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Abstract

As the sources of information that we consume
everyday rapidly diversify, it is becoming in-
creasingly important to develop NLP tools that
help to evaluate the credibility of the informa-
tion we receive. A critical step towards this
goal is to determine the factuality of events
in text. In this paper, we frame factuality as-
sessment as a modal dependency parsing task
that identifies the events and their sources, for-
mally known as conceivers, and then deter-
mine the level of certainty that the sources
are asserting with respect to the events. We
crowdsource the first large-scale data set an-
notated with modal dependency structures that
consists of 353 Covid-19 related news arti-
cles, 24,016 events, and 2,938 conceivers.1

We also develop the first modal dependency
parser that jointly extracts events, conceivers
and constructs the modal dependency structure
of a text. We evaluate the joint model against
a pipeline model and demonstrate the advan-
tage of the joint model in conceiver extraction
and modal dependency structure construction
when events and conceivers are automatically
extracted. We believe the dataset and the mod-
els will be a valuable resource for a whole host
of NLP applications such as fact checking and
rumor detection.

1 Introduction

“We’re not just fighting an epidemic; we’re fighting
an infodemic.”

— Tedros Adhanom, WHO

The ongoing COVID-19 pandemic taught us the
importance of determining factuality of events at a
time when the sources of media we consume have
greatly diversified. This is compounded by the
fact that the information that we receive from these

1https://github.com/Jryao/modal_
dependency

news sources usually does not go through as a rig-
orous editing and verification process as traditional
media do. The sheer volume of the new media con-
tent makes human verification impossible and there
is thus an increasing need for NLP tools that help
verify statements made in these media sources.

To verify if an event has indeed happened we first
need to determine the level of certainty with which
the event is asserted by the information source,
which defaults to the author of a document but
can also be another source in the text that the au-
thor attributes the information to. The factuality of
an event cannot be fully determined without also
taking into account the credibility of information
source. Consider the text snippet in (1):

(1) WBUR: A man in his 20s from Worcester
County tested positive Tuesday for the new,
apparently more contagious coronavirus vari-
ant, public health officials said. The variant
was first detected in the United Kingdom, and
experts have warned that it could soon be-
come widespread in the U.S.

Suppose our goal here is to determine the fac-
tuality of the statements in (1). We first need to
determine the level of certainty with which the
source is committed to the factuality of the state-
ments. While the “public health officials” are fairly
certain that a man from Worcester County tested
positive for the coronavirus variant, the “experts”
were not as certain that the virus variant will defi-
nitely become widespread, as indicated by the lin-
guistic cues like “could”. In other words, there
are different levels of certainty with which the two
events are asserted. In addition, the credibility of
information source is also crucially important when
evaluating the factuality of the events (De Marn-
effe et al., 2012). If the information source is not
“public health officials” and instead it is an anony-
mous source, the information that the Worcester

https://github.com/Jryao/modal_dependency
https://github.com/Jryao/modal_dependency
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man tested positive will be less credible. In fact, the
factuality of the events also depends on the WBUR,
the “author” of this text. If the author made up
these statements, then the Worcester man testing
positive would not be a fact, regardless of the level
of certainty with which the events are asserted. Ul-
timately, it is impossible to fully determine the
credibility of a source purely based on the informa-
tion within a single text, but linking each event to
its source or chain of sources allows us to verify
the factuality of the event against other sources and
our world knowledge. Therefore, identifying the
level of certainty with which is an event is asserted
together with its source is a crucial first step in
assessing the factuality of the event.

Previous work on factuality assessment has fo-
cused on determining the level of certainty that
is asserted on events and framed it as a classi-
fication or regression problem (Saurı́ and Puste-
jovsky, 2012; Lee et al., 2015; Stanovsky et al.,
2017; Rudinger et al., 2018; Qian et al., 2018).
However, as we discussed above, the level of cer-
tainty alone is insufficient in determining the fac-
tuality of an event. In this work, we adopt a factu-
ality representation framework proposed in (Vigus
et al., 2019) called modal dependency structure
(MDS). A modal dependency structure is formally
a document-level structure where nodes are events
and sources, known as conceivers while edges rep-
resent the modal strength, or the level of certainty
that the conceiver holds towards an event. Figure 1
shows the modal dependency structure of the text
in (1).

ROOT

AUTH (WBUR)

public health officials
said detected

experts warned

tested positive become widespread

MODAL

Pos Pos Pos Pos Pos

Pos Neut

Figure 1: A modal dependency tree for example 1.

One main advantage of MDS over previous ap-
proaches to factuality is that an MDS explicitly
represents both the conceiver and the event and
represents the modal strength as the level of cer-
tainty that the conceiver holds towards the events.
It is also a hierarchical structure that allows nested
representations when multiple sources are possi-

ble. For example, in Figure 1, the factuality of the
tested positive event depends on both the credibility
of “public health officials”, as well as the author
(AUTH) of this text.

Representing factuality as a modal dependency
structure also allows us to cast factuality assess-
ment as a modal dependency parsing problem, and
opens up the door for using various structured pre-
diction approaches to tackle this problem. Since no
large-scale data annotated with MDS exists, we first
need to develop a data set annotated with modal
dependency structures to train and evaluate modal
dependency parsing models. The main contribu-
tions of this work are as follows:

• We construct a large corpus annotated with
modal dependency structures via crowdsourc-
ing. It consists of 353 Covid-19 related news
articles, in which 24,016 events and 2,938
conceivers are annotated. To our best knowl-
edge, this corpus is the first large-scale corpus
annotated with modal dependency structures.

• Although modal dependency structure is a
complicated representation, we show that our
data set is annotated with high consistency.
We believe the crowdsourcing techniques we
have developed will add to the knowledge of
how to develop large-scale data sets via crowd-
sourcing, especially for complicated represen-
tations.

• We develop a joint modal dependency pars-
ing model that extracts events, conceivers and
parses a document into its modal dependency
structure. We present experimental results
that show the effectiveness of our parsing ap-
proach and the consistency of the data set. In
addition, we evaluate the joint model against
the pipeline model, and show the advantage
of the joint model in overall end-to-end modal
dependency parsing performance.

2 Acquiring a Modal Dependency Data
Set

In this section we first provide additional detail for
the modal dependency structure, and then present
our strategy of decomposing the modal dependency
structure into subtasks that are suitable for crowd-
sourcing. We also evaluate the quality of our an-
notated data set, and provide statistics relevant for
training MDS parsing models.
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2.1 Modal Dependency Structure

The modal dependency structure builds on the anno-
tation scheme of FactBank (Saurı́ and Pustejovsky,
2009) and is inspired by the structured approach in
temporal dependency annotation in Zhang and Xue
(2018b). Like FactBank, the modal dependency
structure combines epistemic strength full, partial,
neutral with polarity values positive, negative to
define a set of six values for modal strength. Ta-
ble 1 shows the modal strength values (i.e. labels)
used in modal dependency structures and their cor-
responding values in FactBank. As illustrated in
Figure 1, these values are represented as edge la-
bels in the modal dependency structure. Readers
are referred to (Vigus et al., 2019) for how these
six values are defined.

Modal Dependency FactBank
full positive (Pos) CT+
partial positive (Prt) PR+
neutral positive (Neut) PS+
neutral negative (Neutneg) PS-
partial negative (Prtneg) PR-
full negative (Neg) CT-

Table 1: Modal strength values in the modal depen-
dency structure and FactBank.

While Vigus et al. (2019) show that modal de-
pendency structures (MDS) can be annotated with
high inter-annotator agreement by expert annota-
tors in a pilot annotation of six documents, a corpus
that is much larger in scale is needed in order to
train modal dependency parsers that can be used
for downstream applications.

2.2 Crowdsourcing Modal Dependency
Structures

To make MDS feasible for crowdsourcing, we have
adopted a number of strategies. The first strategy is
to decompose MDS annotation into four subtasks:
event identification, event attachment, event modal
strength annotation and modal superstructure con-
struction. The instructions to crowd-workers for
each subtask are piloted to ensure that the subtask
can be performed with high consistency before
they are set up for productive annotation. Sec-
ond, where possible, we have applied a number
of pre-processing steps to simplify the tasks for
crowd-workers. In addition, we have also adopted a
payment structure to incentivize high-quality work.
In all subtasks, we require three crowd-workers

to complete one assignment and use the majority
vote answer as the final decision. All annotations
are conducted on the Amazon Mechanic Turk plat-
form.

Task 1: Event Identification Event annotation
involves identifying event trigger words, which
are typically verbs and nouns. We first extract
event candidates using a publicly available, com-
mon event trigger word dictionary.2 We then ran
the Stanford CoreNLP dependency parser (Man-
ning et al., 2014) on raw text to extract the verbs
and the root of each syntactic dependency parse
as candidate events. A pilot study shows that 90%
of the verbs in the extracted candidate events are
event triggers, so we decide to treat all verbs as
event triggers and launch an event identification
task for about 10K non-verb event candidates. We
present crowd-workers with event candidates and
ask them to decide if they are events.

Task 2: Event Attachment The next subtask
is to attach a child event to a parent, which can
be a conceiver (2a), another event (2b), or in the
case of hypothetical situations, an abstract have-
condition node (2c). To simplify things for crowd
workers, we made the decision not to introduce ab-
stract nodes in the modal dependency tree. Events
in hypothetical situation are annotated as neutral
events and attached to their conceivers directly.

A child event is attached to a parent event only
when the parent event is a modal predicate. For
example, in (2b), the parent of visit is wants. The
modal predicates form a closed set and can be ex-
tracted with a list of modal event triggers. Using a
dependency parser, we can reliably identify events
that should be attached to modal events, so we can
do this part of the annotation without soliciting
judgments from crowd workers.

(2) a. A 72-year-old man died, the police said.
Pos (died, police)

b. John wants to visit Japan.
Neut (visit, wants)

c. If it rains tomorrow, I will stay at home.
Neut (have-condition, Author)
Pos (rains, have-condition)

In the majority of cases, the parent of an event
is a conceiver (or the Author), as in (2a), where
the conceiver of died is the police. For any given

2https://github.com/Jryao/temporal_
dependency_graphs_crowdsourcing

https://github.com/Jryao/temporal_dependency_graphs_crowdsourcing
https://github.com/Jryao/temporal_dependency_graphs_crowdsourcing
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event, the list of candidate conceivers can be very
large, so some filtering is needed to shrink it down
so that a smaller list of candidates is presented to
crowd-workers.

To collect possible conceivers, we first construct
a list of common conceiver-introducing predicates
(CIPs) following Saurı́ and Pustejovsky (2009) and
Vigus et al. (2019). Then, we extract possible con-
ceivers with the Stanford CoreNLP parser from
three sources: the subject of common CIPs in our
list, the subject of all other events, and named enti-
ties that are possible conceivers, such as organiza-
tion, person. For each event, we limited the candi-
date conceivers to those in the same paragraph as
the event, and further filter out unlikely conceivers
by their hypernyms in Wordnet.3 We present a list
of possible conceivers and ask workers to select the
most appropriate one for the event in question.

Task 3: Event Modal Strength Annotation Af-
ter attaching the events to their parent, the third task
is to annotate modal strength from the conceiver’s
perspective, which are edge labels in modal de-
pendency structures. Vigus et al. (2019) define
six modal strength values listed in Table 1. In our
pilot annotation, however, we found partial nega-
tive and neutral negative events only account for
less than 2% of all events. To have a manageable
crowdsourcing task and given their low frequency,
we decide to merge partial negative and neutral
negative events to negative events, and only use
four labels: full positive, partial positive, neutral
positive and negative.

The event modal strength task is annotated in
two steps. In the first step, events are classified into
three classes: full positive, negative, and neither. In
the second step, events in the third class are further
classified into partial positive and neutral positive.
For example, (3a) is annotated as a full positive
event, (3c) is annotated as a negative event, and
(3b) is annotated as neither in the first step. (3b)
is further labeled as a neutral positive event in the
second step.

(3) a. The dog barked.
b. The dog might have barked.
c. The dog didn’t bark.

Task 4: Conceiver Superstructure Construc-
tion The parent of a conceiver is the Author in
the majority of cases, but it could also be another

3https://wordnet.princeton.edu

conceiver in some cases. (4a) and (4b) are two
common cases where the parent of a conceiver is
another conceiver. In (4a), the conceiver Mary and
the embedded conceiver John are in the same sen-
tence, and in (4b), the conceiver John is in quoted
speech. For the cases like (4b), the two conceivers
are not necessarily in the same sentence, but they
are usually close to each other in the text.

(4) a. Mary says John wants to visit Japan.
Pos (John, Mary)

b. “John wants to visit Japan. He wants to
go next summer.” Mary says.
Pos (John, Mary)

Conceivers that don’t have any neighboring con-
ceivers are directly attached to the Author.4 For the
rest, we design a conceiver attachment task similar
to the event attachment task. The modal strength
of conceivers is decided by the modal strength of
their CIPs, which is available after Task 3. For
the conceivers that don’t have an associated CIP,
such as named entities, we ask crowd-workers to
annotate their modal strength.

2.3 Quality Control Strategy
Our basic quality control strategy involves using
two tests to select crowd-workers: a qualification
test and a survival test. Workers need to first pass
the qualification test in order to be eligible for
working on a task. In addition, test questions with
ground truth answers are embedded in each HIT.
Workers need to maintain a high cumulative ac-
curacy through the annotation process to remain
eligible for the task. For the event identification
subtask, our qualification test threshold and sur-
vival test threshold are both set to 80% accuracy.
For the event attachment task, they are both set to
70% as it is a more challenging task.

We also developed a stratified payment approach
to incentivize high-quality work. There is no guar-
antee that workers who have passed the qualifica-
tion test will continue to perform well in the actual
annotation task. To incentivize high-quality anno-
tation, we adopt a stratified payment approach for
event modal strength annotation. We offer a base
payment of $ 0.01 per question, and increase it to $
0.02 if the worker achieves a 70% accuracy on the
test questions in that HIT, and further increase it to
$ 0.03 if the worker achieves a 90% accuracy. The

4In practice, if there is no other conceivers in the same
paragraph, we attach that conceiver to the Author.

https://wordnet.princeton.edu
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additional payment is paid using the bonus feature
on Amazon’s Mechanical Turk.

2.4 Annotation Evaluation

We measure annotation quality with two metrics.
First, we compute the agreement among crowd-
workers using Worker Agreement With Aggregate
(WAWA) (Ning et al., 2018), which measures the
average agreement between each crowd-worker
and the aggregate answer. Second, we compare
crowd-workers’ annotation with the annotation of
an expert annotator and compute the F-score.

Table 2 presents the WAWA scores for each sub-
task. The statistics show good agreement among
crowd-workers for all subtasks, with a moderately
lower agreement for Task 4, the construction of the
conceiver superstructure.

Task 1 Task 2 Task 3 Task 4
WAWA 84.4 88.9 92.7 78.0

Table 2: Agreement scores among crowd-workers.

We also evaluate the agreement between the ma-
jority opinion of crowd-workers and the expert an-
notator with an 11-document subset that are an-
notated by both the expert annotator and crowd-
workers. In this evaluation, we attempt to measure
the agreement between the crowd-sourced modal
dependency structures and the modal dependency
structures annotated by the expert annotator. Af-
ter assembling the modal dependency structures
from the full annotation pipeline, we also report the
overall agreement between crowd-workers and the
expert annotator in Table 3. Our overall unlabeled
attachment agreement (UAA) is 78.6%, labeled
attachment agreement (LAA) is 72.1%.

Since we decompose the MDS annotation into
smaller steps, the annotation of an earlier step will
affect that of a later step. For instance, the results
of the event identification step (Task 1) are used as
input to set up the event attachment (Task 2) and
modal strength annotation (Task 3). An incorrect
annotation in Task 1 will “propagate” to the other
tasks that are based on the event annotation. Table
3 presents the agreement statistics for the subtasks.
It is important to note that the agreement statistics
for the subtasks include disagreements in event
identification and are thus generally a bit lower
than the stand-alone tasks.

metric Ev ID event conc all
F1 92.7
UAA (F1 ) 78.8 80.0 78.6
LAA (F1 ) 71.7 77.3 72.1

Table 3: Agreements between crowd-workers and the
expert annotator. “Ev ID” refers to event identification,
UAA and LAA refer to unlabeled and labeled attach-
ment agreement respectively.

2.5 Corpus Statistics

We downloaded the coronavirus news data set us-
ing AYLIEN API.5 We sampled 353 news articles
from 11 media sources, including Business Stan-
dard, Business Insider, NBC News, The New York
Times, Reuters, The Guardian, The Washington
Post, CNN, Fox News, Yahoo News and Wikinews.

As shown in Table 4, our MDS data set has
24,016 events and 2,938 conceivers, a much larger
corpus than FactBank (Saurı́ and Pustejovsky,
2009), which has 208 articles and 9,488 events.
A more detailed breakdown shows that for event at-
tachment annotation, 29% events are attached to a
non-Author conceiver, and 66% events are attached
to the Author. The rest of the events either have a
unspecified conceiver or an event as parent.

Doc Conc Event
MDS 353 2,938 24,016
FactBank 208 - 9,488

Table 4: Number of documents, conceivers, and events
in this corpus and FactBank.

3 Neural Modal Dependency Parsing

In this section, we introduce our parser for modal
dependency parsing. Our modal dependency parser
is inspired by Zhang and Xue (2018a), who in-
troduce a ranking model for temporal dependency
parsing. As the temporal dependency tree used
to train their model is similar in structure to our
modal dependency tree, it is reasonable to adopt
their model as the starting point. Our model is also
inspired by Ross et al. (2020), who extend Zhang
and Xue (2018a) by replacing the Bi-LSTM en-
coder with contextualized neural language models,
such as BERT (Devlin et al., 2019). Specifically,
our modal dependency parser constructs a modal

5https://aylien.com/blog/
free-coronavirus-news-dataset

https://aylien.com/blog/free-coronavirus-news-dataset
https://aylien.com/blog/free-coronavirus-news-dataset
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dependency tree by incrementally identifying the
parent node for each child node in textual order.
For each child node, the parser ranks the candidate
parent nodes and selects the one with the highest
score as its parent node. Since the nodes in a modal
dependency tree are events or conceivers, to parse a
text into a modal dependency tree, we need to first
extract the events and conceivers, then build the
modal dependency structure. Since Zhang and Xue
(2018a)’s pipeline system suffers from error prop-
agation, we adopt a multi-task learning approach
that jointly trains the event and conceiver extraction
and structure building components.

3.1 Model Description

Figure 2 shows the model architecture. Given an in-
put text, we obtain the token representation wk for
each token by encoding the text with a pre-trained
BERT encoder (Devlin et al., 2019). To fit the long
document to BERT, we treat one document as a
batch, and encode it sentence by sentence. This
contextualized token representation is shared by
the mention extraction stage and structure building
stage. We then label the k-th token with a BIO tag-
ger by mapping wk to a tag logit using a standard
feed-forward neural network. In our experiment,
we use a single tagger to extract both events and
conceivers because recognizing certain events such
as reporting events (e.g. said) might be helpful to
extract conceivers. In the structure building stage,
the goal is to find the most appropriate parent for
each event and conceiver node. In theory, every
node in the document can be a candidate parent
for a given child node. To reduce the search space,
we only consider candidate parent nodes within
a 5-sentence window of the child node plus two
meta nodes (the Author and Root nodes) as candi-
date parents and include at most n candidate par-
ents for each child. The representation for node
xi is the concatenation of the start token represen-
tation, the end token representation, and the span
representation of the node. Following Zhang and
Xue (2018a), we use an attention vector (Bahdanau
et al., 2016) computed over the tokens in node span
i as its span representation. Let wt be the tokens in
node i, the span representation x̂i is computed as
following:

αt = FFNα(wt)

ai,t =
exp[αt]∑end(i)

k=start(i) exp[αk]

Figure 2: Model architecture for the joint model. The
input is a document, which is a list of sentences. xi is
the child node. For simplicity, we consider xa, xb, xc,
xd as the candidate parent nodes.

x̂i =

end(i)∑
t=start(i)

ai,t · wt

The pair representation of node i and one of its
candidate parent y′i is the concatenation of their
node representations. The pair score is computed
by sending the pair representation of node i and y′i
to a feed-forward neural network:

si,y′i,lk = FFNp([xi, yi′ ])

where FFNp denotes the feed-forward neural net-
work that computes a pair score. si,y′i,lk represents
the score of node y′i being the parent of node i with
the modal relation label lk.

After computing all the pair scores for the node
i, we concatenate them into a vector ci. Then a
softmax function is applied to get a probability
distribution for the node i having each candidate
parent (with each relation). We use cross-entropy
loss for both mention extraction and dependency
parsing. We optimize the following joint loss dur-
ing training:

L = Le + λLp
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where Le and Lp refer to extraction loss and pars-
ing loss respectively, and λ is a hyper-parameter
controlling weights between extraction and pars-
ing.

3.2 Experiments and Discussion

Data Split Out of the 353 documents in our MDS
dataset, we use 289 of them as training data, 32
as validation data, and 32 as testing data in our ex-
periments. The test set includes the 11 documents
that are annotated by the expert annotator. Table
5 shows the data split. The expert annotator also
adjudicated some of the more challenging aspects
of MDS annotation to improve the quality of the
validation and test sets.

Doc Event Conceiver
train 289 19,541 2,344
dev 32 2,307 298
test 32 2,168 296

Table 5: Data split for the experiments.

Implementation Details We use bert-large-
cased (Wolf et al., 2020) for all experiments. For
each child, we include at most n = 16 candidate
parent nodes. Our hyper-parameter settings can be
found in the Appendix.

Results We evaluate our joint model against the
pipeline model. The pipeline model trains the event
and conceiver mention extractor separately from
the structure building component without sharing
the BERT encoder. We use micro-average F1 score
as the evaluation metric, and for the mention ex-
traction task, an event or conceiver is only correctly
identified if there is an exact match between the
extracted mention with the gold mention.

As we can see in Table 6, the pipeline model
and joint model achieve similar results on event
extraction, indicating that event extraction does not
benefit from a joint model. This shows that event
extraction can by and large be extracted indepen-
dently without taking into account their relations to
their conceivers. However, the joint model outper-
forms the pipeline model in conceiver extraction
by 0.2% and 2.9% on the development and test set
respectively. This improvement is consistent with
the observation that conceiver extraction is closely
related to the structure building stage of MDS pars-
ing because an entity (e.g. a person or organization)
is a conceiver only if it serves as the conceiver of an

event or another conceiver in the structure building
stage. Not all entities in a text are conceivers. In
both models, the conceiver extraction scores are
lower than the event extraction scores due to the
scarcity of conceivers in the data set.

When evaluating the performance of the struc-
ture building component of the parsing model with
gold mentions as input (the Parsing (gold) column),
the pipeline model achieves slightly higher scores
than the joint model. However, when using the
automatically extracted events and conceivers from
the mention extraction stage as input to the struc-
ture building stage (the Parsing (auto) column), in
a setting that really matters for downstream appli-
cations, the joint model outperforms the pipeline
model on both the development and test set by 0.6%
and 1.5% respectively. This shows that the joint
model reduces inconsistent predictions between the
mention extraction and structure building stages
resulting from a pipeline model not sharing param-
eters, and improves the overall result.

3.3 Error Analysis
Since the 11-document subset of the test set are
annotated by both the expert and crowd-workers,
we can conduct a comparative error analysis of the
system and crowd-workers and see if they make the
same mistakes. For this particular analysis, we fo-
cus on the structure building stage with gold event
and conceiver mentions as input. We only look at
whether a child event or conceiver is attached to its
correct parent.

In the majority of cases, the Author node is the
conceiver of a child node. However, finding the
non-Author conceiver for a child is more revealing
about the effectiveness of the model. So we focus
on nodes whose correct conceivers are not the Au-
thor, and evaluate both crowd-workers’ annotation
and the system output against that of the expert
annotator.

In this subset of the test set, 317 nodes have
a non-Author conceiver as parent. Among these,
crowd-workers disagree with the expert annotator
in 102 cases, while the system disagrees with the
expert annotator in 122 cases (the last row of Ta-
ble 7). This shows this is a challenging aspect
of the annotation for both crowd-workers and the
system, with the system performing worse than
crowd-workers.

Out of the 317 nodes, 59 of them have the con-
ceiver in a different sentence while the remaining
258 have the conceiver in the same sentence. We
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Event ID Conc ID Parsing (gold) Parsing (auto)
dev test dev test dev test dev test

Pipeline 92.7 90.9 70.9 67.5 80.7 80.6∗ 69.7 67.5
Joint 92.8 90.8 71.1 70.4∗ 79.4 80.1 70.3 69.0∗

Table 6: Comparison of the pipeline model and the joint model. The last two columns show the results of using the
automatically predicted mentions as input to the parsing stage. All parsing scores are labeled attachment scores.
Scores with a star are significantly better than the other model’s scores on test data with a p-value < 0.05.

instances workers system
same sent 258 84 (32.6%) 91 (35.3%)
diff sent 59 18 (30.5%) 31 (52.5%)
total 317 102 (32.2%) 122 (38.5%)

Table 7: Errors in crowd-workers’ annotation and sys-
tem output.

can see from Table 7 that among those where the
child is in the same sentence as the parent, the
system and crowd-workers disagree with the ex-
pert annotator to a similar extent, 32.6% vs 35.3%.
However, for cases where the child is in a different
sentence from its parent, there is a much bigger
difference in their disagreement with the expert
annotator (30.5% vs. 52.5%). This shows that
while crowd-workers can identify conceivers from
a different sentence just as easily as from the same
sentence, it is much more difficult for the system to
attach a child node to a distant conceiver. Address-
ing this challenge will be crucial to further improve
the performance of the model.

4 Related Work

Factuality Annotation While there is a signifi-
cant amount of research on annotating factuality
or modality (Saurı́ and Pustejovsky, 2009; Diab
et al., 2009; Matsuyoshi et al., 2010; Soni et al.,
2014; Lee et al., 2015; Prabhakaran et al., 2015;
Minard et al., 2016), factuality and opinions (Son
et al., 2014), senses of modal verbs (Ruppenhofer
and Rehbein, 2012), and credibility in social me-
dia (Mitra and Gilbert, 2015), a few of them are
particularly related to our work. Our annotation is
closely related to FactBank Saurı́ and Pustejovsky
(2009) in that both annotate the level of certainty
that the source asserts over an event, but FactBank
does not explicitly represent their relations in a
hierarchical structure and is annotated by expert
annotators. Like our work, Lee et al. (2015) also
annotate event factuality via crowdsourcing, but
they only annotate the level of certainty from the
perspective of the author, to the exclusion of non-

author conceivers. Our work is based on Vigus
et al. (2019), who first came up with the model de-
pendency annotation scheme. However, they only
annotate 377 events from 6 documents in a pilot ef-
fort with expert annotators. We have shown that it
is feasible for crowd-workers to annotate modal de-
pendency structures with considerable consistency
and produce modal dependency annotation at scale.

Automatic factuality assessment Existing work
typically casts factuality assessment as a classifica-
tion or regression problem. For example, Saurı́ and
Pustejovsky (2012) and Prabhakaran et al. (2015)
adopt rule-based and feature-based machine learn-
ing approaches to factuality classification. More
recently, Qian et al. (2018) predict event factual-
ity via a Generative Adversarial Networks based
model. Rudinger et al. (2018) design two LSTM
based models, and Pouran Ben Veyseh et al. (2019)
use a graph-based neural network model for event
factuality prediction. Our work departs from pre-
vious practice and recasts factuality assessment as
modal dependency parsing to simultaneously pre-
dict the source and its level of certainty over an
event, and exposes both for downstream applica-
tions.

5 Conclusion and Future Work

In this paper, we proposed a novel approach to fac-
tuality assessment by casting it as a modal depen-
dency parsing problem. We first built a large data
set annotated with modal dependency structures
via crowdsourcing, and demonstrated the quality
of this data set with a careful evaluation of each as-
pect of the annotation. We then developed the first
modal dependency parser, adopting a joint learning
approach to alleviate error propagation, and demon-
strated its advantage over the pipeline approach in
an end-to-end evaluation. Future work involves
further improving the accuracy of the parser and
applying the parser to perform large-scale factuality
assessments of events in news media.
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Figure 3: Annotation interface for event identification.

Figure 4: Annotation interface for event attachment.

Figure 5: Annotation interface for event modal strength annotation, step 1.

Figure 6: Annotation interface for event modal strength annotation, step 2.


