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Abstract

Multi-intent SLU can handle multiple intents
in an utterance, which has attracted increas-
ing attention. However, the state-of-the-art
joint models heavily rely on autoregressive ap-
proaches, resulting in two issues: slow infer-
ence speed and information leakage. In this
paper, we explore a non-autoregressive model
for joint multiple intent detection and slot fill-
ing, achieving more fast and accurate. Specif-
ically, we propose a Global-Locally Graph
Interaction Network (GL-GIN) where a local
slot-aware graph interaction layer is proposed
to model slot dependency for alleviating unco-
ordinated slots problem while a global intent-
slot graph interaction layer is introduced to
model the interaction between multiple intents
and all slots in the utterance. Experimen-
tal results on two public datasets show that
our framework achieves state-of-the-art perfor-
mance while being 11.5 times faster.

1 Introduction

Spoken Language Understanding (SLU) (Young
et al., 2013) is a critical component in spoken
dialog systems, which aims to understand user’s
queries. It typically includes two sub-tasks: intent
detection and slot filling (Tur and De Mori, 2011).

Since intents and slots are closely tied, dominant
single-intent SLU systems in the literature (Goo
et al., 2018; Li et al., 2018; Liu et al., 2019b; E
et al., 2019; Qin et al., 2019; Teng et al., 2021;
Qin et al., 2021b,c) adopt joint models to consider
the correlation between the two tasks, which have
obtained remarkable success.

Multi-intent SLU means that the system can han-
dle an utterance containing multiple intents, which
is shown to be more practical in the real-world sce-
nario, attracting increasing attention. To this end,
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(a)

How far is Denver airport

(b)

How far is Denver airport

O O O B-AN I-AN

O O O B-AN I-AN

Figure 1: (a) Autoregressive model generates outputs
word by word from left-to-right direction. The gray
color denotes the unseen information when model de-
codes for the word Denver. (b) Non-autoregressive
model can produce outputs in parallel. AN denotes
airport name.

Xu and Sarikaya (2013) and Kim et al. (2017) be-
gin to explore the multi-intent SLU. However, their
models only consider the multiple intent detection
while ignoring slot filling task. Recently, Gangad-
haraiah and Narayanaswamy (2019) make the first
attempt to propose a multi-task framework to joint
model the multiple intent detection and slot filling.
Qin et al. (2020b) further propose an adaptive inter-
action framework (AGIF) to achieve fine-grained
multi-intent information integration for slot filling,
obtaining state-of-the-art performance.

Though achieving the promising performance,
the existing multi-intent SLU joint models heav-
ily rely on an autoregressive fashion, as shown in
Figure 1(a), leading to two issues:

• Slow inference speed. The autoregressive
models make the generation of slot outputs
must be done through the left-to-right pass,
which cannot achieve parallelizable, leading
to slow inference speed.
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• Information leakage. Autoregressive models
predict each word slot conditioned on the pre-
viously generated slot information (from left-
to-right), resulting in leaking the bidirectional
context information.

In this paper, we explore a non-autoregressive
framework for joint multiple intent detection and
slot filling, with the goal of accelerating inference
speed while achieving high accuracy, which is
shown in Figure 1(b). To this end, we propose
a Global-Locally Graph-Interaction Network (GL-
GIN) where the core module is a proposed lo-
cal slot-aware graph layer and global intent-slot
interaction layer, which achieves to generate in-
tents and slots sequence simultaneously and non-
autoregressively. In GL-GIN, a local slot-aware
graph interaction layer where each slot hidden
states connect with each other is proposed to ex-
plicitly model slot dependency, in order to alle-
viate uncoordinated slot problem (e.g., B-singer
followed by I-song) (Wu et al., 2020) due to the
non-autoregressive fashion. A global intent-slot
graph interaction layer is further introduced to per-
form sentence-level intent-slot interaction. Un-
like the prior works that only consider the token-
level intent-slot interaction, the global graph is con-
structed of all tokens with multiple intents, achiev-
ing to generate slots sequence in parallel and speed
up the decoding process.

Experimental results on two public datasets
MixSNIPS (Coucke et al., 2018) and Mix-
ATIS (Hemphill et al., 1990) show that our frame-
work not only obtains state-of-the-art performance
but also enables decoding in parallel. In addition,
we explore the pre-trained model (i.e., Roberta (Liu
et al., 2019c)) in our framework.

In summary, the contributions of this work can
be concluded as follows: (1) To the best of our
knowledge, we make the first attempt to explore
a non-autoregressive approach for joint multiple
intent detection and slot filling; (2) We propose
a global-locally graph-interaction network, where
the local graph is used to handle uncoordinated
slots problem while a global graph is introduced
to model sequence-level intent-slot interaction; (3)
Experiment results on two benchmarks show that
our framework not only achieves the state-of-the-
art performance but also considerably speeds up
the slot decoding (up to ×11.5); (4) Finally, we
explore the pre-trained model in our framework.
With the pre-trained model, our model reaches a

new state-of-the-art level.
For reproducibility, our code for this pa-

per is publicly available at https://github.com/
yizhen20133868/GL-GIN.

2 Problem Definition

Multiple Intent Detection Given input se-
quence x = (x1, . . . , xn), multiple intent detec-
tion can be defined as a multi-label classifica-
tion task that outputs a sequence intent label oI

= (oI1, . . . , o
I
m), where m is the number of intents

in given utterance and n is the length of utterance.

Slot Filling Slot filling can be seen as a sequence
labeling task that maps the input utterance x into a
slot output sequence oS = (oS1 , . . . , o

S
n).

3 Approach

As shown in Figure 2(a), we describe the pro-
posed framework, which consists of a shared self-
attentive encoder (§3.1), a token-level intent de-
tection decoder (§3.2) and a global-local graph-
interaction graph decoder for slot filling (§3.3).
Both intent detection and slot filling are optimized
simultaneously via a joint learning scheme.

3.1 Self-attentive Encoder

Following Qin et al. (2019), we utilize a self-
attentive encoder with BiLSTM and self-attention
mechanism to obtain the shared utterance repre-
sentation, which can incorporate temporal features
within word orders and contextual information.

BiLSTM The bidirectional LSTM (BiL-
STM) (Hochreiter and Schmidhuber, 1997) have
been successfully applied to sequence labeling
tasks (Li et al., 2020, 2021). We adopt BiLSTM
to read the input sequence {x1, x2, . . . , xn}
forwardly and backwardly to produce context-
sensitive hidden states H = {h1,h2, . . . ,hn}, by
repeatedly applying the hi = BiLSTM (φemb(xi),
hi−1, hi+1), where φemb is embedding function.

Self-Attention Following Vaswani et al. (2017),
we map the matrix of input vectors X ∈ Rn×d (d
represents the mapped dimension) to queries Q,
keys K and values V matrices by using different
linear projections. Then, the self-attention output
C ∈ Rn×d is a weighted sum of values:

C = softmax

(
QK>√
dk

)
V . (1)

https://github.com/yizhen20133868/GL-GIN
https://github.com/yizhen20133868/GL-GIN
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Figure 2: The overflow of model architecture (a) and global-locally graph interaction layer (b).

We concatenate the output of BiLSTM and self-
attention as the final encoding representation:

E = H ||C, (2)

where E = {e1, . . . , en} ∈ Rn×2d and || is con-
catenation operation.

3.2 Token-Level Intent Detection Decoder

Inspired by Qin et al. (2019), we perform a token-
level multi-label multi-intent detection, where we
predict multiple intents on each token and the sen-
tence results are obtained by voting for all tokens.
Specifically, we first feed the contextual encoding
E into an intent-aware BiLSTM to enhance its
task-specific representations:

hI
t = BiLSTM

(
et,h

I
t−1,h

I
t+1

)
. (3)

Then, hI
t is used for intent detection, using:

It=σ(W I(LeakyReLU(W h hI
t+bh))+bI), (4)

where It denotes the intent results at the t-th word;
σ denotes the sigmoid activation function; W h and
W I are the trainable matrix parameters.

Finally, the sentence intent results oIk can be ob-
tained by:

oI = {oIk|(
n∑

i=1

1[I(i,k) > 0.5]) > n/2}, (5)

where I(i,k) represents the classification result of
token i for oIk.

We predict the label as the utterance intent when
it gets more than half positive predictions in all n
tokens. For example, if I1 = {0.9, 0.8, 0.7, 0.1},
I2 = {0.8, 0.2, 0.7, 0.4}, I3 = {0.9, 0.3, 0.2, 0.3},
from three tokens, we get {3, 2, 1, 0} positive votes
(> 0.5) for four intents respectively. Thus the index
where more than half of the votes ( > 3/2 ) were
obtained was oI1 and oI3, we predict intents oI =
{oI1, oI3}.

3.3 Slot Filling Decoder
One main advantage of our framework is the pro-
posed global-locally graph interaction network for
slot filling, which is a non-autoregressive paradigm,
achieving the slot filling decoding in parallel. In the
following, we first describe the slot-aware LSTM
(§3.3.1) to obtain the slot-aware representations,
and then show how to apply the global-locally
graph interaction layer (§3.3.2) for decoding.

3.3.1 Slot-aware LSTM
We utilize a BiLSTM to produce the slot-aware
hidden representation S = (s1, . . . , sn). At each
decoding step t, the decoder state st calculating by:

st = BiLSTM
(
It || et, st−1, st+1

)
, (6)

where et denotes the aligned encoder hidden
state and It denotes the predicted intent informa-
tion.
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3.3.2 Global-locally Graph Interaction Layer
The proposed global-locally graph interaction layer
consists of two main components: one is a local
slot-aware graph interaction network to model de-
pendency across slots and another is the proposed
global intent-slot graph interaction network to con-
sider the interaction between intents and slots.

In this section, we first describe the vanilla graph
attention network. Then, we illustrate the local
slot-aware and global intent-slot graph interaction
network, respectively.

Vanilla Graph Attention Network A graph at-
tention network (GAT) (Veličković et al., 2018)
is a variant of graph neural network, which fuses
the graph-structured information and node features
within the model. Its masked self-attention layers
allow a node to attend to neighborhood features and
learn different attention weights, which can auto-
matically determine the importance and relevance
between the current node with its neighborhood.

In particular, for a given graph with N nodes,
one-layer GAT take the initial node features H̃ =
{h̃1, . . . , h̃N}, h̃n ∈ RF as input, aiming at
producing more abstract representation, H̃

′
=

{h̃′1, . . . , h̃
′
N}, h̃

′
n ∈ RF ′ , as its output. The at-

tention mechanism of a typical GAT can be sum-
marized as below:

h̃
′
i = ||Kk=1 σ

(∑
j∈Ni

αk
ijW

k
hh̃j

)
, (7)

αij =
exp(LeakyReLU(a>[W hh̃i‖W hh̃j ]))∑

j′∈Ni
exp (LeakyReLU

(
a>[W hh̃i‖W hh̃

′
j ]
)
)
,(8)

where W h ∈ RF ′×F and a ∈ R2F ′ are the train-
able weight matrix; Ni denotes the neighbors of
node i (including i); αij is the normalized atten-
tion coefficients and σ represents the nonlinearity
activation function; K is the number of heads.

Local Slot-aware Graph Interaction Layer
Given slot decode hidden representations S = (s1,
. . . , sn), we construct a local slot-aware graph
where each slot hidden node connects to other
slots. This allows the model to achieve to model
the dependency across slots, alleviating the unco-
ordinated slots problem. Specifically, we construct
the graph G = (V, E) in the following way,

Vertices We define the V as the vertices set.
Each word slot is represented as a vertex. Each
vertex is initialized with the corresponding slot
hidden representation. Thus, the first layer states
vector for all nodes is S1 = S = (s1, . . . , sn).

Edges Since we aim to model dependency
across slots, we construct a slot-aware graph inter-
action layer so that the dependency relationship can
be propagated from neighbor nodes to the current
node. Each slot can connect other slots with a win-
dow size. For node Si, only {Si−m, . . . ,Si+m}
will be connected where m is a hyper-parameter
denotes the size of sliding window that controls the
length of utilizing utterance context.

Information Aggregation The aggregation
process at l-th layer can be defined as:

sl+1
i = σ

( ∑
j∈Ni

αijW ls
l
j

)
, (9)

where Ni is a set of vertices that denotes the con-
nected slots.

After stacking L layer, we obtain the con-
textual slot-aware local hidden features SL+1

={sL+1
1 , . . . , sL+1

n }

Global Slot-Intent Graph Interaction Layer
To achieve sentence-level intent-slot interaction,
we construct a global slot-intent interaction graph
where all predicted multiple intents and sequence
slots are connected, achieving to output slot se-
quences in parallel. Specifically, we construct the
graph G = (V, E) in the following way,

Vertices As we model the interaction between
intent and slot token, we have n +m number of
nodes in the graph where n is the sequence length
and m is the number of intent labels predicted by
the intent decoder. The input of slot token fea-
ture is G[S,1] = SL+1 ={sL+1

1 , . . . , sL+1
n } which

is produced by slot-aware local interaction graph
network while the input intent feature is an embed-
ding G[I,1] = {φemb(oI

1), . . . , φ
emb(oI

m)} where
φemb is a trainable embedding matrix. The first
layer states vector for slot and intent nodes is G1

= {G[I,1] , G[S,1] } = {φemb(oI
1), . . . , φ

emb(oI
m),

sL+1
1 , . . . , sL+1

n }

Edges There are three types of connections in
this graph network.

• intent-slot connection: Since slots and intents
are highly tied, we construct the intent-slot
connection to model the interaction between
the two tasks. Specifically, each slot connects
all predicted multiple intents to automatically
capture relevant intent information.
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• slot-slot connection: We construct the slot-
slot connection where each slot node connects
other slots with the window size to further
model the slot dependency and incorporate
the bidirectional contextual information.

• intent-intent connection: Following Qin et al.
(2020b), we connect all the intent nodes to
each other to model the relationship between
each intent, since all of them express the same
utterance’s intent.

Information Aggregation The aggregation
process of the global GAT layer can be formulated
as:

g
[S,l+1]
i = σ(

∑
j∈GS

αijW gg
[S,l]
j +

∑
j∈GI

αijW gg
[I,l]
j ),

(10)
where GS and GI are vertices sets which denotes
the connected slots and intents, respectively.

3.3.3 Slot Prediction
After L layers’ propagation, we obtain the final slot
representation G[S,L+1] for slot prediction.

yS
t = softmax

(
W sg

[S,L+1]
t

)
, (11)

oS
t = argmax(yS

t ), (12)

where W s is a trainable parameter and oS
t is the

predicted slot if the t-th token in an utterance.

3.4 Joint Training
Following Goo et al. (2018), we adopt a joint train-
ing model to consider the two tasks and update
parameters by joint optimizing. The intent detec-
tion objective is:

CE(ŷ, y) = ŷ log (y) + (1− ŷ) log (1− y) , (13)

L1 , −
n∑

i=1

NI∑
j=1

CE(ŷ
(j,I)
i , y

(j,I)
i ) . (14)

Similarly, the slot filling task objective is:

L2 , −
n∑

i=1

NS∑
j=1

ŷ
(j,S)
i log

(
y
(j,S)
i

)
, (15)

where NI is the number of single intent labels and
NS is the number of slot labels.

The final joint objective is formulated as:

L = αL1 + βL2, (16)

where α and β are hyper-parameters.

4 Experiments

4.1 Datasets

We conduct experiments on two publicly avail-
able multi-intent datasets.1 One is the Mix-
ATIS (Hemphill et al., 1990; Qin et al., 2020b),
which includes 13,162 utterances for training, 756
utterances for validation and 828 utterances for test-
ing. Another is MixSNIPS (Coucke et al., 2018;
Qin et al., 2020b), with 39,776, 2,198, 2,199 utter-
ances for training, validation and testing.

4.2 Experimental Settings

The dimensionality of the embedding is 128 and
64 on ATIS and SNIPS, respectively. The dimen-
sionality of the LSTM hidden units is 256. The
batch size is 16. The number of the multi head is 4
and 8 on MixATIS and MixSNIPS dataset, respec-
tively. All layer number of graph attention network
is set to 2. We use Adam (Kingma and Ba, 2015)
to optimize the parameters in our model. For all
the experiments, we select the model which works
the best on the dev set and then evaluate it on the
test set. All experiments are conducted at GeForce
RTX 2080Ti and TITAN Xp.

4.3 Baselines

We compare our model with the following best
baselines: (1) Attention BiRNN. Liu and
Lane (2016) propose an alignment-based RNN
for joint slot filling and intent detection; (2)
Slot-Gated Atten. Goo et al. (2018) pro-
pose a slot-gated joint model, explicitly considering
the correlation between slot filling and intent detec-
tion; (3) Bi-Model. Wang et al. (2018) propose
the Bi-model to model the bi-directional between
the intent detection and slot filling; (4) SF-ID
Network. E et al. (2019) proposes the SF-ID net-
work to establish a direct connection between the
two tasks; (5) Stack-Propagation. Qin et al.
(2019) adopt a stack-propagation framework to
explicitly incorporate intent detection for guiding
slot filling; (6) Joint Multiple ID-SF. Gan-
gadharaiah and Narayanaswamy (2019) propose a
multi-task framework with slot-gated mechanism
for multiple intent detection and slot filling; (7)
AGIF Qin et al. (2020b) proposes an adaptive in-
teraction network to achieve the fine-grained multi-

1We adopt the cleaned verison that removes the repeated
sentences in original dataset, which is available at https://
github.com/LooperXX/AGIF.

https://github.com/LooperXX/AGIF
https://github.com/LooperXX/AGIF
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Model MixATIS MixSNIPS
Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

Attention BiRNN (Liu and Lane, 2016) 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated (Goo et al., 2018) 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model (Wang et al., 2018) 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID (E et al., 2019) 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation (Qin et al., 2019) 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF (Gangadharaiah and Narayanaswamy, 2019) 36.1 84.6 73.4 62.9 90.6 95.1
AGIF (Qin et al., 2020b) 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN 43.5* 88.3* 76.3* 75.4* 94.9* 95.6

Table 1: Main results. The numbers with * indicate that the improvement of our framework over all baselines is
statistically significant with p < 0.05 under t-test.

Model Decode Latency(s) Speedup
Stack-Propagation 34.5 8.2×
Joint Multiple ID-SF 45.3 10.8×
AGIF 48.5 11.5×
GL-GIN 4.2 1.0×

Table 2: Speed comparison. Speedup is based on the
ratio of the time taken by the slot decoding part of dif-
ferent models to run an epoch on the MixATIS dataset
with batch size set to 32.

intent information integration, achieving state-of-
the-art performance.

4.4 Main Results

Following Goo et al. (2018) and Qin et al. (2020b),
we evaluate the performance of slot filling using
F1 score, intent prediction using accuracy, the
sentence-level semantic frame parsing using over-
all accuracy. Overall accuracy measures the ratio
of sentences for which both intent and slot are pre-
dicted correctly in a sentence.

Table 1 shows the results, we have the following
observations: (1) On slot filling task, our frame-
work outperforms the best baseline AGIF in F1
scores on two datasets, which indicates the pro-
posed local slot-aware graph successfully models
the dependency across slots, so that the slot filling
performance can be improved. (2) More impor-
tantly, compared with the AGIF, our framework
achieves +2.7% and 1.2% improvements for Mix-
ATIS and MixSNIPS on overall accuracy, respec-
tively. We attribute it to the fact that our proposed
global intent-slot interaction graph can better cap-
ture the correlation between intents and slots, im-
proving the SLU performance.

4.5 Analysis

4.5.1 Speedup
One of the core contributions of our framework
is that the decoding process of slot filling can
be significantly accelerated with the proposed

non-autoregressive mechanism. We evaluate the
speed by running the model on the MixATIS
test data in an epoch, fixing the batch size to
32. The comparison results are shown in Ta-
ble 2. We observe that our model achieves the
×8.2, ×10.8 and ×11.5 speedup compared with
SOTA models stack-propagation, Joint
Multiple ID-SF and AGIF. This is because
that their model utilizes an autoregressive architec-
ture that only performs slot filling word by word,
while our non-autoregressive framework can con-
duct slot filling decoding in parallel. In addition,
it’s worth noting that as the batch size gets larger,
GL-GIN can achieve better acceleration where
our model could achieve ×17.2 speedup compared
with AGIF when batch size is 64.

4.5.2 Effectiveness of the Local Slot-aware
Graph Interaction Layer

We study the effectiveness of the local slot-aware
interaction graph layer with the following ablation.
We remove the local graph interaction layer and
directly feed the output of the slot LSTM to the
global intent-slot graph interaction layer. We refer
it to w/o local GAL in Tabel 3. We can clearly
observe that the slot F1 drops by 1.5% and 1.2% on
MixATIS and MixSNIPS datasets. We attribute this
to the fact that local slot-aware GAL can capture
the slot dependency for each token, which helps
to alleviate the slot uncoordinated problems. A
qualitative analysis can be founded at Section 4.5.6.

4.5.3 Effectiveness of Global Slot-Intent
Graph Interaction Layer

In order to verify the effectiveness of slot-intent
global interaction graph layer, we remove the
global interaction layer and utilizes the output of
local slot-aware GAL module for slot filling. It is
named as w/o Global Intent-slot GAL in Table 3.
We can observe that the slot f1 drops by 0.9%,
1.3%, which demonstrates that intent-slot graph in-
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Model MixATIS MixSNIPS
Overall(Acc) Slot(F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

w/o Local Slot-Aware GAL 41.1 86.8 74.0 71.4 93.7 95.2
w/o Global Intent-Slot GAL 40.9 87.4 75.5 71.7 93.6 95.5

+ More Parameters 41.9 87.7 75.0 73.0 93.8 95.5
w/o Global-locally GAL 40.5 86.3 75.2 70.2 92.9 95.0
GL-GIN 43.5 88.3 76.3 75.4 94.9 95.6

Table 3: Ablation Experiment.
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Figure 3: Visualization. We use the green color to indi-
cate the attention value.

teraction layer can capture the correlation between
multiple intents, which is beneficial for the seman-
tic performance of SLU system.

Following Qin et al. (2020b), we replace multi-
ple LSTM layers (2-layers) as the proposed global-
locally graph layer to verify that the proposed
global-locally graph interaction layer rather than
the added parameters works. Table 3 (more pa-
rameters) shows the results. We observe that our
model outperforms more parameters by 1.6% and
2.4% overall accuracy in two datasets, which shows
that the improvements come from the proposed
Global-locally graph interaction layer rather than
the involved parameters.

4.5.4 Effectiveness of the Global-locally
Graph Interaction Layer

Instead of using the whole global-locally graph in-
teraction layer for slot filling, we directly leverage
the output of slot-aware LSTM to predict each to-
ken slot to verify the effect of the global-locally
graph interaction layer. We name the experiment
as w/o Global-locally GAL in Tabel 3. From the
results, We can observe that the absence of global
GAT module leads to 3.0% and 5.2% overall accu-
racy drops on two datasets. This indicates that the
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Figure 4: Overall accuracy Performances with
Roberta.

global-locally graph interaction layer encourages
our model to leverage slot dependency and intent
information, which can improve SLU performance.

4.5.5 Visualization
To better understand how global-local graph inter-
action layer affects and contributes to the final re-
sult, we visualize the attention value of the Global
intent-slot GAL. As is shown in Figure 3, we visu-
alize the dependence of the word “6” on context
and intent information. We can clearly observe that
token “6” obtains information from all contextual
tokens. The information from “and 10” helps
to predict the slot, where the prior autoregressive
models cannot be achieved due to the generation
word by word from left to right.

4.5.6 Qualitative analysis
We conduct qualitative analysis by providing a case
study that consists of two sequence slots which
are generated from AGIF and our model. From
Table 4, for the word “6”, AGIF predicts its slot
label as “O” incorrectly. This is because that AGIF
only models its left information, which makes it
hard to predict “6” is a time slot. In contrast,
our model predicts the slot label correctly. We
attribute this to the fact that our proposed global
intent-slot interaction layer can model bidirectional
contextual information. In addition, our framework
predicts the word slot “am” correctly while AGIF
predicts it incorrectly (I-airport name follows B-
depart time), indicating that the proposed local slot-



185

texts What airlines off from LOVE field between 6 and 10 am on June sixth

AGIF O O O O
B-fromloc
airport name

I-fromloc
airport name

O O O
B-depart time
end time

I-toloc
airport name

O
B-depart date
month name

B-depart date
day number

GL-GIN O O O O
B-fromloc
airport name

I-fromloc
airport name

O
B-depart time
start time

O
B-depart time
end time

I-depart time
end time

O
B-depart date
month name

B-depart date
day number

Table 4: Case study. Predicted slots sequence about utterance “What airlines off from LOVE field between 6 and
10 am on June sixth”

aware graph layer has successfully captured the slot
dependency.

4.5.7 Effect of Pre-trained Model
Following Qin et al. (2019), we explore the pre-
trained model in our framework. We replace the
self-attentive encoder by Roberta (Liu et al., 2019c)
with the fine-tuning approach. We keep other com-
ponents identical to our framework and follow Qin
et al. (2019) to consider the first subword label if a
word is broken into multiple subwords.

Figure 4 gives the result comparison of AGIF,
GL-GIN and two models with Roberta on two
datasets. We have two interesting observations.
First, the Roberta-based model remarkably
well on two datasets. We attribute this to the fact
that pre-trained models can provide rich semantic
features, which can help SLU. Second, GL-GIN +
Roberta outperforms AGIF+Roberta on both
datasets and reaches a new state-of-the-art perfor-
mance, which further verifies the effectiveness of
our proposed framework.

5 Related Work

Slot Filling and Intent Detection Recently,
joint models (Zhang and Wang, 2016; Hakkani-
Tür et al., 2016; Goo et al., 2018; Li et al., 2018;
Xia et al., 2018; E et al., 2019; Liu et al., 2019b;
Qin et al., 2019; Zhang et al., 2019; Wu et al., 2020;
Qin et al., 2021b; Ni et al., 2021) are proposed to
consider the strong correlation between intent de-
tection and slot filling have obtained remarkable
success. Compared with their work, we focus on
jointly modeling multiple intent detection and slot
filling while they only consider the single-intent
scenario.

More recently, multiple intent detection can han-
dle utterances with multiple intents, which has at-
tracted increasing attention. To the end, Xu and
Sarikaya (2013) and Kim et al. (2017) begin to ex-
plore the multiple intent detection. Gangadharaiah
and Narayanaswamy (2019) first apply a multi-task
framework with a slot-gate mechanism to jointly
model the multiple intent detection and slot fill-

ing. Qin et al. (2020b) propose an adaptive interac-
tion network to achieve the fine-grained multiple
intent information integration for token-level slot
filling, achieving the state-of-the-art performance.
Their models adopt the autoregressive architecture
for joint multiple intent detection and slot filling.
In contrast, we propose a non-autoregressive ap-
proach, achieving parallel decoding. To the best
of our knowledge, we are the first to explore a
non-autoregressive architecture for multiple intent
detection and slot filling.

Graph Neural Network for NLP Graph neural
networks that operate directly on graph structures
to model the structural information, which has been
applied successfully in various NLP tasks. Linmei
et al. (2019) and Huang and Carley (2019) explore
graph attention network (GAT) (Veličković et al.,
2018) for classification task to incorporate the de-
pendency parser information. Cetoli et al. (2017)
and Liu et al. (2019a) apply graph neural network
to model the non-local contextual information for
sequence labeling tasks. Yasunaga et al. (2017)
and Feng et al. (2020a) successfully apply a graph
network to model the discourse information for
the summarization generation task, which achieved
promising performance. Graph structure are suc-
cessfully applied for dialogue direction (Feng et al.,
2020b; Fu et al., 2020; Qin et al., 2020a, 2021a).
In our work, we apply a global-locally graph inter-
action network to model the slot dependency and
interaction between the multiple intents and slots.

6 Conclusion

In this paper, we investigated a non-autoregressive
model for joint multiple intent detection and slot
filling. To this end, we proposed a global-locally
graph interaction network where the uncoordinated-
slots problem can be addressed with the proposed
local slot-aware graph while the interaction be-
tween intents and slots can be modeled by the
proposed global intent-slot graph. Experimental
results on two datasets show that our framework
achieves state-of-the-art performance with ×11.5
times faster than the prior work.
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