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Abstract

The open-ended nature of visual captioning
makes it a challenging area for evaluation. The
majority of proposed models rely on special-
ized training to improve human-correlation, re-
sulting in limited adoption, generalizability,
and explainabilty. We introduce “typicality”,
a new formulation of evaluation rooted in in-
formation theory, which is uniquely suited for
problems lacking a definite ground truth. Typ-
icality serves as our framework to develop a
novel semantic comparison, SPARCS, as well
as referenceless fluency evaluation metrics.
Over the course of our analysis, two separate
dimensions of fluency naturally emerge: style,
captured by metric SPURTS, and grammar,
captured in the form of grammatical outlier
penalties. Through extensive experiments and
ablation studies on benchmark datasets, we
show how these decomposed dimensions of
semantics and fluency provide greater system-
level insight into captioner differences. Our
proposed metrics along with their combina-
tion, SMURF, achieve state-of-the-art corre-
lation with human judgment when compared
with other rule-based evaluation metrics1.

1 Introduction

Visual captioning serves as a foundation for im-
age/video understanding tools and relies on cap-
tion evaluation for identifying promising research
directions. Rule-based caption evaluation ap-
proaches like the n-gram based CIDEr (Vedantam
et al., 2015) and parsed semantic proposal based
SPICE (Anderson et al., 2016) specifically are able
to provide researchers with meaningful feedback
on what their algorithm is lacking. However, n-
gram based methods are sensitive to stop words
and sentence parsers are often inconsistent, leading
to Liu et al. (2017) showing that neither method

1SMURF source codes and data will be released at https:
//github.com/JoshuaFeinglass/SMURF.

Figure 1: Scatter plot utilizing standardizations of
SPARCS and SPURTS. The ground truth captions
are sourced from the Karpathy test split of the COCO
dataset (Chen et al., 2015; Karpathy and Fei-Fei, 2015)
with one used as a baseline for automatic caption-
ers (Cornia et al., 2020; Pan et al., 2020; Vinyals et al.,
2015). For each captioner, a 75% confidence ellipse
(1.15 standard deviations from the mean) is generated.
A caption near the centroid of each captioner is shown
as an example along with the caption scores from 100
randomly sampled images. The normalized ellipse
overlap between an automatic captioner and human
captions, H∩M Area

M Area , gives an overall evaluation of typ-
ical performance at a system-level on a scale of 0 to 1,
with 1 being human-caption level.

fully captures either the fluency or the semantic
meaning of text. More recently proposed metrics
attempt to learn cues of caption quality by training
models via image grounding techniques (Cui et al.,
2018) or human and generated captions (Sellam
et al., 2020). These approaches, however, lack gen-
erality, require domain specific training, and offer
little insight for improving captioners, leading to
none of the proposed models being adopted for use
as a caption evaluation benchmark. We instead
postulate that quality in semantics and descriptive
language is universally recognizable.

The primary difficulty of caption evaluation is
its cross-modal nature introducing ambiguity into
the expected output, resulting in a ground truth that

https://github.com/JoshuaFeinglass/SMURF
https://github.com/JoshuaFeinglass/SMURF
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is no longer a single outcome, but a large set of po-
tential outcomes of varying levels of quality. From
this problem setting, the novel concept of “typical-
ity” arises naturally. A desirable caption is one that
is atypical enough linguistically that it uniquely de-
scribes the scene, follows typical natural language
protocols, and matches a typical semantic descrip-
tion of a scene.

Linguistically, the number of typical sequences
is characterized by the entropy rate (Cover, 1999).
Current work estimates the English language as
having an entropy rate of only 1.44 bits/letter (Taka-
hashi and Tanaka-Ishii, 2018), implying that the
typical set of English is only a tiny fraction of the
full space of potential text. Self-attention trans-
formers are language models that are able to iden-
tify the distinguishing contextual features of this
typical set and as a result have now become the sta-
ple of natural language understanding tasks. Here
we define typicality based on the distance of a can-
didate text’s features from expected features of the
typical set. We call this linguistic typicality esti-
mation method Model-Integrated Meta-Analysis
(MIMA) and use the function, fMIMA, to create
referenceless fluency metrics attune to captioning
needs. Rather than assuming a predefined evalu-
ation task and introducing bias by fine-tuning the
self-attention transformer, our method extracts the
inherent properties of language learned by trans-
formers (Devlin et al., 2019; Liu et al., 2019) by
treating self-attention layers as probability distribu-
tions as demonstrated in Clark et al. (2019). Our
approach represents the first integration of a flu-
ency specific metric that demonstrably improves
correlation with human judgment for caption eval-
uation.

By removing stop words from the candidate text,
fMIMA is able to create a metric that assesses a rel-
atively new fluency criteria in captioning: style.
We refer to this metric as Stochastic Process Un-
derstanding Rating using Typical Sets (SPURTS).
Style can be thought of as the instantiation of dic-
tion and is necessary for generating human-level
quality captions. Stylized captions describe a much
smaller set of media, leading to machines instead
generating the most typical caption that is still se-
mantically correct. This results in a significant gap
between machine and human captioners that can be
seen in diction-based examples such as the use of
the common words like “dog” and “food” instead
of more descriptive words like “Schnauzer” and

“lasagna”. The other aspect of fluency assessed by
fMIMA is grammar. Unlike style, grammar is not es-
sential for caption quality, however, highly atypical
syntax can potentially lead to awkward captions, so
we develop a separate grammatical outlier penalty.

We then define a lightweight and reliable typi-
cality based semantic similarity measure, Semantic
Proposal Alikeness Rating using Concept Similar-
ity (SPARCS), which complements our reference-
less metrics and grounds them to the reference cap-
tions. By matching word sequences, current meth-
ods limit the scope of their evaluation. Instead, we
take non-stopword unigrams and further coalesce
them into concepts through stemming, then com-
bine the reference texts, like in Yi et al. (2020),
using a novel semantic typicality measure of the
reference text’s concepts to evaluate the semantic
similarity of a candidate and reference text.

SPURTS and SPARCS can be used to assess
system-level differences between captioners as
shown in Figure 1. Based on this analysis, the
M2 Transformer lags behind 2015 models in terms
of similarity to human captions, even though both
2020 captioners achieved state-of-the-art results
based on CIDEr standards. This difference be-
comes even more significant when you consider
that the use of style makes it more difficult for a
caption to be semantically correct. Human cap-
tions, M2 Transformer (Cornia et al., 2020), X-
Transformer (Pan et al., 2020), and Google (Vinyals
et al., 2015) incur a total grammar outlier penalty
of−44.93,−7.47,−7.56, and−4.46, respectively.
In order to provide caption-level insight as well,
we combine SPURTS, SPARCS, and our grammar
outlier penalty into one metric - SeMantic and lin-
guistic UndeRstanding Fusion (SMURF) - which
rewards captions based on semantics and fluency.
Contributions: Our key contributions are:
1. A novel and widely-applicable model meta-
analysis technique, MIMA, which estimates the
typicality of candidate text and which provides a
means of assessing transformer robustness.
2. Three novel evaluation metrics useful for both
caption-level and system-level evaluation: style-
focused SPURTS, semantic-focused SPARCS, and
their combination which incorporates grammatical
outliers as well, SMURF.
3. Experiments showing that SPARCS and
SMURF achieve SOTA performance in their re-
spective areas of semantic evaluation and human-
machine evaluation at both a system and caption-
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level.
4. Evidence showing that the performance of auto-
matic evaluation metrics has been underestimated
relative to voting-based human evaluation metrics.

2 Related Work

Originally, popular rule-based metrics from ma-
chine translation that were mostly n-gram based,
namely METEOR (Banerjee and Lavie, 2005),
BLEU (Papineni et al., 2002), and ROUGE (Lin,
2004), were used for caption evaluation. Vedan-
tam et al. (2015) introduced the more semantically
sensitive CIDEr which uses tf-idf to identify distin-
guishing n-grams and then compares them using
cosine similarity. SPICE (Anderson et al., 2016)
greatly improved upon n-gram based approaches
by using a sentence parser to generate semantic
propositions. Word moving distance scores (Zhao
et al., 2019; Kilickaya et al., 2017) have also been
used for semantic evaluation with limited success.
BERTScore (Zhang et al., 2019) used cosine simi-
larity of embeddings from the self-attention trans-
former, BERT, and achieved state-of-the-art results
on COCO but provided little interpretation of their
approach.

Domain specific training approaches have also
been introduced with limited adoption. Cui et al.
(2018); Jiang et al. (2019); Sharif et al. (2019)
present a training approach for caption evalua-
tion where an image grounding and/or caption
based Turing test is learned based on training data
from human and machine captioners. An adjusted
BERTScore (Yi et al., 2020), BLEURT (Sellam
et al., 2020), and NUBIA (Kane et al., 2020) uti-
lize transformer embeddings for comparison be-
tween reference and candidate text, then perform
caption dataset specific fine-tuning of the model
downstream.

The importance of fluency in captioning has been
widely recognized. Liu et al. (2017) attempted to
integrate CIDEr and SPICE to create a cost func-
tion attune to both lexicographical and semantic
qualities for captioning optimization. Cui et al.
(2018) identified the presence of less frequent, dis-
tinguishing words within human-generated text in
the COCO dataset. Mathews et al. (2018) recog-
nized the importance of style in captions and in-
tegrated it into their model without sacrificing se-
mantics.

Referenceless evaluation, first proposed in
Napoles et al. (2016) as a referenceless grammar

error correction (GEC) evaluation metric, has
been recognized as an effective avenue for fluency
evaluation as a whole (Asano et al., 2017), along
with combined approaches (Choshen and Abend,
2018). More recently, Perception Score (Gu et al.,
2021) outlined a general paradigm for training
referenceless quality evaluation.

3 Our Approach

3.1 Self-Attention Transformer Background
First introduced in Vaswani et al. (2017), transform-
ers are made of layers of parallel attention heads
which extract contextual information about inputs
using attention. They take in a sequence vector
of tokenized words from candidate text, yn, add
start and separator/end tokens, and pass the input
through a series of separate linear transforms with
parameters, p, to create query, key, and value vec-
tors, denoted as qi,ki,vi, respectively. These vec-
tors are then used to compute the attention weight
parameters of the heads as shown:

αij(y
n, p) =

exp(qTi kj)∑n
l=1 exp(q

T
i kl)

, (1)

oi(y
n, p) =

n∑
j=1

αijvj , (2)

where αij and oi are each layer’s attention weights
and output, respectively. Here αij(yn, p) is a joint
distribution with marginal distributions αi(yn, p) =∑

j αij(y
n, p) and αj(yn, p) =

∑
i αij(y

n, p).
BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019) are encoder-decoder instantiations of
transformers, pretrained on fundamental language
tasks over large corpora. Both BERT and RoBERTa
have achieved state-of-the-art results in various lan-
guage understanding tasks. In order to speed up
inference time, many papers have employed knowl-
edge distillation to reduce the number of parame-
ters these transformers require while still preserv-
ing their inference capabilities (Sun et al., 2019;
Sanh et al., 2019; Chen et al., 2020).

3.2 Information Theory Background
Transformers like BERT and RoBERTa take text
tokenized into sub-word components as input, cap-
turing both the syntax and morphology of the text.
The text sequences used as training data, xn, can
be modelled as a stationary ergodic stochastic pro-
cess, {Xk}∞k=1, with instantiations limited to finite
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Figure 2: Visualization of the typicality formulation in-
troducing the concept of a typical set on the left and
showing the distance proportional to typicality on the
right.

alphabet X and based on joint probability distribu-
tion, P (X1 = x1, ..., Xn = xn), whose transition
predictability is governed by entropy rate, H(X ).
The entropy of a distribution, or entropy rate in
the case of a stochastic process, can be used to
describe the number of instantiations expected to
be observed from a random variable or process, re-
ferred to as the typical set. From the Asymptotic
Equipartition Property (AEP), it is known that the
size of the typical set of sequences is bounded by

|Aεn| ≤ 2n(H(X )+ε), (3)

where 2nH(X ) estimates the size of the typical set.

3.3 Model-Integrated Meta-Analysis
We assume that a self-attention transformer learns
to fill in words from a sentence by extracting fea-
tures, F . The quality of a piece of text can then
be assessed by determining the distance of features
taken by the model from candidate text, Y n = yn,
from the expected value of features taken from
correctly written text, Xn = (xn∈Aεn), shown vi-
sually in Figure 2 and mathematically in Equation 4

Dtypical = dist(F | yn,E[F | (xn∈Aεn)]). (4)

Here dist does not does not refer to a specific dis-
tance metric and is instead an unspecified norm
that exists in some realizable projection space. We
then postulate the existence of a surrogate func-
tion, fMIMA, which maps the sequence input and
transformer parameter set, p, such that

fMIMA(y
n, p) ∝ −Dtypical, (5)

resulting in a value indicating the typicality of a
candidate input sequence. This value can be used
to characterize the input for evaluation purposes.

Figure 3: Information flow used by fMIMA for estimat-
ing typicality of input in DistilBERT architecture.

3.4 Attention-Based Information Flow as
MIMA Function

We postulate that input text that differs more greatly
from members of the typical set generates a greater
“spark of interest” in a transformer, resulting in
greater information flow through parts of the net-
work as shown in Figure 3. Conversely, if the
input text is similar to the positive examples the
transformer trains on, less information flows in
through the layer, indicating that the model has al-
ready captured information about the sequence pre-
viously. We formulate information flow in terms of
the attention dimensions αi(yn, p), αj(yn, p), and
their joint distribution αij(yn, p) as defined in Sec-
tion 3.1. We consider information flow based on
the redundancy between αi(yn, p) and αj(yn, p)
and use normalized mutual information (MI):

Iflow(y
n, p) =MI

=
2∗H(αi(y

n, p)) +H(αj(y
n, p))−H(αij(y

n, p))

H(αi(yn, p)) +H(αj(yn, p))
,

(6)
as defined in Witten and Frank (2005) to capture
this redundancy.

We are interested in attention heads with large
information flow values, but find empirically that
heads with the largest information flow values de-
pend very little on the input and simply function
as all-pass layers. Thus, we downselect to a single
attention head information flow value to obtain

fMIMA(y
n, p)

= 1−medianlayer(maxhead[Iflow(yn, p)]).
(7)

Here, the max over a given layer’s attention heads
captures the largest “spark of interest”. The median
removes outlier layers that have largely invariant
information flow values.
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Figure 4: Aspects of caption quality color-coded to cor-
responding words from evaluated COCO examples.

3.5 Caption Evaluation
MIMA provides us with a foundation for comput-
ing the fluency of input text. We divide fluency into
two categories: grammar and style. Grammar de-
pends on the typicality of the sequence as a whole,
fMIMA, and is computed using the distilled BERT
model since it achieves the highest Pearson cor-
relation in the grammar experiment from Table 1.
Style depends on the distinctness, or atypicality,
of the words directly associated with the image
description, which we evaluate by removing the
stop words from the text, then computing what we
define as SPURTS as shown

SPURTS = 1− fMIMA(yw/o, p), (8)

where yw/o is the candidate sequence without stop
words and fMIMA is computed using the distilled
RoBERTa model since it performs well on out-of-
distribution text as shown in Figure 5.

We formulate semantic similarity using typical-
ity as well. Assuming a comprehensive set of all
valid captions for a single image were available, we
consider the distribution of all concepts, S. Here
we define concepts as the set stem terms that would
remain if all stop words and affix/suffixes were re-
moved from the text. The distribution of concepts
sampled from such a set of captions, Sm, would
have a typical set, Sβm, of the most relevant con-
cepts. Thus, a valid caption that is representative of
the image semantically and demonstrates fluency
should contain concepts that are members of the
typical set of concepts, Sβm, and be a member of the
typical set of correctly formed language sequences
defined in Section 3.2, Aεn, as shown in Figure 4.

To extract concepts from a caption, we use a
stemmer on yw/s and estimate the typicality of each
reference concept using the document frequency,
df , of the concept across the available reference
captions, gt(S), where gt is the function that maps
concepts to a reference caption set. We then use
an adjusted F1 score to determine the similarity

between the reference concepts and candidate con-
cepts.

The first portion of the F1 score is precision,
corresponding to caption correctness. Our adjusted
precision is

P (C,S) =
∑

i
dfgt(S)(Ci)

|gt(S)|∑
i(
dfgt(S)(Ci)

|gt(S)| + I[dfgt(S)(Ci) = 0])
,

(9)
where C is the candidate concept set and gt(S) is
the reference caption set. Our approach equally
weights correct and incorrect concepts if only one
reference is used, but as the number increases, grad-
ually decreases the importance of less common
correct concepts.

The second portion of the F1 score is recall, cor-
responding to caption detail. Our adjusted recall is

R(C,S) =
∑

i dfgt(S)(Ci)∑
i dfgt(S)(Si)

. (10)

where a candidate concept set, C, which included
all concepts from the reference set, S, would
achieve a score of 1.

We then use the standard F1 score combination

SPARCS = F1(C,S) =
2 ∗ P (C,S) ∗R(C,S)
P (C,S) +R(C,S)

.

(11)
To give an overall evaluation of performance,

we fuse the proposed metrics. To begin, we stan-
dardize the output score distribution of human
generated captions for each metric using the cap-
tions from the COCO Karpathy test split from
Figure 1, metric′ = metric−E[metric(COCOtest)]

σ(metric(COCOtest))
,

creating SPARCS′, SPURTS′, and f ′MIMA. Utiliz-
ing the standardization, we use threshold, T =
−1.96, corresponding to the left tail of a 95%
confidence interval, to represent the lower bound
of expected human captioning performance. We
then use T to define a grammatical outlier penalty
G= min(MIMA′−T, 0) and a style reward D=
max(SPURTS′−T, 0). The quantities are com-
bined as follows

SMURF =

{
SPARCS′ +G if SPARCS′ < T,

SPARCS′ +D +G otherwise.
(12)

It can be interpreted as applying a semantic thresh-
old, then incorporating the style reward since style
is only beneficial for caption quality if the caption
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Figure 5: Degradation iteration example and plot of
each model’s average fMIMA value as text degrades.

is semantically correct. For all of our proposed met-
rics, a larger value corresponds to higher quality
caption.

4 Experiments

4.1 Preliminary Experiment
We first seek to validate that our proposed fMIMA,
extracted from the attention layers of BERT,
RoBERTa, and their knowledge distilled versions,
is proportional to the distance from the expected
value of features of the typical set. To this end, we
create an experiment where we can control the ran-
domness of input text. We begin with 11 different
paragraphs from unrelated Wikipedia articles. We
extract all the words from the paragraphs and create
a word set corpus. We then sample 25 sentences
from the paragraphs randomly. Each sentence is
iteratively degraded by substituting a fraction of the
words with random words from the word set cor-
pus. At each iteration step, the sentences are passed
through the transformers and the value of fMIMA is
computed. Eventually the sentence is incoherent
and bears no resemblance to “natural” text. The
process and results can be seen in Figure 5. The
average fMIMA value for our information flow for-
mulation shows a strong correlation with the degra-
dation in both models up until about 10% of the to-
kens have been replaced, beyond which RoBERTa
remains reliable but BERT does not, demonstrating
RoBERTa’s superior robustness.

4.2 Datasets
CoNLL-2014 The CoNLL-2014 competition (Ng
et al., 2014) was a shared task of correcting gram-
matical errors of all types present in different sen-
tences of an essay written by a learner of English
as a second language. The essay consisted of 1312
separate sections to correct. A system-level human
evaluation study of the grammatical quality of the

corrected sentences from 12 competition submis-
sions was presented in Grundkiewicz et al. (2015).
Participants were asked to rate how natural the cor-
rected sentences sounded and did not have access
to any reference sentence.
Microsoft COCO 2014 We use the Microsoft
COCO validation set (Chen et al., 2015), comprised
of 40,504 images, for a system-level human correla-
tion experiment. These images are annotated with
five human-generated captions, one of which is
used as a baseline caption candidate. Human eval-
uations of competition entries were collected using
Amazon Mechanical Turk (AMT). These evalua-
tions were framed as questions from which 2 pri-
mary dimensions of system-level caption quality
were derived as a ground truth to rank competitors:
M1 (percentage better than or equal to human de-
scription) and M2 (percentage passing the Turing
Test). Three additional categories were also in-
cluded as an experimental ablation study but were
not considered in the final competition ranking. In
total, 255,000 evaluations were collected.
Flickr 8K We use the graded human quality scores
for the 5,822 remapped captions from the Flickr
8k dataset (Hodosh et al., 2013) for a caption-level
semantic human correlation study. The dataset was
formed by selecting captions from one image and
assigning them to another. These captions are then
graded based on how well they align with the image
using two different standards. The first standard
is Expert Annotation, where human experts rate
the image-caption pairing on a scale of 1 (caption
and image unrelated) to 4 (caption describes image
with no errors). Each caption-image pairing has 3
scores, which we combine by taking the average.
The second standard is Crowd Flower Annotation,
where at least 3 students vote yes or no on whether
the caption and image are aligned.
Composite Dataset An additional dataset for
caption-level study of semantic human correlation
from Aditya et al. (2018). It contains 11,095 hu-
man judgments (on a scale of 1-5) over Flickr 8K,
Flickr 30K (Young et al., 2014), and COCO and in
contrast to the Flickr 8K dataset, includes machine
generated captions in addition to human reference
captions as candidates. Each evaluation is either
based purely on correctness or detailedness.
PASCAL-50S Human evaluators were asked to
identify which of two sentences, B or C, is
more similar to reference sentence A. Unlike
other caption datasets, human evaluators in Pascal-
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50S (Vedantam et al., 2015) did not have access
to the original image. The captions for sentence
A were sourced from a 1000 image subset of
the UIUC PASCAL Sentence Dataset (Rashtchian
et al., 2010) for which additional human captions
were collected using AMT. Sentence B and C were
sourced from both human and machine generated
captions. The human captions were sourced from
the original PASCAL dataset, resulting in four dif-
ferent pairing combinations: human-correct (HC),
human-incorrect (HI), human-model (HM), and
model-model (MM).

4.3 System-Level Human Correlation
System-level experiments evaluate how closely
human evaluation and automatic evaluation mod-
els align in terms of their overall evaluation of
captioning models. To confirm that fMIMA can
capture grammar information, we replicate the
experiment performed in Napoles et al. (2016)
and show improved performance over previous
benchmarks in Table 1. GLEU (Napoles et al.,
2015), I-measure (Felice and Briscoe, 2015), and
M2 (Dahlmeier and Ng, 2012) are reference-based
while their proposed ER, LT, and LFM are ref-
erenceless and based on linguistic features like
fMIMA.

Metric Spearman’s ρ Pearson’s r
GLEU 0.852 0.838
ER 0.852 0.829
LT 0.808 0.811
I-measure 0.769 0.753
LFM 0.780 0.742
M2 0.648 0.641
BERTMIMA 0.852 0.913
RoBERTaMIMA 0.885 0.878

Table 1: CoNLL system-level human correlation exper-
iment results utilizing distilled versions of BERT and
RoBERTA.

We then benchmark our proposed caption eval-
uation metrics against the rule-based metrics used
in the Microsoft COCO 2015 Captioning Compe-
tition, which still serve as the standard for cap-
tion evaluation, and the recall-idf configuration of
BERTScore. We observe that the original COCO
submissions and many of the original codebases
for the submissions are not publicly available or
do not provide pretrained models. Other authors
attempt to reproduce the submissions using open
source reimplementations that they have trained
themselves, which will not be consistent with the
submissions for which the human evaluations were

performed. Thus, we instead opt to use the 4 repre-
sentative baseline caption sets (Vinyals et al., 2015;
Xu et al., 2015; Karpathy and Fei-Fei, 2015) pro-
vided publicly by Cui et al. (2018), which include 3
competition submissions from open sourced mod-
els and 1 human caption baseline. These are guar-
anteed to be consistent with their work and repro-
ducible. In Table 2, we show the COCO results for
SPARCS, SPURTS, and SMURF.

SMURF and BERTScore demonstrate the high-
est correlation with human judgment in this dataset.
BERTScore’s performance is partially due to incor-
poration of idf dataset priors also used by CIDEr,
which we do not utilize to keep our metrics as gen-
eral and consistent as possible. To illustrate this
point, we also report BERTScore’s correlation with-
out idf weighting (BS-w/oidf) for this experiment.
Despite its simplicity, SPARCS also performs well
along with SPURTS. The rest of the metrics fail to
adequately reflect human judgment.

M1 M2
ρ p-value ρ p-value

BERTScore 0.986 (0.014) 0.985 (0.015)
BS-w/oidf 0.374 (0.626) 0.419 (0.581)

Bleu-1 -0.279 (0.721) -0.263 (0.737)
Bleu-2 -0.709 (0.291) -0.696 (0.304)

Rouge-L -0.812 (0.188) -0.802 (0.198)
METEOR 0.479 (0.521) 0.534 (0.466)

CIDEr 0.023 (0.977) 0.082 (0.918)
SPICE 0.956 (0.044) 0.973 (0.027)

SPARCS 0.874 (0.126) 0.894 (0.106)
SPURTS 0.956 (0.044) 0.955 (0.045)
SMURF 0.984 (0.016) 0.993 (0.007)

M1: Percentage of captions that are evaluated as better
or equal to human caption.
M2: Percentage of captions that pass the Turing Test.

Table 2: Microsoft COCO system-level human correla-
tion measured with Pearson’s r experiment results.

4.4 Caption-Level Human Correlation
Caption level experiments evaluate how closely
human evaluation and automatic evaluation models
align for each individual caption. We begin with
the Pascal-50S dataset in Table 3. We follow the
procedure used in Anderson et al. (2016) and use
the first 5 sentence A entries of each image.

The Pascal-50S dataset is based on a direct com-
parison between the reference and candidate cap-
tions, which gives similarity based metrics a dis-
tinct advantage. As a result, SPARCS achieves the
top score in this experiment. Another interesting
result is the fact that SPURTS performs reasonably
well in the human-machine category despite having
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no access to the reference sentence. This shows
SPURTS effectiveness as a Turing Test at both a
system and caption-level, independent of semantic
information. The additional information provided
by SPURTS to SMURF in the human-machine cat-
egory actually improves its performance.

Metric HC HI HM MM All
BERTScore 0.640 0.938 0.925 0.534 0.759

Bleu-1 0.619 0.903 0.883 0.555 0.740
Bleu-2 0.616 0.903 0.861 0.532 0.728

Rouge-L 0.603 0.906 0.897 0.589 0.749
METEOR 0.643 0.948 0.908 0.617 0.779

CIDEr 0.633 0.949 0.866 0.639 0.772
SPICE 0.628 0.938 0.866 0.637 0.767

SPARCS 0.651 0.958 0.896 0.644 0.787
SPURTS 0.496 0.503 0.604 0.485 0.522
SMURF 0.621 0.939 0.912 0.610 0.771

Table 3: PASCAL-50S caption-level classification ac-
curacy for matching human evaluation results.

To evaluate our semantic metric specifically, we
use the Flickr 8K and Composite dataset and follow
the experiments specified in Anderson et al. (2016).
However, we have discovered a flaw in previous
comparisons between the correlation of automatic
evaluation metrics with expert evaluation and inter-
human correlation using the Flickr 8k dataset. Only
a small subset of annotations between the Crowd
Flower and Expert Annotations overlap, which of-
ten consists of ties causing the ranking metric to
fail. To give a fair comparison, we also test the au-
tomatic metrics on a tie-free subset of the Flickr 8k
data and use these results for human comparison.
All of these results can be seen in Table 4.

SPARCS outperforms other metrics in the Flickr
8k dataset. However, SPICE outperforms SPARCS
on the Composite dataset. This is likely due to the
fact that evaluations of “correctness” in the Com-
posite dataset are based on semantic propositions
and do not consider partial correctness.

Additionally, these new results show that auto-
matic metrics can actually outperform voting-based
human metrics in terms of their correlation with
experts, further motivating their use. This warrants
further study as some recent datasets opt to use
voting-based human metrics due to their ease of
collection (Levinboim et al., 2021).

4.5 Generalization/Robustness Study
We perform a caption-level generalizability and ro-
bustness case study on the most commonly used
caption evaluation algorithms using the COCO val-
idation set in Table 5. We define a critical fail-

Metric Composite Flickr 8K Flickr Sub.
BERTScore 0.388 0.362 0.530
Bleu-1 0.386 0.305 0.527
Bleu-2 0.394 0.316 0.577
Rouge-L 0.393 0.277 0.511
METEOR 0.404 0.411 0.611
CIDEr 0.407 0.418 0.650
SPICE 0.445 0.475 0.649
SPARCS 0.431 0.481 0.716
Inter-Human - - 0.655

Table 4: Kendall’s τ rank correlation with human judg-
ment for the Flickr 8k and Composite datasets at a
caption-level.

ure, F , as a disparity of greater than 1 between
system-level human (M2) and caption-level algo-
rithm correlation of a reference evaluation metric
and a tested evaluation metric for a given caption
set of an image. The last column of Table 5 shows
the likelihood of a critical failure occurring for each
metric.

In a human study, we identify the primary cause
of critical failure in the 20 most severe discrep-
ancies in order to identify potential areas for im-
provement for each metric. We use SMURF as
a reference evaluator for the other evaluators and
SPICE as a reference for SMURF. The estimated
probability of each of these failure causes is shown
in the first three columns of Table 5.

The first failure cause, c1, refers to a scenario
where the metric fails despite there being enough
word overlap between the candidate and reference
captions for a correct judgment to be made. This
implies that the choice of words/sequences made
by the metric for the comparison needs improve-
ment. The second failure cause, c2, refers to the
use of correct and distinct words or phrases by the
human captioner that are not seen in the references.
Lastly, we include the case where the reference
evaluator may have incorrectly identified the cor-
rect caption ranking (according to the human anno-
tator) as matching system-level human judgment.
We refer to this as a reference failure, RF .

Metric P (c1|F ) P (c2|F ) P (RF |F ) P (F )

CIDEr 0.35 0.65 0.00 0.237
METEOR 0.65 0.35 0.00 0.205

SPICE 0.65 0.30 0.05 0.108
SMURF 0.40 0.30 0.30 0.038

Table 5: Likelihood of critical failure and its causes.

The focus of previous studies has been robust-
ness to distractors (Sharif et al., 2019; Cui et al.,
2018; Hodosh and Hockenmaier, 2016). We ob-
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serve no captions where this is a primary cause of
failure. On the contrary, we find that each metric is
highly susceptible to specific c1 scenarios:
n-gram based: Both CIDEr and METEOR are sen-
sitive to stopwords, leading to rewards for words or
sequences that supply no additional information.
SPICE: Semantic proposal formation or sentence
parsing issues can lead to the metric unpredictably
failing to recognize highly informative proposals.
SMURF: The metric may fail to adequately re-
ward additional information if the words used are
too common, like ‘few’ or ‘some’.

5 Conclusion and Future Work

In this paper, we use information theory based typ-
icality analysis to capture a new perspective on
the problem of caption evaluation. Our analysis
leads us to two caption evaluation metrics that cap-
ture separate dimensions of caption quality and
a fused metric. We have performed experiments
demonstrating their correlation with human judg-
ment, showed how these methods could be used to
perform multi-aspect system-level analysis of al-
gorithm performance, and performed caption-level
studies explaining why combining these two al-
gorithms leads to more robust and generalizable
evaluations. The underlying mechanism, MIMA,
opens many new avenues for the analysis of self-
attention transformers and potentially other models.
Future work could also focus on optimal weighting
between semantics and style.

6 Ethical Impact

Harmful bias, especially towards gender (Hen-
dricks et al., 2018), has been shown to be present
in image caption datasets and is often further mag-
nified by automatic captioners. Prior caption eval-
uation methods have the potential to further ex-
acerbate the problem by rewarding such captions
due to their reliance on dataset specific images or
captions. Referenceless evaluations like our style
metric, SPURTS, offer a preemptive approach for
mitigating harmful dataset bias, like in Simpson’s
Paradox (Mehrabi et al., 2019), by utilizing intrin-
sic properties of descriptive language learned by
self-attention models over far larger and more di-
verse corpora. This gives the evaluator a more
wholistic view of caption quality rather than view-
ing the world through the lens of a single visual
dataset.
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