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Abstract

Recent pretraining models in Chinese neglect
two important aspects specific to the Chinese
language: glyph and pinyin, which carry sig-
nificant syntax and semantic information for
language understanding. In this work, we pro-
pose ChineseBERT, which incorporates both
the glyph and pinyin information of Chinese
characters into language model pretraining.
The glyph embedding is obtained based on
different fonts of a Chinese character, being
able to capture character semantics from the
visual features, and the pinyin embedding char-
acterizes the pronunciation of Chinese charac-
ters, which handles the highly prevalent het-
eronym phenomenon in Chinese (the same
character has different pronunciations with dif-
ferent meanings). Pretrained on large-scale un-
labeled Chinese corpus, the proposed Chine-
seBERT model yields significant performance
boost over baseline models with fewer train-
ing steps. The proposed model achieves
new SOTA performances on a wide range of
Chinese NLP tasks，including machine read-
ing comprehension, natural language infer-
ence, text classification, sentence pair match-
ing, and competitive performances in named
entity recognition and word segmentation.1

1 Introduction

Large-scale pretrained models have become a fun-
damental backbone for various natural language
processing tasks such as natural language under-
standing (Liu et al., 2019b), text classification
(Reimers and Gurevych, 2019; Chai et al., 2020)
and question answering (Clark and Gardner, 2017;
Lewis et al., 2020). Apart from English NLP tasks,
pretrained models have also demonstrated their ef-
fectiveness for various Chinese NLP tasks (Sun
et al., 2019, 2020; Cui et al., 2019a, 2020).

1The code and pretrained models are publicly available at
https://github.com/ShannonAI/ChineseBert.

Since pretraining models are originally designed
for English, two important aspects specific to the
Chinese language are missing in current large-scale
pretraining: glyph-based information and pinyin-
based information. For the former, a key aspect
that makes Chinese distinguishable from languages
such as English, German, is that Chinese is a lo-
gographic language. The logographic of charac-
ters encodes semantic information. For example,
“液(liquid)”, “河(river)” and “湖(lake)” all have the
radical “氵(water)”, which indicates that they are
all related to water in semantics. Intuitively, the
rich semantics behind Chinese character glyphs
should enhance the expressiveness of Chinese NLP
models. This idea has motivated a variety of of
work on learning and incorporating Chinese glyph
information into neural models (Sun et al., 2014;
Shi et al., 2015; Liu et al., 2017; Dai and Cai, 2017;
Su and Lee, 2017; Meng et al., 2019), but not yet
large-scale pretraining.

For the latter, pinyin, the Romanized sequence
of a Chinese character representing its pronuncia-
tion(s), is crucial in modeling both semantic and
syntax information that can not be captured by con-
textualized or glyph embeddings. This aspect is
especially important considering the highly preva-
lent heteronym phenomenon in Chinese2, where
the same character have multiple pronunciations,
each of which is associated with a specific meaning.
Each pronunciation is associated with a specific
pinyin expression. At the semantic level, for exam-
ple, the Chinese character “乐” has two distinctly
different pronunciations: “乐” can be pronounced
as “yuè [yE51]”, which means “music”, and “lè
[lG51]”, which means “happy”. On the syntax level,
pronunciations help identify the part-of-speech of
a character. For example, character “还” has two

2Among 7000 common characters in Chinese, there are
about 700 characters that have multiple pronunciations, ac-
cording to the Contemporary Chinese Dictionary.

https://github.com/ShannonAI/ChineseBert
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pronunciations: “huán[xwan35]” and “hái[xaI35]”,
with the former meaning the verb “return” and the
latter meaning the adverb “also”. Different pro-
nunciations of the same character cannot be dis-
tinguished by the glyph embedding since the lo-
gographic is the same, or the char-ID embedding,
since they both point to the same character ID, but
can be characterized by pinyin.

In this work, we propose ChineseBERT, a model
that incorporates the glyph and pinyin information
of Chinese characters into the process of large-
scale pretraining. The glyph embedding is based on
different fonts of a Chinese character, being able to
capture character semantics from the visual surface
character forms. The pinyin embedding models
different semantic meanings that share the same
character form and thus bypasses the limitation of
interwound morphemes behind a single character.
For a Chinese character, the glyph embedding, the
pinyin embedding and the character embedding
are combined to form a fusion embedding, which
models the distinctive semantic property of that
character.

With less training data and fewer training epochs,
ChineseBERT achieves significant performance
boost over baselines across a wide range of Chinese
NLP tasks. It achieves new SOTA performances
on a wide range of Chinese NLP tasks，including
machine reading comprehension, natural language
inference, text classification, sentence pair match-
ing, and results comparable to SOTA performances
in named entity recognition and word segmenta-
tion.

2 Related Work

2.1 Large-Scale Pretraining in NLP

Recent years has witnessed substantial work on
large-scale pretraining in NLP. BERT (Devlin et al.,
2018), which is built on top of the Transformer
architecture (Vaswani et al., 2017), is pretrained
on large-scale unlabeled text corpus in the man-
ner of Masked Language Model (MLM) and Next
Sentence Prediction (NSP). Following this trend,
considerable progress has been made by modifying
the masking strategy (Yang et al., 2019; Joshi et al.,
2020), pretraining tasks (Liu et al., 2019a; Clark
et al., 2020) or model backbones (Lan et al., 2020;
Lample et al., 2019; Choromanski et al., 2020).
Specifically, RoBERTa (Liu et al., 2019b) proposed
to remove the NSP pretraining task since it has been
proved to offer no benefits for improving down-

stream performances. The GPT series (Radford
et al., 2019; Brown et al., 2020) and other BERT
variants (Lewis et al., 2019; Song et al., 2019; Lam-
ple and Conneau, 2019; Dong et al., 2019; Bao
et al., 2020; Zhu et al., 2020) adapted the paradigm
of large-scale unsupervised pretraining to text gen-
eration tasks such as machine translation, text sum-
marization and dialog generation, so that generative
models can enjoy the benefit of large-scale pretrain-
ing.

Unlike the English language, Chinese has its
particular characteristics in terms of syntax, lexi-
con and pronunciation. Hence, pretraining Chinese
models should fit the Chinese features correspond-
ingly. Li et al. (2019b) proposed to use Chinese
character as the basic unit instead of word or sub-
word that is used in English (Wu et al., 2016; Sen-
nrich et al., 2016). ERNIE (Sun et al., 2019, 2020)
applied three types of masking strategies – char-
level masking, phrase-level masking and entity-
level masking – to enhance the ability of captur-
ing multi-granularity semantics. Cui et al. (2019a,
2020) pretrained models using the Whole Word
Masking strategy, where all characters within a
Chinese word are masked altogether. In this way,
the model is learning to address a more challenging
task as opposed to predicting word components.
More recently, Zhang et al. (2020) developed the
largest Chinese pretrained language model to date –
CPM. It is pretrained on 100GB Chinese data and
has 2.6B parameters comparable to “GPT3 2.7B”
(Brown et al., 2020). Xu et al. (2020) released
the first large-scale Chinese Language Understand-
ing Evaluation benchmark CLUE, facilitating re-
searches in large-scale Chinese pretraining.

2.2 Learning Glyph Information

Learning glyph information from surface Chinese
character forms has gained attractions since the
prevalence of deep neural networks. Inspired by
word embeddings (Mikolov et al., 2013b,a), Sun
et al. (2014); Shi et al. (2015); Li et al. (2015); Yin
et al. (2016) used indexed radical embeddings to
capture character semantics, improving model per-
formances on a wide range of Chinese NLP tasks.
Another way of incorporating glyph information is
to view characters in the form of image, by which
glyph information can be naturally learned through
image modeling. However, early work on learning
visual features is not smooth. Liu et al. (2017);
Shao et al. (2017); Zhang and LeCun (2017); Dai
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Figure 1: An overview of ChineseBERT. The fu-
sion layer consumes three D-dimensional embeddings
– char embedding, glyph embedding and pinyin embed-
ding. The three embeddings are first concatenated, and
then mapped to a D-dimensional embedding through a
fully connected layer to form the fusion embedding.

and Cai (2017) used CNNs to extract glyph fea-
tures from character images but did not achieve
consistent performance boost over all tasks. Su and
Lee (2017); Tao et al. (2019) obtained positive re-
sults on the word analogy and word similarity tasks
but they did not further evaluate the learned glyph
embeddings on more tasks. Meng et al. (2019) ap-
plied glyph embeddings to a broad array of Chinese
tasks. They designed a specific CNN structure for
character feature extraction and used image classi-
fication as an auxiliary objective to regularize the
influence of a limited number of images. Song and
Sehanobish (2020); Xuan et al. (2020) extended
the idea of Meng et al. (2019) to the task of named
entity recognition (NER), significantly improving
performances against vanilla BERT models.

3 Model

Fusion Layer

BERT

我 很 [M] [M] 猫

我 很 [M] [M] 猫

i very cats

Char embedding

0 31 2 4

Position embedding

Glyph embedding

Pinyin embedding

我 很 0 0 猫

wo3 hen3 0 0 mao1

Fusion embedding

我 很 [M] [M] 猫

Fusion Layer

喜 欢
like

Output

猫

猫

mao1

Char embedding

Glyph embedding

Pinyin embedding

猫

Fusion embedding

猫
māo

m a o 1 - - - -

m a o 1 - - - -

CNN

猫1

猫3

猫2

Glyph Layer

猫

Glyph embedding

mao1

flatten

flatten

flatten

24

24

𝐖G

𝐖F

Figure 2: An overview of inducing the glyph embed-
ding.

⊗
denotes vector concatenation. For each Chi-

nese character, we use three types of fonts – FangSong,
XingKai and LiShu, each of which is a 24 × 24 image
with pixel value ranging 0 ∼ 255. Images are concate-
nated into a tensor of size 24 × 24 × 3. The tensor is
flattened and passed to an FC to obtain the glyph em-
bedding.
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Figure 3: An overview of inducing the pinyin embed-
ding. For any Chinese character, e.g. 猫(cat) in this
case, a CNN with width 2 is applied to the sequence of
Romanized pinyin letters, followed by max-pooling to
derive the final pinyin embedding.
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Figure 4: An overview of the fusion layer.
⊗

denotes
vector concatenation, and × is vector-matrix multipli-
cation. We concatenate the char embedding, the glyph
embedding and the pinyin embedding, and use an FC
layer with a learnable matrix WF to induce the fusion
embedding.

3.1 Overview

Figure 1 shows an overview of the proposed Chi-
neseBERT model. For each Chinese character, its
char embedding, glyph embedding and pinyin em-
bedding are first concatenated, and then mapped to
a D-dimensional embedding through a fully con-
nected layer to form the fusion embedding. The fu-
sion embedding is then added with the position em-
bedding, which is fed as input to the BERT model
Since we do not use the NSP pretraining task, we
omit the segment embedding. We use both Whole
Word Masking (WWM) (Cui et al., 2019a) and
Char Masking (CM) for pretraining (See Section
4.2 for details).

3.2 Input

The input to the model is the addition of the learn-
able absolute positional embedding and the fusion
embedding, where the fusion embedding is based
on the char embedding, the glyph embedding and
the pinyin embedding of the corresponding charac-
ter. The char embedding performs in a way anal-
ogous to the token embedding used in BERT but
at the character granularity. Below we respectively
describe how to induce the glyph embedding, the
pinyin embedding and the fusion embedding.
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Glyph Embedding We follow Meng et al.
(2019) to use three types of Chinese fonts – Fang-
Song, XingKai and LiShu, each of which is instan-
tiated as a 24× 24 image with floating point pixels
ranging from 0 to 255. The 24×24×3 vector is first
flattened to a 2,352 vector. The flattened vector is
fed to an FC layer to obtain the output glyph vector.

Pinyin Embedding The pinyin embedding for
each character is used to decouple different seman-
tic meanings belonging to the same character form,
as shown in Figure 3. We use the opensourced
pypinyin package3 to generate pinyin sequences
for its constituent characters. pypinyin is a sys-
tem that combines machine learning models with
dictionary-based rules to infer the pinyin for char-
acters given contexts. Pinyin for a Chinese char-
acter is a sequence of Romanian characters, with
one of four diacritics denoting tones. We use spe-
cial tokens to denote tones, which are appended to
the end of the Romanian character sequence. We
apply a CNN model with width 2 on the pinyin
sequence, followed by max-pooling to derive the
resulting pinyin embedding. This makes output
dimensionality immune to the length of the input
pinyin sequence. The length of the input pinyin se-
quence is fixed at 8, with the remaining slots filled
with a special letter “-” when the actual length of
the pinyin sequence does not reach 8.

Fusion Embedding Once we have the char em-
bedding, the glyph embedding and the pinyin em-
bedding for a character, we concatenate them to
form a 3D-dimensional vector. The fusion layers
maps the 3D-dimensional vector to D-dimensional
through a fully connected layer. The fusion embed-
ding is added with position embedding, and output
to the BERT layer. An illustration is shown in
Figure 4.

3.3 Output
The output is the corresponding contextualized rep-
resentation for each input Chinese character (De-
vlin et al., 2018).

4 Pretraining Setup

4.1 Data
We collected our pretraining data from Common-
Crawl4. After pre-processing (such as removing
the data with too much English text and filtering

3https://pypi.org/project/pypinyin/
4https://commoncrawl.org/

the html tagger), about 10% high-quality data is
maintained for pretraining, containing 4B Chinese
characters in total. We use the LTP toolkit5 (Che
et al., 2010) to identify the boundary of Chinese
words for whole word masking.

4.2 Masking Strategies

We use two masking strategies – Whole Word
Masking (WWM) and Char Masking (CM) for Chi-
neseBERT. Li et al. (2019b) suggested that using
Chinese characters as the basic input unit can al-
leviate the out-of-vocabulary issue in the Chinese
language. We thus adopt the method of masking
random characters in the given context, denoted by
Char Masking. On the other hand, a large number
of words in Chinese consist of multiple characters,
for which the CM strategy may be too easy for
the model to predict. For example, for the input
context “我喜欢逛紫禁[M] (i like going to The
Forbidden [M])”, the model can easily predict that
the masked character is “城(City)”. Hence, we fol-
low Cui et al. (2019a) to use WWM, a strategy to
mask out all characters within a selected word, mit-
igating the easy-predicting shortcoming of the CM
strategy. Note that for both WWM and CM, the
basic input unit is Chinese characters. The main
difference between WWM and CM lies in how
they mask characters and how the model predicts
masked characters.

4.3 Pretraining Details

Different from Cui et al. (2019a) who pretrained
their model based on the official pretrained Chinese
BERT model, we train the ChineseBERT model
from scratch. To enforce the model to learn both
long-term and short-term dependencies, we pro-
pose to alternate pretraining between packed input
and single input, where the packed input is the con-
catenation of multiple sentences with a maximum
length 512, and the single input is a single sen-
tence. We feed the packed input with probability
of 0.9 and the single input with probability of 0.1.
We apply Whole Word Masking 90% of the time
and Char Masking 10% of the time. The mask-
ing probability for each word/char is 15%. If the
i-th word/char is chosen, we mask it 80% of the
time, replace it with a random word/char 10% of
the time and maintain it 10% of the time. We also
use the dynamic masking strategy to avoid dupli-
cate training instances (Liu et al., 2019b). We use

5http://ltp.ai/

https://pypi.org/project/pypinyin/
https://commoncrawl.org/
http://ltp.ai/
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ERNIE BERT-wwm MacBERT ChineseBERT

Data Source Heterogeneous Wikipedia Heterogeneous CommonCrawl
Vocab Size 18K 21K 21K 21K
Input Unit Char Char Char Char
Masking T/P/E WWM WWM/N WWM/CM
Task MLM/NSP MLM MAC/SOP MLM
Training Steps - 2M 1M 1M
Init Checkpoint BERT BERT random
# Token – 0.4B 5.4B 5B

Table 1: Comparison of data statistics between ERNIE
(Sun et al., 2019), BERT-wwm (Cui et al., 2019a),
MacBERT (Cui et al., 2020) and our proposed Chine-
seBERT. T: Token, P: Phrase, E: Entity, WWM: Whole
Word Masking, N: N-gram, CM: Char Masking, MLM:
Masked Language Model, NSP: Next Sentence Predic-
tion, MAC: MLM-As-Correlation. SOP: Sentence Or-
der Prediction.

two model setups: base and large, respectively
consisting of 12/24 Transformer layers, with input
dimensionality of 768/1,024 and 12/16 heads per
layer. This makes our models comparable to other
BERT-style models in terms of model size. Upon
the submission of the paper, we have trained the
base model 500K steps with a maximum learn-
ing rate 1e-4, warmup of 20K steps and a batch
size of 3.2k, and the large model 280K steps
with a maximum learning rate 3e-4, warmup of
90K steps and a batch size of 8k. After pretrain-
ing, the model can be directly used to be finetuned
on downstream tasks in the same way as BERT
(Devlin et al., 2018).

5 Experiments

We conduct extensive experiments on a variety of
Chinese NLP tasks. Models are separately fine-
tuned on task-specific datasets for evaluation. Con-
cretely, we use the following tasks:

• Machine Reading Comprehension (MRC)

• Natural Language Inference (NLI)

• Text Classification (TC)

• Sentence Pair Matching (SPM)

• Named Entity Recognition (NER)

• Chinese Word Segmentation (CWS).

We compare ChineseBERT to current state-of-
the-art ERNIE (Sun et al., 2019, 2020), BERT-
wwm (Cui et al., 2019a) and MacBERT (Cui et al.,
2020) models. ERNIE adopts various masking
strategies including token-level, phrase-level and

entity-level masking to pretrain BERT on large-
scale heterogeneous data. BERT-wwm/RoBERTa-
wwm continues pretraining on top of official pre-
trained Chinese BERT/RoBERTa models with the
Whole Word Masking pretraining strategy. Unless
otherwise specified, we use BERT/RoBERTa to
represent BERT-wwm/RoBERTa-wwm and omit
“wwm”. MacBERT improves upon RoBERTa by
using the MLM-As-Correlation (MAC) pretraining
strategy as well as the sentence-order prediction
(SOP) task. It is worth noting that BERT and BERT-
wwm do not have the large version available online,
and we thus omit the corresponding performances.

A comparison of these models is shown in Ta-
ble 1. It is worth noting that training steps of the
proposed model significantly smaller than base-
line models. Different from BERT-wwm and
MacBERT which are initialized with pretrained
BERT, the proposed model is initialized from
scratch. Due to the additional consideration of
glyph and pinyin, the proposed cannot be directly
initialized using a vanilla BERT model, as the
model structures are different. Even initialized
from scratch, the proposed model is trained fewer
steps than the steps in retraining BERT-wwm and
MacBERT after BERT initialization.

5.1 Machine Reading Comprehension

Machine reading comprehension tests the model’s
ability of answering the questions based on the
given contexts. We use two datasets for this task:
CMRC 2018 (Cui et al., 2019b) and CJRC (Duan
et al., 2019) . CMRC is a span-extraction style
dataset while CJRC additionally has yes/no ques-
tions and no-answer questions. CMRC 2018 and
CJRC respectively contain 10K/3.2K/4.9K and
39K/6K/6K data instances for training/dev/test.
Test results for CMRC 2018 are evaluated from the
CLUE leaderboard.6 Note that the CJRC dataset is
different from the one used in Cui et al. (2019a) as
Cui et al. (2019a) did not release their train/dev/test
split. We thus run the released models on the CJRC
dataset used in this work for comparison.

Results are shown in Table 2 and Table 3. As
we can see, ChineseBERT yields significant perfor-
mance boost on both datasets, and the improvement
of EM is larger than that of F1 on the CJRC dataset,
which indicates that ChineseBERT is better at de-
tecting exact answer spans.

6https://github.com/CLUEbenchmark/CLUE

https://github.com/CLUEbenchmark/CLUE
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CMRC
Model Dev Test

Base
ERNIE 66.89 74.70
BERT 66.77 71.60
BERT◦ 66.96 73.95
RoBERTa◦ 67.89 75.20
MacBERT – –
ChineseBERT 67.95 75.35

Large
RoBERTa◦ 70.59 77.95
MacBERT – –
ChineseBERT 70.70 78.05

Table 2: Performances of different models on CMRC.
EM is reported for comparison. ◦ represents models
pretrained on extended data.

CJRC
Dev Test

Model EM F1 EM F1

Base
BERT 59.8 73.0 60.2 73.0
BERT◦ 60.8 74.0 61.4 73.9
RoBERTa◦ 62.9 76.6 63.8 76.6
ChineseBERT 65.2 77.8 66.2 77.9

Large
RoBERTa◦ 65.6 77.5 66.4 77.6
ChineseBERT 66.5 77.9 67.0 78.3

Table 3: Performances of different models on the MRC
dataset CJRC. We report results for baseline models
based on their released models. ◦ represents models
pretrained on extended data.

5.2 Natural Language Inference (NLI)

The goal of NLI is to determine the entailment re-
lationship between a hypothesis and a premise. We
use the Cross-lingual Natural Language Inference
(XNLI) dataset (Conneau et al., 2018) for evalu-
ation. The corpus is a crowd-sourced collection
of 5K test and 2.5K dev pairs for the MultiNLI
corpus. Each sentence pair is annotated with the
“entailment”, “neutral” or “contradiction” label. We
use the official machine translated Chinese data for
training.7

Results are present in Table 4, which shows that
ChineseBERT is able to achieve the best perfor-
mances for both base and large setups.

5.3 Text Classification (TC)

In text classification the model is required to cat-
egorize a piece of text into one of the specified
classes. We follow Cui et al. (2019a) to use THUC-

7https://github.com/facebookresearch/
XNLI

XNLI
Model Dev Test

Base
ERNIE 79.7 78.6
BERT 79.0 78.2
BERT◦ 79.4 78.7
RoBERTa◦ 80.0 78.8
MacBERT 80.3 79.3
ChineseBERT 80.5 79.6

Large
RoBERTa◦ 82.1 81.2
MacBERT 82.4 81.3
ChineseBERT 82.7 81.6

Table 4: Performances of different models on XNLI.
Accuracy is reported for comparison. ◦ represents mod-
els pretrained on extended data.

News (Li and Sun, 2007) and ChnSentiCorp8 for
this task. THUCNews is a subset of THUCTC
9, with 50K/5K/10K data points respectively for
training/dev/test. Data is evenly distributed in 10
domains including sports, finance, etc.10 ChnSen-
tiCorp is a binary sentiment classification dataset
containing 9.6K/1.2K/1.2K data points respectively
for training/dev/test. The two datasets are rela-
tively simple with vanilla BERT achieving an ac-
curacy of above 95%. Hence, apart from THUC-
News and ChnSentiCorp, we also use TNEWS, a
more difficult dataset that is included in the CLUE
benchmark (Xu et al., 2020).11 TNEWS is a 15-
class short news text classification dataset with
53K/10K/10K data points for training/dev/test.

Results are shown in Table 5. On ChunSen-
tiCorp and THUCNews, the improvement from
ChineseBERT is marginal as baselines have al-
ready achieved quite high results on these two
datasets. On the TNEWS dataset, ChineseBERT
outperforms all other models. We can see that the
ERNIE model only performs slightly worse than
ChineseBERT. This is because ERNIE is trained on
additional web data, which is beneficial to model
web news text that covers a wide range of domains.

5.4 Sentence Pair Matching (SPM)

For SPM, the model is asked to determine whether
a given sentence pair expresses the same seman-
tics. We use the LCQMC (Liu et al., 2018) and BQ
Corpus (Chen et al., 2018) datasets for evaluation.

8https://github.com/pengming617/bert_
classification/tree/master/data

9http://thuctc.thunlp.org/
10https://github.com/gaussic/

text-classification-cnn-rnn
11https://github.com/CLUEbenchmark/CLUE

https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
https://github.com/pengming617/bert_classification/tree/master/data
https://github.com/pengming617/bert_classification/tree/master/data
http://thuctc.thunlp.org/
https://github.com/gaussic/text-classification-cnn-rnn
https://github.com/gaussic/text-classification-cnn-rnn
https://github.com/CLUEbenchmark/CLUE
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ChnSentiCorp THUCNews TNEWS
Model Dev Test Dev Test Dev Test

Base
ERNIE 95.4 95.5 97.6 97.5 58.24 58.33
BERT 95.1 95.4 98.0 97.8 56.09 56.58
BERT◦ 95.4 95.3 97.7 97.7 56.77 56.86
RoBERTa◦ 95.0 95.6 98.3 97.8 57.51 56.94
MacBERT 95.2 95.6 98.2 97.7 – –
ChineseBERT 95.6 95.7 98.1 97.9 58.64 58.95

Large
RoBERTa◦ 95.8 95.8 98.3 97.8 58.32 58.61
MacBERT 95.7 95.9 98.1 97.9 – –
ChineseBERT 95.8 95.9 98.3 97.9 59.06 59.47

Table 5: Performances of different models on TC
datasets ChnSentiCorp, THUCNews and TNEWS. The
results of TNEWS are taken from the CLUE paper (Xu
et al., 2020). Accuracy is reported for comparison. ◦
represents models pretrained on extended data.

LCQMC BQ Corpus
Model Dev Test Dev Test

Base
ERNIE 89.8 87.2 86.3 85.0
BERT 89.4 87.0 86.1 85.2
BERT◦ 89.6 87.1 86.4 85.3
RoBERTa◦ 89.0 86.4 86.0 85.0
MacBERT 89.5 87.0 86.0 85.2
ChineseBERT 89.8 87.4 86.4 85.2

Large
RoBERTa◦ 90.4 87.0 86.3 85.8
MacBERT 90.6 87.6 86.2 85.6
ChineseBERT 90.5 87.8 86.5 86.0

Table 6: Performances of different models on SPM
datasets LCQMC and BQ Corpus. We report accuracy
for comparison. ◦ represents models pretrained on ex-
tended data.

LCQMC is a large-scale Chinese question match-
ing corpus for judging whether two given ques-
tions have the same intent, with 23.9K/8.8K/12.5K
sentence pairs for training/dev/test. BQ Corpus
is another large-scale Chinese dataset containing
100K/10K/10K sentence pairs for training/dev/test.
Results are shown in Table 6. We can see that Chi-
neseBERT generally outperforms MacBERT on
LCQMC but slightly underperforms BERT-wwm.
We hypothesis this is because the domain of BQ
Corpus more fits the pretraining data of BERT-
wwm than that of ChineseBERT.

5.5 Named Entity Recognition (NER)

For NER tasks (Chiu and Nichols, 2016; Lample
et al., 2016; Li et al., 2019a), the model is asked
to identify named entities within a piece of text,
which is formalized as a sequence labeling task.
We use OntoNotes 4.0 (Weischedel et al., 2011)
and Weibo (Peng and Dredze, 2015) for this task.

OntoNotes 4.0 Weibo
Model P R F P R F

Base
BERT 79.69 82.09 80.87 67.12 66.88 67.33
RoBERTa◦ 80.43 80.30 80.37 68.49 67.81 68.15
ChineseBERT 80.03 83.33 81.65 68.27 69.78 69.02

Large
RoBERTa◦ 80.72 82.07 81.39 66.74 70.02 68.35
ChineseBERT 80.77 83.65 82.18 68.75 72.97 70.80

Table 7: Performances of different models on NER
datasets OntoNotes 4.0 and Weibo. Results of preci-
sion (P), recall (R) and F1 (F) on test sets are reported
for comparison.

MSRA PKU
Model F1 Acc F1 Acc

Base
BERT◦ 98.42 99.04 96.82 97.70
RoBERTa◦ 98.46 99.10 96.88 97.72
ChineseBERT 98.60 99.14 97.02 97.81

Large
RoBERTa◦ 98.49 99.13 96.95 97.80
ChineseBERT 98.67 99.26 97.16 98.01

Table 8: Performances of different models on CWS
datasets MSRA and PKU. We report F1 and accuracy
(Acc) for comparison. ◦ represents models pretrained
on extended data.

We use OntoNotes 4.0 and Weibo NER for this task.
OntoNotes has 18 named entity types and Weibo
has 4 named entity types. OntoNotes and Weibo re-
spectively contain 15K/4K/4K and 1,350/270/270
instances for training/dev/test. Results are shown
in Table 7. As we can see, ChineseBERT signifi-
cantly outperforms BERT and RoBERTa in terms
of F1. In spite of a slight loss on precision for the
base version, the gains on recall are particularly
high, leading to a final performance boost on F1.

5.6 Chinese Word Segmentation
The task divides text into words and is formalized
as a character-based sequence labelling task. We
use the PKU and MSRA datasets for Chinese word
segmentation. PKU consists of 19K/2K sentences
for training and test, and MSRA consists of 87k/4k
sentences for training and test. Output character
embedding is fed to the softmax function for final
predictions. Results are shown in Table 8, where
we can see that ChineseBERT is able to outperform
BERT-wwm and RoBERTa-wwm on both datasets
for both metrics.

6 Ablation Studies

In this section, we conduct ablation studies to
understand the behaviors of ChineseBERT. We



2072

OntoNotes 4.0
Model Precision Recall F1

RoBERTa◦ 80.43 80.30 80.37
ChineseBERT 80.03 83.33 81.65
– Glyph 77.67 82.75 80.13 (-1.52)
– Pinyin 77.54 83.65 80.48 (-1.17)
– Glyph – Pinyin 78.22 81.37 79.76 (-1.89)

Table 9: Performances for different models without
considering glyph or pinyin information.

use the Chinese named entity recognition dataset
OntoNotes 4.0 for analysis and all models are based
on the base version.

6.1 The Effect of Glyph Embeddings and
Pinyin Embeddings

We would like to explore the effects of glyph em-
beddings and pinyin embeddings. For fair compar-
ison, we pretrained different models on the same
dataset, with the same number of training steps, and
with the same model size. Setups include “-glyph”,
where glyph embeddings are not considered and
we only consider pinyin and char-ID embeddings;
“-pinyin”, where pinyin embeddings are not con-
sidered and we only consider glyph and char-ID
embeddings; “-glyph-pinyin”, where only char-ID
embeddings are considered, and the model degen-
erates to RoBERTa. We finetune different models
on the OntoNotes dataset of the NER dataset for
comparison.

Results are shown in Table 9. As can be seen,
either removing glyph embeddings or pinyin em-
beddings results in performance degradation, and
removing both has the greatest negative impact on
the F1 value, which is a drop of about 2 points. This
validates the importance of both pinyin and glyph
embeddings for modeling Chinese semantics. The
reason why “-glyph-pinyin” performs worse than
RoBERTa is that the model we use here is trained
on a smaller size of data with smaller number of
training steps.

6.2 The Effect of Training Data Size
We hypothesize glyph and pinyin embeddings also
serve as strong regularization over text seman-
tics, which means that the proposed ChineseBERT
model is able to perform better with less training
data. We randomly sample 10%∼90% of the train-
ing data while maintaining the ratio of samples
with entities w.r.t. samples without entities. We
perform each experiment five times and report the
average F1 value on the test set. Figure 5 shows the

results. As can be seen, ChineseBERT performs
better across all setups. With less than 30% of the
training data, the improvement of ChineseBERT
is slight, but with over 30% training data, the per-
formance improvement is greater. This is because
ChineseBERT still requires sufficient training data
to fully train the glyph and pinyin embeddings, and
insufficient training data would lead to inadequate
training.
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Figure 5: Performances when varying the training size.

7 Conclusion

In this paper, we introduce ChineseBERT, a large-
scale pretraining Chinese NLP model. It leverages
the glyph and pinyin information of Chinese char-
acters to enhance the model’s ability of capturing
context semantics from surface character forms and
disambiguating polyphonic characters in Chinese.
The proposed ChineseBERT model achieves sig-
nificant performance boost across a wide range of
Chinese NLP tasks. The proposed ChineseBERT
performs better than vanilla pretrained models with
less training data, indicating that the introduced
glyph embeddings and pinyin embeddings serve
as a strong regularizer for semantic modeling in
Chinese. Future work involves training a large size
version of ChineseBERT.
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