy of 1 (see
below). For any argument requiring an integer (e.g.
tax), the model returns a weighted average of the
centroids. The weights are predicted by a linear
layer followed by a softmax, taking as input an
average-pooling and a maxpooling of x1, ...,xm.
For a span from the case description, we follow
the standard procedure for fine-tuning BERT on
SQuAD (Devlin et al., 2019). The unnormalized
probability of the span from tokens i to j is given
by el·xi+r·xj where l, r are learnable parameters.

The predicted value v is added to the set of pre-
dictions P (line 8), and will be used in subsequent
iterations to replace the argument’s placeholder
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in the subsection. We repeat this process until a
value has been predicted for every argument, ex-
cept @truth (lines 3-9). Arguments are processed
in order of appearance in the subsection. Finally,
we concatenate the case and fully grounded sub-
section and embed them with BERT (lines 10-11),
then use a linear predictor on top of the representa-
tion for the [CLS] token to predict the value for the
@truth argument (line 12).

Algorithm 2 Argument instantiation with depen-
dencies
Require: argument spans with coreference information A,

structure information T , input argument-value pairs D,
subsection s, case description c

Ensure: output argument-value pairs P
1: function ARGINSTANTIATIONFULL(A, T,D, s, c)
2: t← BUILDDEPENDENCYTREE(s, T )
3: t← POPULATEARGVALUES(t,D)
4: Q← depth-first traversal of t
5: for q in Q do
6: if q is a subsection and a leaf node then
7: Dq ← GETARGVALUEPAIRS(q)
8: s̃← GETSUBSECTIONTEXT(q)
9: q ← ARGINSTANTIATION(A,Dq, s̃, c)

10: else if q is a subsection and not a leaf node then
11: Dq ← GETARGVALUEPAIRS(q)
12: x← GETCHILD(q)
13: Dx ← GETARGVALUEPAIRS(x)
14: Dq ← Dq ∪Dx

15: s̃← GETSUBSECTIONTEXT(q)
16: q ← ARGINSTANTIATION(A,Dq, s̃, c)
17: else if q ∈ {AND, OR, NOT} then
18: C ← GETCHILDREN(q)
19: q ← DOOPERATION(C, q)
20: end if
21: end for
22: x← ROOT(t)
23: P ← GETARGVALUEPAIRS(x)
24: return P
25: end function

Subsection with dependencies To describe our
procedure at a high-level, we use the structure of
the statutes to build out a computational graph,
where nodes are either subsections with argument-
value pairs, or logical operations. We resolve
nodes one by one, depth first. We treat the single-
subsection model described above as a function,
taking as input a set of argument-value pairs, a
string representation of a subsection, and a string
representation of a case, and returning a set of
argument-value pairs. Algorithm 2 and Figure 3
summarize the following.

We start by building out the subsection’s depen-
dency tree, as specified by the structure annotations
(lines 2-4). First, we build the tree structure using
BUILDDEPENDENCYTREE. Then, values for argu-
ments are propagated from parent to child, from the

root down, with POPULATEARGVALUES. The tree
is optionally capped to a predefined depth. Each
node is either an input for the single-subsection
function or its output, or a logical operation. We
then traverse the tree depth first, performing the
following operations, and replacing the node with
the result of the operation:

• If the node q is a leaf, resolve it using the
single-subsection function ARGINSTANTIATION

(lines 6-9 in Algorithm 2; step 1 in Figure 3).

• If the node q is a subsection that is not a leaf,
find its child node x (GETCHILD, line 12), and
corresponding argument-value pairs other than
@truth, Dx (GETARGVALUEPAIRS, line 13).
Merge Dx with Dq, the argument-value pairs
of the main node q (line 14). Finally, resolve
the parent node q using the single-subsection
function (lines 15-16; step 3 in Figure 3.

• If node q is a logical operation (line 17), get its
children C (GETCHILDREN, line 18), to which
the operation will be applied with DOOPERA-
TION (line 19) as follows:

– If q == NOT, assign the negation of the
child’s @truth value to q.

– If q == OR, pick its child with the highest
@truth value, and assign its arguments’
values to q.

– If q == AND, transfer the argument-value
pairs from all its children to q. In case of
conflicting values, use the value associated
with the lower @truth value. This opera-
tion can be seen in step 4 of Figure 3.

This procedure follows the formalism of neu-
ral module networks (Andreas et al., 2016) and is
illustrated in Figure 3. Reentrancy into the depen-
dency tree is not possible, so that a decision made
earlier cannot be backtracked on at a later stage.
One could imagine doing joint inference, or us-
ing heuristics for revisiting decisions, for example
with a limited number of reentrancies. Humans are
generally able to resolve this task in the order of
the text, and we assume it should be possible for a
computational model too. Our solution is meant to
be computationally efficient, with the hope of not
sacrificing too much performance. Revisiting this
assumption is left for future work.
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INITIAL 
TREE

AND

s2_a_1_A(Taxp1=Alice, 
Taxy2=2017, Spouse3, 
Years4)

s2_a_1_B(Taxp1=Alice, Taxy2=2017, 
Household5, Dependent6, Deduction7)

s151_c(Taxp1=Alice, Taxy2=2017, S24=Dependent6)

AND

Taxp1=Alice, Taxy2=2017, 
Spouse3=Bob, 
Years4=2016,  @truth=.9

s2_a_1_B(Taxp1=Alice, Taxy2=2017, 
Household5, Dependent6, Deduction7)

s151_c(Taxp1=Alice, Taxy2=2017, S24=Dependent6)

STEP 1

AND

s2_a_1_B(Taxp1=Alice, Taxy2=2017, 
Household5, Dependent6, Deduction7)

Taxp1=Alice, Taxy2=2017, Dependent6=Charlie, @truth=.8

STEP 2

STEP  3

AND

Taxp1=Alice, Taxy2=2017, 
Household5=house, Dependent6=Charlie, 
Deduction7=Charlie, @truth=.7

Taxp1=Alice, Taxy2=2017, Dependent6=Charlie, @truth=.8

STEP 4 Taxp1=Alice, Taxy2=2017, Spouse3=Bob, Years4=2016, 
Household5=house, Dependent6=Charlie, 
Deduction7=Charlie, Cost8, @truth=.7)

…

Taxp1=Alice, Taxy2=2017, 
Household5=house, Dependent6=Charlie, 
Deduction7=Charlie, @truth=.7

Taxp1=Alice, Taxy2=2017, Dependent6=Charlie, @truth=.8

STEP 5

Taxp1=Alice, Taxy2=2017, Spouse3=Bob, Years4=2016, 
Household5=house, Dependent6=Charlie, Deduction7=Charlie, @truth=.7

Taxp1=Alice, Taxy2=2017, 
Household5=house, Dependent6=Charlie, 
Deduction7=Charlie, @truth=.7

Taxp1=Alice, Taxy2=2017, Dependent6=Charlie, @truth=.8

s2_a_1(Taxp1=Alice, Taxy2=2017, Spouse3, Years4, 
Household5, Dependent6, Deduction7, Cost8)

s2_a_1(Taxp1=Alice, Taxy2=2017, Spouse3, Years4, 
Household5, Dependent6, Deduction7, Cost8)

s2_a_1(Taxp1=Alice, Taxy2=2017, Spouse3, Years4, 
Household5, Dependent6, Deduction7, Cost8)

s2_a_1(Taxp1=Alice, Taxy2=2017, Spouse3, Years4, 
Household5, Dependent6, Deduction7, Cost8)

s2_a_1(Taxp1=Alice, Taxy2=2017, Spouse3, Years4, 
Household5, Dependent6, Deduction7, Cost8)

Taxp1=Alice, Taxy2=2017, 
Spouse3=Bob, 
Years4=2016,  @truth=.9

Taxp1=Alice, Taxy2=2017, 
Spouse3=Bob, 
Years4=2016,  @truth=.9

Taxp1=Alice, Taxy2=2017, 
Spouse3=Bob, 
Years4=2016,  @truth=.9

Taxp1=Alice, Taxy2=2017, 
Spouse3=Bob, 
Years4=2016,  @truth=.9

Figure 3: Argument instantiation with the top example from Figure 1. At each step, nodes to be processed are
in blue, nodes being processed in yellow, and nodes already processed in green. The last step was omitted, and
involves determining the truth value of the root node’s @truth argument.

Metrics and evaluation Arguments whose value
needs to be predicted fall into three categories.
The @truth argument calls for a binary truth
value, and we score a model’s output using bi-
nary accuracy. The values of some arguments,
such as gross income, are dollar amounts. We
score such values using numerical accuracy, as
1 if ∆(y, ŷ) = |y−ŷ|

max(0.1∗y,5000) < 1 else 0, where
ŷ is the prediction and y the target. All other argu-
ment values are treated as strings. In those cases,
we compute accuracy as exact match between pre-
dicted and gold value. Each of these three metrics
defines a form of accuracy. We average the three
metrics, weighted by the number of samples, to
obtain a unified accuracy metric, used to compare
the performance of models.

Training Based on the type of value expected,
we use different loss functions. For @truth, we
use binary cross-entropy. For numerical values,
we use the hinge loss max(∆(y, ŷ) − 1, 0). For
strings, let S be all the spans in the case description
equal to the expected value. The loss function
is log(

∑
i≤j e

l·xi+r·xj ) − log(
∑

i,j∈S el·xi+r·xj )
(Clark and Gardner, 2018). The model is trained
end-to-end with gradient descent.

We start by training models on the silver data,
as a pre-training step. We sweep the values of the
learning rate in {10−2, 10−3, 10−4, 10−5} and the
batch size in {64, 128, 256}. We try both BERT-
base-cased and Legal BERT, allowing updates to
the parameters of its top layer. We set aside 10%
of the silver data as a dev set, and select the best
model based on the unified accuracy on the dev
set. Training is split up into three stages. The
single-subsection model iteratively inserts values
for arguments into the text of the subsection. In

the first stage, regardless of the predicted value,
we insert the gold value for the argument, as in
teacher forcing (Kolen and Kremer, 2001). In the
second and third stages, we insert the value pre-
dicted by the model. When initializing the model
from one stage to the next, we pick the model with
the highest unified accuracy on the dev set. In
the first two stages, we ignore the structure of the
statutes, which effectively caps the depth of each
dependency tree at 1.

Picking the best model from this pre-training
step, we perform fine-tuning on the gold data.
We take a k-fold cross-validation approach (Stone,
1974). We randomly split the SARA v2 training set
into 10 splits, taking care to put pairs of cases test-
ing the same subsection into the same split. Each
split contains nearly exactly the same proportion
of binary and numerical cases. We sweep the val-
ues of the learning rate and batch size in the same
ranges as above, and optionally allow updates to
the parameters of BERT’s top layer. For a given
set of hyperparameters, we run training on each
split, using the dev set and the unified metric for
early stopping. We use the performance on the
dev set averaged across the 10 splits to evaluate
the performance of a given set of hyperparameters.
Using that criterion, we pick the best set of hyper-
parameters. We then pick the final model as that
which achieves median performance on the dev set,
across the 10 splits. We report the performance of
that model on the test set.

In Table 5, we report the relevant argument
instantiation metrics, under @truth, dollar
amount and string. For comparison, we also
report binary and numerical accuracy metrics de-
fined in Holzenberger et al. (2020). The reported
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@truth dollar amount string unified binary numerical
baseline 58.3 ± 7.5 18.2 ± 11.5 4.4 ± 7.4 43.3 ± 6.2 50 ± 8.3 30 ± 18.1
+ silver 58.3 ± 7.5 39.4 ± 14.6 4.4 ± 7.4 47.2 ± 6.2 50 ± 8.3 45 ± 19.7
BERT 59.2 ± 7.5 23.5 ± 12.5 37.5 ± 17.3 49.4 ± 6.2 51 ± 8.3 30 ± 18.1
- pre-training 57.5 ± 7.5 20.6 ± 11.9 37.5 ± 17.3 47.8 ± 6.2 49 ± 8.3 30 ± 18.1
- structure 65.8 ± 7.2 20.6 ± 11.9 33.3 ± 16.8 52.8 ± 6.2 59 ± 8.2 30 ± 18.1
- pre-training, 60.8 ± 7.4 20.6 ± 11.9 33.3 ± 16.8 49.4 ± 6.2 53 ± 8.3 30 ± 18.1

structure (best results in bold)

Table 5: Argument instantiation. We report accuracies, in %, and the 90% confidence interval. Right of the bar are
accuracy metrics proposed with the initial release of the dataset. Blue cells use the silver data, brown cells do not.
“BERT” is the model described in Section 3.3. Ablations to it are marked with a “-” sign.

baseline has three parameters. For @truth, it re-
turns the most common value for that argument on
the train set. For arguments that call for a dollar
amount, it returns the one number that minimizes
the dollar amount hinge loss on the training
set. For all other arguments, it returns the most
common string answer in the training set. Those
parameters vary depending on whether the training
set is augmented with the silver data.

4 Discussion

Our goal in providing the baselines of Section 3 is
to identify performance bottlenecks in the proposed
sequence of tasks. Argument identification poses a
moderate challenge, with a language model-based
approach achieving non-trivial F1 score. The sim-
ple parser-based method is not a sufficient solution,
but with its high recall could serve as the backbone
to a statistical method. Argument coreference is a
simpler task, with string matching perfectly resolv-
ing nearly 80% of the subsections. This is in line
with the intuition that legal language is very explicit
about disambiguating coreference. As reported in
Table 3, usual coreference metrics seem lower, but
only reflect a subset of the full task: coreference
metrics are only concerned with links, so that ar-
guments appearing exactly once bear no weight
under that metric, unless they are wrongly linked
to another argument.

Argument instantiation is by far the most chal-
lenging task, as the model needs strong natural lan-
guage understanding capabilities. Simple baselines
can achieve accuracies above 50% for @truth,
since for all numerical cases, @truth = True. We
receive a slight boost in binary accuracy from using
the proposed paradigm, departing from previous
results on this benchmark. As compared to the base-
line, the models mostly lag behind for the dollar

amount and numerical accuracies, which can be
explained by the lack of a dedicated numerical
solver, and sparse data. Further, we have made
a number of simplifying assumptions, which may
be keeping the model from taking advantage of the
structure information: arguments are instantiated
in order of appearance, forbidding joint prediction;
revisiting past predictions is disallowed, forcing
the model to commit to wrong decisions made ear-
lier; the depth of the dependency tree is capped at
3; and finally, information is being passed along
the dependency tree in the form of argument val-
ues, as opposed to dense, high-dimensional vector
representations. The latter limits both the flow of
information and the learning signal. This could also
explain why the use of dependencies is detrimental
in some cases. Future work would involve joint
prediction (Chan et al., 2019), and more careful
use of structure information.

Looking at the errors made by the best model in
Table 5 for binary accuracy, we note that for 39 pos-
itive and negative case pairs, it answers each pair
identically, thus yielding 39 correct answers. In the
remaining 11 pairs, there are 10 pairs where it gets
both cases right. This suggests it may be guessing
randomly on 39 pairs, and understanding 10. The
best BERT-based model for dollar amounts
predicts the same number for each case, as does the
baseline. The best models for string arguments
generally make predictions that match the category
of the expected answer (date, person, etc) while
failing to predict the correct string.

Performance gains from silver data are notice-
able and generally consistent, as can be seen by
comparing brown and blue cells in Table 5. The
silver data came from running a human-written Pro-
log program, which is costly to produce. A possible
substitute is to find mentions of applicable statutes
in large corpora of legal cases (Caselaw, 2019), for
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example using high-precision rules (Ratner et al.,
2017), which has been successful for extracting
information from cases (Boniol et al., 2020).

In this work, each task uses the gold annotations
from upstream tasks. Ultimately, the goal is to pass
the outputs of models from one task to the next.

5 Related Work

Law-related NLP tasks have flourished in the past
years, with applications including answering bar
exam questions (Yoshioka et al., 2018; Zhong et al.,
2020), information extraction (Chalkidis et al.,
2019b; Boniol et al., 2020; Lam et al., 2020), man-
aging contracts (Elwany et al., 2019; Liepiņa et al.,
2020; Nyarko, 2021) and analyzing court deci-
sions (Sim et al., 2015; Lee and Mouritsen, 2017).
Case-based reasoning has been approached with
expert systems (Popp and Schlink, 1974; Hellawell,
1980; v. d. L. Gardner, 1983), high-level hand-
annotated features (Ashley and Brüninghaus, 2009)
and transformer-based models (Rabelo et al., 2019).
Closest to our work is Saeidi et al. (2018), where
a dialog agent’s task is to answer a user’s question
about a set of regulations. The task relies on a set
of questions provided within the dataset.

Clark et al. (2019) as well as preceding work
(Friedland et al., 2004; Gunning et al., 2010) tackle
a similar problem in the science domain, with the
goal of using the prescriptive knowledge from sci-
ence textbooks to answer exam questions. The
core of their model relies on several NLP and spe-
cialized reasoning techniques, with contextualized
language models playing a major role. Clark et al.
(2019) take the route of sorting questions into dif-
ferent types, and working on specialized solvers. In
contrast, our approach is to treat each question iden-
tically, but to decompose the process of answering
into a sequence of subtasks.

The language of statutes is related to procedu-
ral language, which describes steps in a process.
Zhang et al. (2012) collect how-to instructions
in a variety of domains, while Wambsganss and
Fromm (2019) focus on automotive repair instruc-
tions. Branavan et al. (2012) exploit instructions in
a game manual to improve an agent’s performance.
Dalvi et al. (2019) and Amini et al. (2020) turn to
modeling textual descriptions of physical and bio-
logical mechanisms. Weller et al. (2020) propose
models that generalize to new task descriptions.

The tasks proposed in this work are germane to
standard NLP tasks, such as named entity recog-

nition (Ratinov and Roth, 2009), part-of-speech
tagging (Petrov et al., 2012; Akbik et al., 2018),
and coreference resolution (Pradhan et al., 2014).
Structure extraction is conceptually similar to syn-
tactic (Socher et al., 2013) and semantic parsing
(Berant et al., 2013), which Pertierra et al. (2017)
attempt for a subsection of tax law.

Argument instantiation is closest to the task of
aligning predicate argument structures (Roth and
Frank, 2012; Wolfe et al., 2013). We frame argu-
ment instantiation as iteratively completing a state-
ment in natural language. Chen et al. (2020) refine
generic statements by copying strings from input
text, with the goal of detecting events. Chan et al.
(2019) extend transformer-based language models
to permit inserting tokens anywhere in a sequence,
thus allowing to modify an existing sequence. For
argument instantiation, we make use of neural mod-
ule networks (Andreas et al., 2016), which are used
in the visual (Yi et al., 2018) and textual domains
(Gupta et al., 2020). In that context, arguments and
their values can be thought of as the hints from
Khot et al. (2020). The Prolog-based data augmen-
tation is related to data augmentation for semantic
parsing (Campagna et al., 2019; Weir et al., 2019).

6 Conclusion

Solutions to tackle statutory reasoning may range
from high-structure, high-human involvement ex-
pert systems, to less structured, largely self-
supervised language models. Here, taking inspira-
tion from Prolog programs, we introduce a novel
paradigm, by breaking statutory reasoning down
into a sequence of tasks. Each task can be an-
notated for with far less expertise than would be
required to translate legal language into code, and
comes with its own performance metrics. Our con-
tribution enables finer-grained scoring and debug-
ging of models for statutory reasoning, which fa-
cilitates incremental progress and identification of
performance bottlenecks. In addition, argument in-
stantiation and explicit resolution of dependencies
introduce further interpretability. This novel ap-
proach could possibly inform the design of models
that reason with rules specified in natural language,
for the domain of legal NLP and beyond.
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A Task examples

In the following, we provide several examples for
each of the tasks defined in Section 2.

A.1 Argument identification

For ease of reading, the spans mentioned in the
output are underlined in the input.

Input 1 (§3306(a)(1)(B))

(B) on each of some 10 days during the calendar
year or during the preceding calendar year, each
day being in a different calendar week, employed
at least one individual in employment for some
portion of the day.

Output 1

{(15, 26), (35, 51), (62, 88), (92, 99), (122, 134),
(155, 168), (173, 182), (188, 210)}

Input 2 (§63(c)(5))

In the case of an individual with respect to whom
a deduction under section 151 is allowable to an-
other taxpayer for a taxable year beginning in the
calendar year in which the individual’s taxable year
begins, the basic standard deduction applicable to
such individual for such individual’s taxable year
shall not exceed the greater of-

Output 2

{(15, 27), (50, 60), (96, 111), (117, 130),
(145, 161), (172, 185), (189, 200), (210, 237),
(253, 267), (273, 287), (291, 302), (321, 331)}

Input 3 (§1(d)(iv))

(iv) $31,172, plus 36% of the excess over $115,000
if the taxable income is over $115,000 but not over
$250,000;

Output 3

{(5, 45), (50, 67)}

A.2 Argument coreference

We report the full matrix C. In addition, for ease
of reading, coreference clusters are marked with
superscripts in the input.

Input 1 (§3306(a)(1)(B))

(B) on each of some 10 days1 during the calendar
year2 or during the preceding calendar year3, each
day1 being in a different calendar week4, employed
at least one individual5 in employment6 for some
portion of the day7.

{(15, 26), (35, 51), (62, 88), (92, 99), (122, 134),
(155, 168), (173, 182), (188, 210)}
Output 1



1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Input 2 (§63(c)(5))

In the case of an individual1 with respect to whom
a deduction2 under section 151 is allowable to an-
other taxpayer3 for a taxable year4 beginning in the
calendar year5 in which the individual1’s taxable
year6 begins, the basic standard deduction7 appli-
cable to such individual1 for such individual1’s
taxable year6 shall not exceed the greater8 of-
{(15, 27), (50, 60), (96, 111), (117, 130),
(145, 161), (172, 185), (189, 200), (210, 237),
(253, 267), (273, 287), (291, 302), (321, 331)}
Output 2



1 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


Input 3 (§1(d)(iv))

(iv) $31,172, plus 36% of the excess over
$115,0001 if the taxable income2 is over $115,000
but not over $250,000;
{(5, 45), (50, 67)}
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Output 3

(
1 0
0 1

)
A.3 Structure extraction

To clarify the link between the input and the output,
we are adding superscripts to argument names in
the output. While the output is represented as plain
text, a graph-based representation would likely be
used in a practical system, to facilitate learning and
inference. Arguments are keyword based. For ex-
ample, in Output 2, the value of the Taxp argument
of §63(c)(5) is passed to the Spouse argument of
§151(b). If no equal sign is specified, it means
the argument names match. For example, part of
Output 2 could have been rewritten more explicitly
as §151(b)(Spouse=Taxp, Taxp=S45, Taxy=Taxy).

Input 1 (§3306(a)(1)(B))

(B) on each of some 10 days1 during the calendar
year2 or during the preceding calendar year3, each
day1 being in a different calendar week4, employed
at least one individual5 in employment6 for some
portion of the day7.
{(15, 26), (35, 51), (62, 88), (92, 99), (122, 134),
(155, 168), (173, 182), (188, 210)}

1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


Output 1

§3306(a)(1)(B)(Caly2, S167, Workday1, Employment6,
Preccaly3, Employee5, S13A4, Employer,
Service) :-

§3306(c)(Employee, Employer, Service).

Input 2 (§63(c)(5))

In the case of an individual1 with respect to whom
a deduction2 under section 151 is allowable to an-
other taxpayer3 for a taxable year4 beginning in the
calendar year5 in which the individual1’s taxable
year6 begins, the basic standard deduction7 appli-
cable to such individual1 for such individual1’s
taxable year6 shall not exceed the greater8 of-

{(15, 27), (50, 60), (96, 111), (117, 130),
(145, 161), (172, 185), (189, 200), (210, 237),
(253, 267), (273, 287), (291, 302), (321, 331)}



1 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


Output 2

§63(c)(5)(Bassd7, Grossinc, S453, Taxp1, Taxy6,
S44B2, S46B4, S475, S488) :-

[
§151(b)(Spouse=Taxp, Taxp=S45, Taxy) OR
§151(c)(S24A=Taxp, Taxp=S45, Taxy)

] AND
§63(c)(5)(A)() AND
§63(c)(5)(B)(Grossinc, Taxp).

Input 3 (§1(d)(iv))

(iv) $31,172, plus 36% of the excess over
$115,0001 if the taxable income2 is over $115,000
but not over $250,000;
{(5, 45), (50, 67)} (

1 0
0 1

)
Output 3

§1(d)(iv)(Tax1, Taxinc2).

A.4 Argument instantiation
The following are example cases. In addition to
the case description, subsection to apply and input
argument-value pairs, the agent has access to the
output of Argument identification, Argument coref-
erence and Structure extraction, for the entirety of
the statutes.

Input 1: case 3306(a)(1)(B)-positive

Case description: Alice has employed Bob on vari-
ous occasions during the year 2017: Jan 24, Feb 4,
Mar 3, Mar 19, Apr 2, May 9, Oct 15, Oct 25, Nov
8, Nov 22, Dec 1, Dec 3.
Subsection to apply: §3306(a)(1)(B)
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Argument-value pairs: {Employer=“Alice”,
Caly=“2017”}

Output 1

{Workday=[“Jan 24”, “Feb 4”, “Mar 3”, “Mar 19”,
“Apr 2”, “May 9”, “Oct 15”, “Oct 25”, “Nov 8”,
“Nov 22”, “Dec 1”, “Dec 3”], Employee=“Bob”,
Employment=“has employed”, “S13A”: [4, 5, 9,
11, 13, 19, 41, 43, 45, 47], @truth=True}

Input 2: case §63(c)(5)-negative

Case description: In 2017, Alice was paid $33200.
Alice and Bob have been married since Feb 3rd,
2017. Bob earned $10 in 2017. Alice and Bob file
separate returns. Alice is not entitled to a deduction
for Bob under section 151.

Subsection to apply: §63(c)(5)

Argument-value pairs: {Taxp=“Bob”,
Taxy=“2017”, Bassd=500}

Output 2

{@truth=False}

Input 3: tax case 5

Case description: In 2017, Alice’s gross income
was $326332. Alice and Bob have been married
since Feb 3rd, 2017, and have had the same prin-
cipal place of abode since 2015. Alice was born
March 2nd, 1950 and Bob was born March 3rd,
1955. Alice and Bob file separately in 2017. Bob
has no gross income that year. Alice takes the stan-
dard deduction.

Subsection to apply: Tax

Argument-value pairs: {Taxy=“2017”,
Taxp=“Alice”}

Output 3

{Tax=116066, @truth=True}

B Dataset statistics

B.1 Argument identification

Table 6 reports statistics on the annotations for
the argument identification task. The numbers in
that table were used to plot the top histogram in
Figure 2(a).

Counts SARA Random
0 33 24
1 39 16
2 34 21
3 32 21
4 13 11
5 11 12
6 7 13
7 4 6
8 10 4
9 5 1

10 2 7
11 2 3
12 1 3
13 0 2
14 1 0
15 0 0
16 0 2
total 194 146

Statistics
average 3.0 4.0
stddev 2.8 3.6
median 2 3

Table 6: Number of argument placeholders per subsec-
tion. “Counts” reports the number of subsections (right
columns) containing a specific number of placeholders
(left column). “Random” refers to 9 sections drawn at
random from the Tax Code, and annotated.

B.2 Argument coreference

In Tables 7 and 8, we report statistics on the an-
notations for the argument coreference task. The
numbers in Table 7 (resp. 8) were used to plot the
middle (resp. bottom) histogram in Figure 2(a).

Counts SARA Random
0 33 24
1 40 22
2 44 18
3 30 23
4 15 18
5 10 14
6 13 13
7 5 8
8 4 2
9 0 3

10 0 1
total 161 146

Statistics
average 2.4 3.1
stddev 2.0 2.4
median 2 3

Table 7: Number of arguments per subsection.
“Counts” reports the number of subsections (right
columns) containing a specific number of arguments
(left column). “Random” refers to 9 sections drawn at
random from the Tax Code, and annotated.



2758

Counts SARA Random
1 391 360
2 70 73
3 6 16
4 6 6
5 0 1
total 473 456

Statistics
average 1.2 1.3
stddev 0.5 0.6
median 1 1

Table 8: Number of mentions per argument. “Counts”
reports the number of arguments (right columns) men-
tioned a specific number of times (left column). “Ran-
dom” refers to 9 sections drawn at random from the Tax
Code, and annotated.

B.3 Structure identification

Table 9 reports statistics on the annotations for
the structure extraction task. These numbers for
arguments differ from those in Table 6, because
any subsection is allowed to contain the arguments
of any subsections it refers to.

Counts Arguments Dependencies
0 9 80
1 13 42
2 40 28
3 60 18
4 24 8
5 13 2
6 14 3
7 7 7
8 7 1
9 5 1

10 - 0
11 - 0
12 - 2
total 192 192

Statistics
average 3.0 1.0
stddev 2.6 2.4
median 3 1

Table 9: Number of arguments and dependencies of
each subsection, as represented in the structure annota-
tions. “Counts” reports the number of arguments or de-
pendencies (right columns) mentioned a specific num-
ber of times (left column).

B.4 Argument instantiation

Tables 10 and 11 show statistics for the annotations
for the argument instantiation task. In the gold data,
we separate training and test data, to show that both
distributions are close.

Gold Silver
Counts train test all
0 7 8 15 1197
1 24 13 37 5487
2 177 73 250 35629
3 41 24 65 32751
4 5 2 7 447
5 2 0 2 32
total 256 120 376 75543

Statistics
average 2.1 2.0 2.0 2.3
stddev 0.7 0.8 0.7 0.7
median 2 1 2 2

Table 10: Number of arguments-value pairs for the in-
put to the argument instantiation task. “Counts” reports
the number of arguments (right columns) mentioned a
specific number of times (left column). “Gold” refers
to the manually annotated data, and “Silver” to the data
produced automatically through the Prolog program.

Gold Silver
Counts train test all
1 131 78 209 41248
2 96 33 129 17051
3 12 4 16 8712
4 7 3 10 6656
5 8 2 10 1573
6 1 0 1 242
7 1 0 1 51
8 0 0 8
9 0 0 2
total 256 120 376 75543

Statistics
average 1.7 1.5 1.6 1.8
stddev 1.0 0.8 1.0 1.1
median 1 1 1 1

Table 11: Number of arguments-value pairs for the out-
put to the argument instantiation task. “Counts” reports
the number of arguments (right columns) mentioned a
specific number of times (left column). “Gold” refers
to the manually annotated data, and “Silver” to the data
produced automatically through the Prolog program.


