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Abstract

Topic modeling has been widely used for dis-
covering the latent semantic structure of doc-
uments, but most existing methods learn top-
ics with a flat structure. Although probabilis-
tic models can generate topic hierarchies by
introducing nonparametric priors like Chinese
restaurant process, such methods have data
scalability issues. In this study, we develop a
tree-structured topic model by leveraging non-
parametric neural variational inference. Par-
ticularly, the latent components of the stick-
breaking process are first learned for each doc-
ument, then the affiliations of latent compo-
nents are modeled by the dependency matri-
ces between network layers. Utilizing this
network structure, we can efficiently extract
a tree-structured topic hierarchy with reason-
able structure, low redundancy, and adaptable
widths. Experiments on real-world datasets
validate the effectiveness of our method.

1 Introduction

Topic models (Blei et al., 2003; Griffiths et al.,
2004) are important tools for discovering latent se-
mantic patterns in a corpus. These models can be
grouped into flat models and hierarchical models.
In many domains, topics can be naturally orga-
nized into a tree, where the hierarchical relation-
ships among topics are valuable for data analy-
sis and exploration. Tree-structured topic model
(Griffiths et al., 2004) was thus developed to learn
coherent topics from text without disrupting the
inherent hierarchical structure. Such a method has
been proven as useful in various downstream ap-
plications, including hierarchical categorization of
Web pages (Ming et al., 2010), aspects hierarchies
extraction in reviews (Kim et al., 2013), and hier-
archies discovery of research topics in academic
repositories (Paisley et al., 2014).

∗The corresponding author.

Despite the practical importance and potential
advantages, tree-structured topic models still face
the following challenges. Firstly, the hierarchical
structure of topics should be reasonable (Viegas
et al., 2020). Typically, topics near the root are
more general while the ones close to the leaves
are more specific. Besides, child topics should
be coherent with their corresponding parent top-
ics. Secondly, low redundancy is necessary for
the extracted topics, in order to prevent the dis-
tributions associated with parent topics and their
children being extremely similar (Griffiths et al.,
2004). Thirdly, the number of topics in each hier-
archy level should be automatically determined by
the model, because it is usually unknown and can
not be previously set to a predefined value (Kim
et al., 2012). Finally, it is difficult for probabilistic
models to enhance the data scalability (Isonuma
et al., 2020). Previously, several tree-structured
topic models (Griffiths et al., 2004; Kim et al.,
2012; Isonuma et al., 2020) have been developed.
But these methods can not fully overcome the afore-
mentioned challenges.

In this paper, we focus on grouping topics into a
reasonable tree structure, based on the neural vari-
ational inference (NVI) framework (Kingma and
Welling, 2014; Rezende et al., 2014) with a non-
parametric prior. Owing to the excellent function
fitting ability, neural network has been widely in-
troduced into topic modeling. Nonetheless, few
neural methods explicitly model the dependencies
among different layers and get explainable hier-
archical topics, which is largely due to the weak
interpretability of neural networks. Furthermore,
the inflexibility of neural networks also makes it
difficult to learn an unbounded number of topics
at each level. To address these limitations, we pro-
pose a novel nonparametric neural method to gen-
erate tree-structured topic hierarchies, namely non-
parametric Tree-Structured Neural Topic Model
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(nTSNTM)1. By connecting the network layers
with dependency matrices, the model is able to
extract an explainable tree-structured hierarchy.
Firstly, the topic affiliations among hierarchy lev-
els can be determined by the dicrete vectors of
the dependency matrices. Secondly, to control re-
dundancy among topics, we allow the model to
freely generate topics without duplicating their cor-
responding parent topics. Thirdly, we couple a
stick-breaking process with NVI to equip the topic
tree with self-determined widths, which can help
the model determine the number of topics auto-
matically. Finally, due to the advantages of neural
networks, our model can scale to larger datasets
conveniently. Experiments indicate that our model
outperforms baselines on several widely adopted
metrics and two new measurements developed for
tree-structured topic models.

The rest of this paper is organized as follows.
We describe related work in Section 2. Then, we
detail the proposed nTSNTM in Section 3. Section
4 presents our experimental results and discussions.
Finally, we draw conclusions in Section 5.

2 Related Work

In (Griffiths et al., 2004), a tree-structured topic
model called hLDA was first proposed by intro-
ducing a nested Chinese restaurant process (nCRP).
For hLDA, a topic tree is constructed through Gibbs
sampling given a certain depth. Based on hLDA,
Xu et al. (2018) proposed a knowledged-based
HTM to generate topic hierarchies from multiple
domains corpora, but the hierarchical relation be-
tween the ancestor topic and the offspring one may
be unclear, because a document is generated by the
topics along a single path of the tree. To overcome
this issue, Kim et al. (2012) proposed a recursive
CRP (rCRP), in which a document possesses a dis-
tribution over the entire tree. Although rCRP has
shown remarkable competitiveness in hierarchical
topic modeling, it suffers from the major limitation
of data scalability (Isonuma et al., 2020). Several
other methods focused on hierarchical text cluster-
ing. For instance, Ghahramani et al. (2010) applied
nested stick-breaking processes to cluster data into
a tree structure. Unfortunately, the above method
only models a document by a single node of the
tree. Liu et al. (2014) developed a model named
HLTA for topic detection, in which words and top-

1The code of our model is available in public at: https:
//github.com/hostnlp/nTSNTM.

ics are clustered by employing the Bridged-Islands
algorithm iteratively. However, HLTA is unable
to cope with polysemous words, which is quite
important for topic models.

To couple nonparametric processes with NVI,
Miao et al. (2017) used Gaussian distributions to
generate stick-breaking fractions. Nalisnick and
Smyth (2017) first described how to use stochastic
gradient variational Bayes for posterior inference
of the weights in stick-breaking processes. Exper-
iments indicated that the latent representations of
the above model were more discriminative than
those of the Gaussian variant. Then, Ning et al.
(2020) developed two nonparametric neural topic
models by treating topics as trainable parameters.
Unfortunately, the aforementioned methods can
only learn topics with a flat structure.

For tree-structured neural topic modeling, a fea-
sible way is to decompose the distribution over
the topic tree into a path distribution and a level
distribution. Following (Wang and Blei, 2009),
where a tree-based stick-breaking construction of
nCRP was first derived to draw topic paths, and
then a level distribution was learned to sample top-
ics along the path, Isonuma et al. (2020) proposed
a tree-structured neural topic model (TSNTM) by
parameterizing an unbounded ancestral and frater-
nal topic distribution. TSNTM applies a doubly-
recurrent neural network (DRNN) to obtain topic
embeddings via ancestral and fraternal edges, then
generates breaking fractions by the dot product
between document embeddings and topic embed-
dings. However, TSNTM fails to learn a reasonable
topic tree for the following reasons. Firstly, the
breaking fractions do not obey the Beta distribu-
tions adopted in the stick-breaking process (SBP).
Secondly, the structure of DRNN in TSNTM is
simplified, where the topic embeddings are gener-
ated directly by an initialized root embedding and
two parameter matrices (i.e., ancestral and fraternal
connections). This prevents the model from learn-
ing appropriate semantic embeddings for topics.
Finally, TSNTM relies on heuristic rules to update
the tree structure.

Another stream of work is to generate a docu-
ment by a directed acyclic graph (DAG) structured
topic hierarchy. For instance, Li and McCallum
(2006) introduced the pachinko allocation model
(PAM) to capture correlations between topics using
a DAG. Mimno et al. (2007) proposed the hierarchi-
cal PAM by connecting the root topic to lower-level

https://github.com/hostnlp/nTSNTM
https://github.com/hostnlp/nTSNTM
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topics through multinomial distributions. Nonprob-
abilistic matrix factorization was also used to ex-
tract the topic structure. Liu et al. (2018) used
non-negative matrix factorization (NMF) with three
optimization constraints, including global indepen-
dence, local independence, and information con-
sistency, to preserve topic coherence and a rea-
sonable structure. Viegas et al. (2020) incorpo-
rated pre-trained word embeddings into NMF to
further improve topic coherence. The main limi-
tation of NMF-based methods, however, is that a
time-consuming process (e.g., measure the stability
of results by running multiple random samplings)
is necessary to determine the number of topics at
each level. This is because nonparametric priors
are intractable to be included in these models.

3 Tree-Structured Neural Topic Model
with Nonparametric Prior

In this section, we firstly describe the stick-
breaking process. Then, we introduce the modeling
of tree-structured topic hierarchy. Finally, we detail
the inference method of our nTSNTM.

3.1 Stick-breaking Process

For nonparametric models, stick-breaking prior is a
random measure with the form G =

∑∞
k=1 πkδζk ,

where δζk is a discrete measure concentrated at
ζk ∼ G0 (Ishwaran and James, 2001)2, i.e, a
draw from the base measure. The πks are random
weights independent of G0 (Nalisnick and Smyth,
2017). This constructive definition is known as
SBP (Sethuraman, 1994), which implies that the
weights π = (πk)

∞
k=1 can be drawn according to

the procedure of iteratively breaking off segments
from a unit stick.

𝜋1 = 𝑣1

𝜋2 = 𝑣2(1 − 𝑣1)

𝜋3 = 𝑣3 1 − 𝑣2 (1 − 𝑣1)

𝜋2

1𝑠𝑡

2𝑛𝑑

3𝑟𝑑

𝑇𝑡ℎ

⋯

𝑇 − 1 simplex
𝜋1 𝜋3 𝜋𝑇

𝜋𝑇 =ෑ
𝑗=1

𝑇−1

(1 − 𝑣𝑗)

⋯

⋯

Figure 1: Stick-breaking construction.

2In topic models, ζk represents the kth topic and G0 rep-
resents the topic space.

As shown in Figure 1, we break the unit stick
and get the first component with length v1. If a
fraction v2 of the remaining stick is broken off,
then we obtain the second component with length
v2(1− v1) and a remaining stick with length (1−
v1)(1− v2). The following breaks are taken on the
remaining stick by the same operation. Given a
truncation level T , the length of the last component
will be

∏T−1
j=1 (1−vj). Formally, the length of each

component is defined as:

πk =

{
v1 if k = 1,

vk
∏
t<k (1− vt) for k > 1,

(1)

where vk ∼ Beta(α0,β0), with α0 and β0 be-
ing the prior parameters. Note that the component
weights π satisfy 0 ≤ πk ≤ 1 and

∑∞
k=1 πk = 1,

thus we can interpret π as random probabilities.
Particularly, when vk ∼ Beta(1,β0), the joint dis-
tribution for π is the GEM distribution (Pitman,
2006) with concentration parameter β0, and the
corresponding SBP is one of the constructions for
the Dirichlet process, a popular nonparametric ran-
dom process for topic modeling (Teh et al., 2005).

In our method, we take component weights π
as the path distribution of a document. We assume
that the words of a document come from several
topic paths. Due to the sequentiality of the stick-
breaking operation, paths with smaller serial num-
bers are more likely to be activated to represent the
documents, while paths with larger serial numbers
tend to be unactivated. The number of activated
paths can be adjusted by SBP automatically.

3.2 Tree-Structured Topic Hierarchy
To conveniently describe our method, we here com-
pare the sampling processes for an example docu-
ment of different tree-structured topic models. As
shown in Figure 2, hLDA (Griffiths et al., 2004)
considers that a document is generated by topics
of a single path, which violates the multi-topics
assumption of topic models (i.e., a document may
span several topics). Considering this issue, rCRP
(Kim et al., 2012) and TSNTM (Isonuma et al.,
2020) assume that a document can be generated
by any topic in the tree. We follow the above as-
sumption adopted in rCRP and TSNTM to model a
tree-structured topic hierarchy, but the difference is
that our model takes the sampling from the bottom
up rather than from the top down as in rCRP and
TSNTM. Particularly, rCRP samples topics from
the root using recursive CRP. TSNTM samples
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paths from the root by applying a DRNN (Alvarez-
Melis and Jaakkola, 2017), and it needs to update
the tree structure frequently by heuristic rules. On
the contrary, our model directly samples the leaf
topics, and the paths toward the root are determined
automatically. Specifically, we use a common stick-
breaking construction to infer the distribution over
leaf topics, which corresponds to the path distribu-
tion. Besides, we use dependency matrices to keep
track of the affiliations among topics. Thus the tree
structure can be updated through back propagation.
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Figure 2: Sampling process of an example docu-
ment for hLDA (Griffiths et al., 2004), rCRP (Kim
et al., 2012), TSNTM (Isonuma et al., 2020), and our
nTSNTM. Each node represents a topic z with its dis-
tributions over wordsw. The active topics and path are
highlighted by boldface.

Figure 3 shows the graphical representation of
nTSNTM. For our model, the number of leaf topics
is determined by SBP, and the numbers of non-leaf
topics are adjusted through dependency matrices M
between network layers. The lth item of M, i.e., Ml

∈ [0, 1]Kl∗Kl+1 , is the dependency matrix between
layers l and l+1, where Kl and Kl+1 represent the
maximum numbers of topics at level l and level l+1,
respectively. In particular, Ml,k,j is the probability
of topic j at level l being the parent of topic k at
level l+1 with

∑
j′Ml,k,j′ = 1. As mentioned in

(Griffiths et al., 2004), a clear tree structure indi-
cates that each sub-topic has a relationship with no
more than one super-topic. So a softmax function
with low temperature (Hinton et al., 2015) is ap-
plied to ensure that Ml,k approximates a discrete
one-hot vector. In this way, the topic tree can be
built through the introduced M from bottom up.
Furthermore, the topic hierarchy can be updated
automatically according to the update of M.

After determining the topic hierarchy by M, the
generative process of each word in nTSNTM can
be described as follows:

��

Figure 3: Graphical representation of nTSNTM. Solid
and dashed arrows denote generation and inference.

1. For each document xd ∈ {x1, ...,xD}:

Draw SBP weights: πd ∼ GEM(β0); (2)

Draw Gaussian samples: gd ∼ N (0, I2); (3)

Draw level distributions: ηd = fη(gd). (4)

2. For each word wd,n ∈ {wd,1, ..., wd,Nd
} in xd:

Draw a path: cd,n ∼ Multi(πd); (5)

Draw a level: rd,n ∼ Multi(ηd); (6)

Draw a word: wd,n ∼ Multi(φcd,n[rd,n]). (7)

In the above, D is the number of documents, Nd

is the number of words in xd. φcd,n[rd,n] ∈ 4
V−1

is the word distribution of the topic at level rd,n
of path cd,n, and V is the vocabulary size. fη(·)
is a neural perceptron with softmax activation to
transform a Gaussian sample to a level distribution.

3.3 Parameter Inference

Since the Beta distribution does not have a differ-
entiable non-centered parametrization that NVI re-
quires (Kingma and Welling, 2014), we choose
the Kumaraswamy distribution (Kumaraswamy,
1980) to approximate GEM(β0), i.e., the con-
junction of Beta(1,β0) and a stick-breaking op-
eration (Nalisnick and Smyth, 2017). For the
Kumaraswamy distribution, the probability den-
sity function on the unit interval is defined as
Kumaraswamy(x; a, b) = abxa−1(1−xa)b−1 for
x ∈ (0, 1) and a, b > 0. Samples can be drawn
via the inverse transform: x ∼ (1 − u

1
b )

1
a where

u ∼ Uniform(0, 1). Then the KL-divergence be-
tween the Kumaraswamy distribution and the Beta
distribution can be closely approximated in the
closed-form. We describe the parameter inference
process of our nTSNTM as follows.

Firstly, we estimate the component weights of
document xd, i.e., π̂d, by the following stick-
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breaking operation with fractions vd:

αd = fα(xd), βd = fβ(xd), (8)

vd ∼ Kumaraswamy(αd,βd), (9)

π̂d = (vd,1, ...,
T−1∏
j=1

(1− vd,j)), (10)

where the bag-of-words representation is used for
xd. To ensure positive outputs, fα(·) and fβ(·) are
neural perceptrons with softplus activation.

Secondly, we infer the level distributions η̂d by:

µd = fµ(xd), σd = fσ(xd), (11)

ĝd ∼ N (µd,σ
2
d), η̂d = fη(ĝd), (12)

where fµ(·) and fσ(·) are linear transformations. In
practice, we reparameterize ĝd = µd+ ε̂ ∗σd with
the sample ε̂ ∼ N (0, I2) (Rezende et al., 2014).

Thirdly, we obtain the topic distributions of xd,
i.e., θ̂d = {θ̂d,1, ..., θ̂d,L} by:

θ̂d,l =

{
η̂d,Lπ̂d if l = L,

η̂d,lπ̂d
∏
l′≥lMl′ for l < L,

(13)

where L denotes the depth of the topic tree, and∑
l

∑
k θ̂d,l,k = 1.

Then, we follow (Miao et al., 2017) to ex-
plicitly model topic-word distributions by: φ =
softmax(u ∗ tT ), where u ∈ RV ∗H and t ∈
R
∑

lKl∗H are word vectors and topic vectors, and
H denotes the dimension of word/topic vectors.
Given topic-word distributions φ and topic distri-
butions θ̂d obtained from Eq. (13), our model re-
constructs each document xd by: p(wd,n|φ, θ̂d) =∑

zd,n
[p(wd,n|φzd,n)p(zd,n|θ̂)] = θ̂d ∗ φ, where

zd,n is the topic assignment for wd,n.
Finally, the variational lower-bound of xd is:

L =Eq(πd,ηd|xd)[
∑
n

log(p(wd,n|φ, θ̂d))]

−DKL[q(πd|xd)||p(πd)]
−DKL[q(ηd|xd)||p(ηd)],

(14)

where q(πd|xd) and q(ηd|xd) are posteriors mod-
eled by the inference network. p(πd) is the prior
for πd, i.e., GEM(β0), and p(η) is the prior for η,
i.e., the standard Gaussian transformed by fη(·).

The parameter inference method for nTSNTM
is presented in Algorithm 1. We use the variational
lower-bound to calculate gradients and apply Adam
(Kingma and Ba, 2015) to update parameters.

Algorithm 1: Parameter Inference Algorithm
Input: GEM priors β0 and documents

{x1, ...,xD};
Output: Document-topic distribution θ,

topic-word distribution φ, and
topic tree Tr.

1 Randomly initialize dependency matrices M
and topic-word distribution φ;

2 repeat
3 for document xd ∈ {x1, ...,xD} do
4 Estimate π̂d and η̂d by Eqs. (8–12);
5 Compute θ̂d by Eq. (13);
6 for wd,n ∈ xd do
7 p(wd,n|θ̂d,φ) = θ̂d ∗ φ ;
8 end
9 Compute L by Eq. (14);

10 Update fα(·), fβ(·), fµ(·), fσ(·),
fη(·), φ, and M;

11 end
12 until convergence;
13 Build Tr according to M and φ.

4 Experiments

4.1 Datasets

We conduct experiments on four widely used
benchmark datasets: 20NEWS (Miao et al., 2017),
Reuters (Wu et al., 2020), Wikitext-103 (Nan et al.,
2019), and Rcv1-v2 (Miao et al., 2017). 20NEWS
and Reuters are two news corpora. Wikitext-103
is a language modeling dataset extracted from
Wikipedia, and Rcv1-v2 is a large version of
Reuters. Table 1 presents the statistics of these
datasets, where the vocabulary is obtained by fol-
lowing the same preprocessing steps in the original
paper. For each corpus, we randomly select 5% of
training samples as the validation set.

Dataset #Docs (Train) #Docs (Test) Vocabulary size
20NEWS 11,314 7,531 1,995
Reuters 7,769 3,019 2,000

Wikitext-103 28,472 60 20,000
Rcv1-v2 794,414 10,000 10,000

Table 1: The statistics of datasets.

4.2 Experimental Setup

For tree-structured topic models, we adopt hLDA
(Griffiths et al., 2004)3, rCRP (Kim et al., 2012),

3Note that hLDA was named as nCRP (Blei et al., 2010)
in (Isonuma et al., 2020).
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and TSNTM (Isonuma et al., 2020) as our baselines.
For all these models, the max-depth of topic tree is
set to 3 by following (Isonuma et al., 2020).

For nonparametric or flat topic models, we adopt
HDP (Teh et al., 2005), GSM & GSB (Miao et al.,
2017), NB-NTM & GNB-NTM (Wu et al., 2020),
and iTM-VAE & HiTM-VAE (Ning et al., 2020) as
baselines. HDP is a classical nonparametric topic
model that allows potentially an infinite number
of topics. GSM & GSB are two NVI-based mod-
els using Gaussian priors. In particular, GSB uses
Gaussian distributions to generate stick-breaking
fractions. NB-NTM & GNB-NTM are two flat neu-
ral topic models based on Negative Binomial and
Gamma Negative Binomial processes respectively.
For iTM-VAE & HiTM-VAE, they extended the
method in (Nalisnick and Smyth, 2017) to intro-
duce nonparametric processes into the NVI frame-
work by extracting the potential infinite topics.

We directly use the publicly available codes
of hLDA4, rCRP5, TSNTM6, HDP7, NB-NTM &
GNB-NTM8, and iTM-VAE & HiTM-VAE9. Be-
sides, we implement GSM & GSB based on the
original paper. For all parametric models, the num-
ber of topics is set to 50 and 200 as in (Miao et al.,
2017). For nonparametric models based on SBP,
the truncation level is set to 200, and the concen-
tration parameter β0 for the GEM distribution is
chosen from [5, 10, 15, 20, 25, 30] using each val-
idation set. In particular, we sequentially choose
the topics, of which the sum of probabilities in the
whole corpus exceeds 95%, as the active ones. For
neural baselines and our proposed model, we set
the size of hidden layers to 256 and use one sample
for NVI by following (Miao et al., 2017).

All the experiments are conducted on a work-
station in Python/Java environment equipped with
40G memory. In the following, we do not report
the results of hLDA and rCRP on Rcv1-v2 since
they failed to achieve convergence in 48 hours.

4.3 Topic Hierarchy Analysis

As mentioned in (Viegas et al., 2020), a reason-
able topic hierarchy means that topics near the root
should be more general while the ones close to

4https://github.com/joewandy/hlda
5https://github.com/uilab-github/rCRP
6https://github.com/misonuma/tsntm
7https://github.com/arnim/HDP
8https://github.com/mxiny/NB-NTM
9https://github.com/walkerning/itmvae_

public

the leaves should be more specific. To this end,
we adopt topic specialization (Kim et al., 2012)
as an indicator for the evaluation of topical hier-
archy. The specialization of a topic is the cosine
distance between the word distribution of the topic
and the term frequency vector of the entire cor-
pus. A higher specialization score implies that the
topic is more specialized. Figure 4 presents the
average topic specialization scores of each level
for different tree-structured models. The results
indicate that nTSNTM and rCRP can achieve a rea-
sonable pattern of topic specialization at different
levels, i.e., the scores become higher as the level
becomes deeper. We also observe that the baseline
of TSNTM generates more specific topics at the
second level than the third level, which indicates an
unreasonable topic hierarchy. For the baseline of
hLDA, there is a leap of topic specialization from
level 2 to level 3, especially for 20NEWS. The rea-
son may be that each document is generated by
topics along a single path for hLDA, which renders
the large specialization of the topics at level 3 since
they are all restricted to one topic from level 2.
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Figure 4: Topic specialization of different tree-
structured topic models at each level.

A reasonable topic hierarchy also indicates that
child topics are coherent with their corresponding
parent topics (Viegas et al., 2020). To measure the
relations of two connected topics, we develop a
new metric named cross-level NPMI (CLNPMI) to
measure the relations of two connected topics by
calculating the average NPMI value of every two
different topic words from a parent topic and its
child. In the above, NPMI was proposed by Lau
et al. (2014) which evaluates the relation between

https://github.com/joewandy/hlda
https://github.com/uilab-github/rCRP
https://github.com/misonuma/tsntm
https://github.com/arnim/HDP
https://github.com/mxiny/NB-NTM
https://github.com/walkerning/itmvae_public
https://github.com/walkerning/itmvae_public
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two words wi and wj as follows:

NPMI(wi, wj) =
log

P (wi,wj)
P (wi)P (wj)

− log(P (wi, wj))
. (15)

Based on NPMI, we define CLNPMI as:

CLNPMI(Wp,Wc)

=
1

|W ′p||W ′c|
∑

wi∈W ′p

∑
wj∈W ′c

NPMI(wi, wj),
(16)

where W ′p = Wp −Wc and W ′c = Wc −Wp, in
which, Wp and Wc denote the top N words of a
parent topic and one of its children. To avoid degen-
erating into NPMI when the parent and the child
topics are highly similar, CLNPMI is estimated by
the distinct words between every two topics.

To evaluate the topic redundancy for a tree, we
introduce a new measurement named the averaged
overlap rate (OR) and adopt the widely-used topic
uniqueness (TU) (Nan et al., 2019). OR measures
the averaged repetition ratio of top N words be-
tween parent topics and their children, which is
defined as: OR(Wp,Wc) =

|Wp∩Wc|
N . TU cal-

culates the uniqueness of all topics by TU =
1
K

∑K
k=1TU(k), where K is the number of top-

ics and TU(k) is defined as:

TU(k) =
1

N

N∑
n=1

1

cnt(n, k)
. (17)

In the above, cnt(n, k) is the total number of
times the nth top word in topic k appears in the top
N words across all topics.

Model hLDA rCRP TSNTM nTSNTM

20NEWS
CLNPMI (↑) 0.065 0.098 0.086 0.122

TU (↑) 0.051 0.285 0.430 0.760
OR (↓) 0.056 0.404 0.083 0.053

Reuters
CLNPMI (↑) 0.050 0.072 0.027 0.102

TU (↑) 0.447 0.227 0.370 0.708
OR (↓) 0.105 0.515 0.176 0.066

Wikitext-103
CLNPMI (↑) 0.063 0.088 0.065 0.113

TU (↑) 0.597 0.355 0.615 0.730
OR (↓) 0.087 0.447 0.078 0.069

Rcv1-v2
CLNPMI (↑) – – 0.028 0.088

TU (↑) – – 0.544 0.802
OR (↓) – – 0.051 0.042

Table 2: CLNPMI, TU, and OR scores of tree-
structured topic models, in which, higher CLNPMI and
TU with a lower OR indicate better performance. The
best value on each metric is highlighted by boldface.

For each of the aforementioned metrics, we cal-
culate the average scores of 5, 10, and 15 top words.
Table 2 shows the performance of different models,

where each method is run for 5 times and the aver-
age values are presented. The results indicate that
our model significantly outperforms the baselines
in most cases, with p-values less than 0.05. For
hLDA and our nTSNTM on the 20NEWS dataset,
the difference is not statistically significant on the
OR metric, with a p-value equal to 0.391. This
validates the effectiveness of the bottom-up struc-
ture for nTSNTM, in which, non-leaf topics are
activated when their offsprings are chosen.
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Figure 5: Hierarchical affinity scores.

We also present the hierarchical affinity (Kim
et al., 2012) for each model to measure whether the
parent topic is more similar to its child topics than
the descendants of other parent topics. The aver-
age cosine similarities of the parent topic’s word
distribution to children topics and non-children top-
ics are shown in Figure 5. For parent topics, both
rCRP and nTSNTM clearly show stronger affini-
ties with children topics than non-children topics.
But rCRP suffers from the high redundancy, which
can be indicated by the high similarities (0.73 ∼
0.82) between parent topics and sub-topics. To in-
tuitively demonstrate the ability of our model in
generating a topic tree, we present several topics
extracted from 20NEWS by our nTSNTM and the
existing NVI-based TSNTM in Figures 6 and 7,
respectively. The results indicate that our model is
able to learn a reasonable tree-structured topic hier-
archy with low redundancy. While for TSNTM, we
notice that there is a low degree of discrimination
between topics at the second and the third levels. In
addition, topics of the same group at the third level
are highly repetitive, including “rec.sport.baseball”
and “talk.politics.misc”. For completeness, we
further check topics extracted from 20NEWS by
hLDA and rCRP. The results indicate that each
topic at the second level is too general to represent
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…

Figure 6: Topic samples extracted from 20NEWS by nTSNTM, where top 5 words are listed for each topic.

…

Figure 7: Topic samples extracted from 20NEWS by TSNTM, where top 5 words are listed for each topic.

a topic branch and the affiliations are unclear for
hLDA. Although rCRP can generate meaningful
topics with appropriate affiliations between differ-
ent levels, it suffers from a high topic redundancy.

4.4 Comparison on Topic Interpretability

In this part, we use the widely adopted NPMI (Miao
et al., 2017; Liu et al., 2019; Wu et al., 2020; Ning
et al., 2020; Isonuma et al., 2020) to evaluate topic
interpretability10. As mentioned in (Lau et al.,
2014), the NPMI is a measurement of topic co-
herence which closely corresponds to the ranking
of topic interpretability by human annotators. Table

10We do not estimate the perplexity for the following two
reasons. First, the perplexity of sampling-based and NVI-
based models is difficult to compare directly (Isonuma et al.,
2020). Second, the prior of NVI-based methods has a large
influence on the perplexity since the KL-divergence may vary
greatly for different priors (Burkhardt and Kramer, 2019).

3 shows the NPMI of 50 and 200 topics for para-
metric topic models and topics induced automati-
cally for nonparametric topic models. We run each
model for 5 times and present the average results.
Firstly, nTSNTM outperforms all tree-structured
baselines, and the difference is statistically signif-
icant at the level of 0.05 (except for TSNTM on
the Rcv1-v2 dataset). Secondly, nTSNTM shows
competitive performance when compared with the
best flat baselines. In particular, except for HiTM-
VAE on the Reuters dataset, the results of all the
other top-performing baselines are not significantly
better than those of our model.

4.5 Evaluating Data Scalability

To evaluate data scalability, we randomly sam-
ple several numbers of documents (12.5k, 25k,
50k, 100k, 200k, 400k, and all) from the training
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Model
20NEWS Reuters Wikitext-103 Rcv1-v2
NPMI (↑) NPMI (↑) NPMI (↑) NPMI (↑)
50 200 50 200 50 200 50 200

GSM 0.211 0.165 0.198 0.155 0.214 0.217 0.231 0.062
GSB 0.231 0.191 0.152 0.136 0.229 0.131 0.226 0.121

NB-NTM 0.188 0.223 0.248 0.245 0.127 0.125 0.151 0.187
GNB-NTM 0.240 0.228 0.237 0.255 0.127 0.093 0.163 0.191

HDP 0.192 0.266 0.157 0.178
iTM-VAE 0.195 0.201 0.184 0.161

HiTM-VAE 0.237 0.269 0.233 0.179
rCRP 0.186 0.206 0.201 –
hLDA 0.221 0.185 0.186 –

TSNTM 0.212 0.206 0.213 0.225
nTSNTM 0.237 0.234 0.237 0.224

Table 3: NPMI of each model, where the best result is
marked in bold. The topic numbers of parametric mod-
els are set to 50 and 200, and those of nonparametric
models are automatically determined.

set of Rcv1-v2 to run our model and other tree-
structured baselines. The sampling-based models
(i.e., hLDA and rCRP) are run on an Intel Xeon
Skylake 6133 CPU with 8 cores, and NVI-based
models (i.e., TSNTM and nTSNTM) are tested on
an Nvidia Tesla V100 GPU. Figure 8 shows the
training time of these topic models. Our nTSNTM
shows an advantage in data scalability when com-
pared with baselines. Although TSNTM is also
scalable to a large corpus by GPU acceleration, it
applies a doubly-recurrent network which largely
slows down the model speed. hLDA and rCRP
spend considerable computation time on path sam-
pling, which is much more serious when dealing
with a large-scale dataset. Additionally, these two
sampling-based models are serial, which means
they can only utilize one core of the CPU.
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Figure 8: Training time of different models on various
numbers of documents. The curves of hLDA and rCRP
are incomplete because the time they cost is not com-
parable. Particularly, it costs over 48 hours for training
when the numbers of documents are larger than 50k and
100k for hLDA and rCRP, respectively.

4.6 Impact of the Concentration Parameter
We further validate the nonparametric property of
our model. Figure 9 shows the impact of β0 on the

number of active topics. Firstly, we can see that the
topic numbers of all models grow when increasing
β0. The reason is that β0 controls the smoothness
of SBP, and that a larger value leads to a smoother
degree, i.e., more topics. Secondly, compared with
iTM-VAE and HiTM-VAE, the number of topics
found by nTSNTM is closer to the one extracted by
HDP, which demonstrates that our model is able to
approximate the nonparametric property of HDP.
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Figure 9: Active topic numbers of different models
with various values of β0.

5 Conclusion

In this paper, we propose a nonparametric tree-
structured neural topic model named nTSNTM.
Our method explicitly models the dependency of la-
tent variables from different layers, and combines
them to reconstruct the input text. By coupling
SBP with dependency matrices, we can update the
tree structure automatically. Extensive experiments
validate the effectiveness of our nTSNTM on gen-
erating a reasonable topic tree with low topic re-
dundancies. Furthermore, our model can be trained
2 times faster than the existing NVI-based TSNTM
with approximately 800k documents. In the future,
we plan to apply our method to aspect extraction.
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