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Abstract

We present LEGOEval, an open-source toolkit
that enables researchers to easily evaluate di-
alogue systems in a few lines of code using
the online crowdsource platform, Amazon Me-
chanical Turk. Compared to existing toolk-
its, LEGOEval features a flexible task design
by providing a Python API that maps to com-
monly used React.js interface components. Re-
searchers can personalize their evaluation pro-
cedures easily with our built-in pages as if
playing with LEGO blocks. Thus, LEGOE-
val provides a fast, consistent method for re-
producing human evaluation results. Besides
the flexible task design, LEGOEval also offers
an easy API to review collected data.

1 Introduction

As dialogue systems are becoming an increasingly
trending topic, the need for standardized and reli-
able evaluation procedures has grown significantly.
Typically, the evaluation of dialogue systems is ac-
complished by the use of both automatic metrics
(Papineni et al., 2002; Lin, 2004; Lavie and Agar-
wal, 2007) and human evaluation (Serban et al.,
2016; Park et al., 2018). Automatic metrics are reli-
able measurements, but common automatic metrics
correlate weakly with human judgment (Liu et al.,
2016; Lowe et al., 2017; Gu et al., 2020). Thus, hu-
man evaluation has become a primary method for
dialogue system evaluation. Previously, researchers
invited participants to the lab to physically inter-
act with dialogue systems; recently, the popular
approach is crowdsourcing using platforms such
as Amazon Mechanical Turk (AMT) (Deriu et al.,
2020; Eskenazi et al., 2013).

* Equal contribution.
Source code and documentation are available at https:

//github.com/yooli23/LEGOEval.
A demo video is available at https://www.

youtube.com/watch?v=Dg6mafRGOpg&ab_
channel=JoshArnold.

However, human evaluation via crowdsourcing
presents its own challenges, being both expensive
and time-intensive. Specifically, human evaluation
requires a huge engineering effort to develop the
interface and deploy the task on crowdsourcing
platforms. The front-end interfaces can be difficult
to set up: the crowdworkers need to be properly in-
structed, and the tasks need to be prepared to reflect
real-world environment as closely as possible. Fur-
thermore, one needs to take into account the high
variability of user behaviour especially in crowd-
sourced environments (Deriu et al., 2020). It was
shown that even different phrasings can result in
weaker levels of agreement (Li et al., 2019). Thus,
it is not trivial to reproduce the human evaluation
results from scratch.

To address these problems, we present LEGOE-
val, an open-source toolkit that enables researchers
to easily build and deploy their human evaluation
tasks on AMT in one click. LEGOEval supports
representative human evaluation tasks, such as
static evaluation, where crowdworkers are asked to
rate sampled dialogues, and interactive evaluation,
where crowdworkers interact with two systems and
evaluate their responses (Finch and Choi, 2020;
Adiwardana et al., 2020). Furthermore, researchers
are also able to customize their own human evalua-
tion procedures easily with LEGOEval.

Existing tools typically provide rigid human eval-
uation templates. For example, DialCrowd (Lee
et al., 2018) follows the speech synthesis evaluation
toolkit (Parlikar, 2012) and provides a small num-
ber of standard evaluation experiments, however,
researchers have to manually create the web ser-
vices and then post the evaluation task on AMT. Se-
doc et al. (2019) developed ChatEval, which posts
a response comparison task (Otani et al., 2016) on
AMT. It is only effective for specific dialogue sys-
tems and is not generalizable. The widely used
toolkit ParlAI (Miller et al., 2018) supports crowd-

https://github.com/yooli23/LEGOEval
https://github.com/yooli23/LEGOEval
https://www.youtube.com/watch?v=Dg6mafRGOpg&ab_channel=JoshArnold
https://www.youtube.com/watch?v=Dg6mafRGOpg&ab_channel=JoshArnold
https://www.youtube.com/watch?v=Dg6mafRGOpg&ab_channel=JoshArnold
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Toolkit LEGOEval DialCrowd
(Lee et al., 2018)

ParlAI
(Miller et al., 2018) Mephisto

Sample Templates 3 3 3 3

Flexible Interface Design 3 7 7 7

Branching Logic 3 7 7 7

Plug & Play 3 7 7 3

Data Reviewing Tool 3 3 7 3

Table 1: Comparison of related crowdsourcing tools. “Sample Templates” indicates that the tool has evaluation
examples that are commonly used. “Flexible Interface Design” indicates that the evaluation interface can be fast
and easily modified. “Branching Logic” means the tool supports different interfaces in a same task.“Plug & Play”
means that the tool can be used out of the box.

sourcing tasks on AMT for the models built by Par-
lAI. However, ParlAI also requires additional engi-
neering efforts to incorporate an external model or
modify the evaluation interface. To our best knowl-
edge, the most similar tool to ours is Mephisto
1, a crowdsourcing tool in an early alpha release
expanded from ParlAI. From our experience, how-
ever, Mephisto has a steeper learning curve and
is currently not suited for easily customizing and
launching simple tasks.

Compared to these existing tools, our toolkit fea-
tures a flexible interface design with a plug and
play fashion, as shown in Table 1. Researchers
can build their personalized human evaluation task
flow with our library of Python classes, including
a chatbot interface, an instruction page, and vari-
ous survey formats. The task building process is
similar to playing a LEGO game. Furthermore,
LEGOEval makes it easy to share tasks with oth-
ers, thereby making it easy to reproduce human
evaluation results. Additionally, LEGOEval pro-
vides a straight-forward way to persist, retrieve,
and review collected data, thus helping researchers
process their results more efficiently.

In this paper, we present LEGOEval in the fol-
lowing order: first, we describe the design and
architecture in Section 2, then we provide code
snippets showing how to build the personalized
task page in Section 3. Finally in section 4, we
reproduce past experiments using LEGOEval.

2 LEGOEval Toolkit

LEGOEval is an open-source Python-based toolkit.
As shown in Figure 1, LEGOEval includes three
modules: (1) a task flow builder (Section 2.1) for
designing the human evaluation task, (2) an AMT
manager (Section 2.2) that automatically deploys

1https://github.com/facebookresearch/Mephisto

the evaluation task on AMT, and (3) a data reviewer
API (Section 2.3) that retrieves and formats data
collected on AMT. We describe each module in the
following sections.

2.1 Task Flow Builder
The task flow builder generates the interface and
flow for different human evaluation tasks by com-
piling a list of pages. The pages can be viewed as
LEGO blocks: we can snap pages together to easily
customize the evaluation task flow. Furthermore,
our toolkit and LEGO-style design makes it easy
to share tasks: instead of sharing an entire web ap-
plication, researchers can simply share their tasks
with a few lines of code in-order to reproduce their
evaluation procedure.

We have also provided common human evalua-
tion procedures in LEGOEval for instance, static
evaluation, where crowdworkers are asked to
rate sampled dialogues and interactive evaluation,
where a crowdworker interacts with multiple di-
alogue systems and evaluates the responses. Re-
searchers can easily integrate their models, and
customize their task flow using LEGOEval.
Page As the name suggests, a page in LEGOEval is
a single web page with a specific functionality (e.g.
displaying instructions, presenting a survey). Pages
are designed to be independent of one-another, pre-
venting any complex dependencies from occurring.
Furthermore, each page is defined by a single Re-
act.js file and mapped to a simple Python wrapper
class. We have provided a pool of pages that are
commonly used in human evaluation tasks, includ-
ing an instruction page (to display task instruc-
tions), an interactive chatbot page, and various sur-
vey pages. Beyond the built-in pages and their
parameters, researchers also have the flexibility to
customize a page or its logic by simply editing a
single React.js file.



319

Figure 1: Design of LEGOEval, the task building process is similar to playing a LEGO game, the pages can be
viewed as LEGO blocks in the task flow builder. The developer can also add branching logic in their task with the
lambda function to show different task flows to different crowdworkers at runtime.

Page Customization Customizing the front-end
display of a page is as simple as editing a single Re-
act.js file. Researchers can easily add an image, or
re-arrange the order of the user-interface elements.
With React.js, one can also edit a page’s CSS,
achieving complex front-end layouts if needed.
Lastly, if researchers need to modify the logic/func-
tionality of a component, they can also do it from
the same React.js file through the use of state.
We further describe how state works in LEGO-
Eval in the next paragraph.

State In LEGOEval, researchers are able to easily
customize the functionality of a page with the idea
of state. State solves the dilemma that often
occurs when designing a human evaluation task:
specifically, how one should design the data flow
between the back-end and the front-end. To ad-
dress this issue of data-flow design, we implement
the idea of a shared-state between the front-end
and the back-end. When the back-end modifies the
state of a task, the state is automatically updated
on the front-end, and vice versa. Furthermore, any
changes made to the state are automatically per-
sisted in a Postgres-SQL database, making data
persistence and retrieval incredibly simple. Thus,
when modifying the functionality of React.js page,
the researcher only needs to set key-value pairs
in the front-end React.js state-dictionary. Their
key-value pairs will automatically be persisted in a
database and synced to the backend. Although not
always necessary to modify, LEGOEval also fea-
tures a main loop function on the backend, found
in main loop.py, that is called each time the
state is modified from the front-end. In the main

loop, the researcher can respond to any front-end
changes from the backend. For example, when a
crowdworker sends a chat message on the front-
end, the main loop provides the backend an oppor-
tunity to provide a response. We provide detailed
documentation on the main loop in our GitHub
repository. Thus, with state, the researcher can
easily save or pass data between the backend and
their front-end React.js file, allowing them to flexi-
bly implement any needed functionality.
Building a Task Flow To build an evaluation task
in LEGOEval, we just need to assemble the pages
in a similar fashion to building LEGO. An evalu-
ation task usually consists of a multi-phase flow,
e.g., displaying task instructions, then a survey,
etc. Each phase corresponds to an individual page.
The developer can add the desired pages in a se-
quence, and LEGOEval will automatically display
each page in order one at a time. Additionally, LE-
GOEval supports branching logic to show different
task flows to different crowdworkers, determined at
runtime. We will describe branching logic in more
detail in Section 2.4.

2.2 AMT Manager

Once the task flow is created, the task flow builder
will automatically generate the necessary files that
can be embedded in an AMT task. Our AMT man-
ager follows the Mechanical Turk manager pipeline
in ParlAI (Miller et al., 2018) and launches the
evaluation task on AMT by embedding the gener-
ated interface using an iFrame. Researchers can
edit the AMT configuration file which contains
the AMT task settings, including the reward for
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each Human Intelligence Task (HIT), the number
of HITs to launch, the task title, etc. When re-
searchers launch the task, the AMT manager will
automatically build and deploy a web application
on the cloud application platform, Heroku 2, and
then post the evaluation task on AMT using the
AMT API. Our AMT manager inherits necessary
functions from the Mechanical Turk manager in
ParlAI, for example, checking crowdworker’s qual-
ification and optionally limiting the number of hits
for each crowdworker. The AMT manager also
supports automatic data validation. For instance,
when crowdworkers finish a HIT, the manager can
check the quality of the collected data via metrics
defined by the researcher (e.g., the dialogue length
or the rating variance in the rating question compo-
nent), and then it will approve or deny the reward
and bonus, depending on if the results pass the data
validation test.

2.3 Data Reviewer

LEGOEval also simplifies the process to review the
collected data. Different from ParlAI (Miller et al.,
2018) which saves raw data locally, we create an in-
dividual Heroku Postgres add-on as the database of
the web application when researchers launch a new
task. We will create separate databases when there
are multiple evaluation tasks running on AMT at
the same time. Collected data will be saved in the
corresponding add-on database. The data can be
read locally using our Python API. Storing the data
on the cloud prevents potential accidents, such as
locally deleting the data. Since there are various
types of data that can be collected in LEGOEval
(e.g., conversations, ratings, and free response ques-
tions), we organize the data according to the data
type so that they can be easily reviewed and pro-
cessed for further research using a Python API we
wrote.

2.4 Additional Functions

As mentioned earlier, LEGOEval is a flexible
toolkit to easily implement human evaluation tasks.
Specifically, it allows branching logic to display
pages dynamically at run-time, as well as guaran-
teed data collection of a fixed size, which are two
important features in dialogue human evaluation.
Branching Logic LEGOEval is unique in the way
that our pages are instantiated at run-time. To im-
plement branching logic, we offer a special lambda

2https://www.heroku.com/

function that is called at runtime. Each lambda
function takes as an argument the current state
of a task. Researchers can build branching and
conditional logic in their tasks by using lambda
functions. For example, a researcher can easily
define logic to skip a certain page based upon a
crowdworker’s previous answer to a survey. We
show an example of branching logic implementa-
tion in Section 3.
Assigning Tasks to Workers Another common
problem faced with crowd-sourced tasks is collect-
ing data in a distributed, sampled fashion. For
example, if you have 100 conversations, you might
want each conversation to be rated exactly X times,
each time by a different crowd-worker. Because
crowd-workers can start a task and then give up
half-way through, building the logic to assign HITS
in the aforementioned way can be time-consuming.
To achieve this in LEGOEval we provide a Python
wrapper class, named Data Assigner. When
using the Data Assigner class, you simply pass
in a list of json seralizable data (dictionaries, ar-
rays, strings, etc) and specify how many times you
want to collect each data point. After that, LEGO-
Eval will automatically distribute the data to be
randomly assigned to different workers until each
data point has been successfully collected X times.

3 Toolkit Usage

In this section, we provide a simple example of
what the researcher needs to do to create a task.
Typical Usage Researchers would first design their
high-level task flow on paper, (e.g, instruction page,
then a pre survey, ..., and finally, a post survey). Af-
ter this, researchers can add their different pages to
their task flow by editing the build.py file and
initializing a list of our provided Python classes.
Some pages, such as the survey page, have a high
level of customization, where developers can spec-
ify what types of questions they want to display on
the survey, and the questions’ relative order. Next,
researchers can test their task locally by running
server.py and navigating to their localhost. If
they are happy with the results, researchers can
launch their task on MTurk with one command:
launch hits.py. If researchers want to make
a few tweaks, such as using a custom font for the
instructions, they can easily edit a single React.js
file and override any necessary CSS in typically
one line of code. A strong benefit of our platform
is that it is very fast for researchers to plug and
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Figure 2: An example how the task build maps to a generated evaluation task in Section 3.

play typical evaluation tasks. For further detail, see
Figure 2 for an example.
Advanced Usage As previously mentioned, it is
possible to add branching logic via the use of
lambda functions. Firstly, the researcher must de-
fine a function that takes as an input the state dic-
tionary. The state dictionary contains information
representing the current state of the task and any
persisted data. Thus, based upon the data collected
so far, the researcher can decide which page to
instantiate and return. The researcher adds the
LambdaFunction object passing in their lambda
function. During run time, when the LambdaFunc-
tion object is popped from the task flow list, our
framework will call the function by passing in the
current state dictionary and return the determined
page to display.

# 1) Define conditional logic

f = lambda state: \
ComponentA() \
if state[’survey’][’q1’] == "Yes" \
else ComponentB()

# 2) Add the LambdaFunction to the Task Flow

task flow.append(LambdaFunction(f))

4 Experiments

To demonstrate the effectiveness of LEGOEval in
setting up dialogue system human evaluation tasks,
we reproduce a set of crowdsourced experiments
from the BlenderBot paper (Roller et al., 2020),
a state-of-the-art open-domain chatbot. Crowd-
sourced experiments in BlenderBot include two
steps: (1) collecting human-bot conversations via

crowdworkers, (2) ACUTE-Eval (Li et al., 2019)
between two models, where crowdworkers are
asked to make pairwise evaluations of complete
dialogues. We implement both crowdsourced ex-
periments in approximately 20 lines of Python code
with LEGOEval, indicating that it is easy to imple-
ment different types of human evaluation tasks with
our toolkit in a plug and play fashion.

4.1 Human-Bot Data Collection
Following Roller et al. (2020) and Adiwardana et al.
(2020), we build a task to collect human-bot con-
versations on AMT for the 90M BlenderBot model
with LEGOEval. We simply assemble a pre-survey
question component in the first page and a chatbot
component in the second page. The generated in-
terface is shown in Figure 3. We build the whole
task from scratch and post it on AMT in several
minutes. Then we collect 20 conversations fol-
lowing the settings in Roller et al. (2020). One
example from our collected conversations is shown
in Appendix A. It shows that our toolkit can collect
human-bot conversations properly.

4.2 BlenderBot (2.7B) vs. Meena
To demonstrate LEGOEval’s capability to support
different dialogue system human evaluation tasks,
we also reproduce ACUTE-Eval (Li et al., 2019) be-
tween BlenderBot (Roller et al., 2020) and Meena
(Adiwardana et al., 2020). ACUTE-Eval requires
human annotators to compare multi-turn conver-
sations between different dialogue systems. Fol-
lowing Roller et al. (2020) and Li et al. (2019), we
consider two evaluation questions:

• Engagingness question: “Who would you pre-
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Figure 3: The interface of the human-bot conversation task with the Blender Model. In the task, the survey is
shown first, and then the chat window. However, we show the pages side by side for convenience.

fer to talk to for a long conversation?”

• Humanness question: “Which speaker sounds
more human?”

As shown in Figure 4, we use a chat history com-
parison page that features a single choice survey
question. Crowdworkers are instructed to compare
two dialogues and answer two questions below. We
collect 114 data points, the results is shown in Ta-
ble 2. The results (0.72 vs. 0.28 for engagingness,
0.68 vs. 0.32 for humanness) are close to the results
in Roller et al. (2020) (0.75 vs. 0.25 for engaging-
ness, 0.65 vs. 0.35 for humanness). It demonstrates
that with our toolkit, we can reproduce the human
evaluation results in other works quickly.

Model BlenderBot Meena
Engagingness 0.72 (0.75) 0.28 (0.25)
Humanness 0.68 (0.65) 0.32 (0.35)

Table 2: Human-Chat ACUTE-Eval of engagingness
and humanness between BlenderBot (2.7B) and Meena,
numbers represent the percentage of people choose the
model. Numbers in brackets are the results in Roller
et al. (2020)

5 Conclusion and Future Work

We introduce LEGOEval, an open-source Python-
based toolkit that allows researchers to easily de-
velop human evaluation tasks for dialogue systems
on AMT in a LEGO plug-and-play fashion. LEGO-
Eval provides a variety of commonly-used React.js
components as building blocks for researchers to

Figure 4: Interface of ACUTE-Eval between the
BlenderBot and Meena. The conversations have been
truncated to save display-space.

use. We have shown that it is straightforward to
customize different types of human evaluation pro-
cedures for dialogue systems in a few lines of code,
create new components by leveraging the shared
state between the front-end and back-end, and re-
produce human evaluation results in other works
effortlessly. With LEGOEval, we hope to provide
a simple and flexible way to evaluate dialogue sys-
tems. For future work, we plan to add more human
evaluation procedure templates and React.js com-
ponents. We further want to extend the tool to
support human-human interaction on AMT, mak-
ing it work not only for evaluation, but also for
dialogue data collection.
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A Example conversation

Table 3 shows an example conversation we col-
lected in the human-bot data collection experiment.

Role Utterance
Human Hi
Bot Hi, how are you today? I just got back from a

long day of work, how about you?
Human I have had a day off today. Nothing much to

do.
Bot Oh, I’m sorry to hear that what do you like to

do in your spare time?
Human I like to read a lot. I also like to go to the

movies.
Bot I love to read as well. What kind of books do

you read? I’ve never been to a movie
Human I like the Harry Potter series and the Lord of

the Rings trilogy very much.
Bot I haven’t read any of those books, but I have

heard good things about them, do you have any
other hobbies?

Human I like to go walking in the countryside. Do you
like nature?

Bot I do like nature, but not as much as I would
like to spend time in the wild

Human Do you enjoy camping? I really love that.
Bot No, I don’t think I could do that. I think I

would get sick of it.
Human But it’s so nice to be outside interacting with

nature.
Bot That’s true, maybe I’ll try it one day, it sounds

like a lot of fun.
Human You can cook outside too. Do you like cook-

ing?
Bot I do love to cook, I do it all the time. What is

your favorite thing to cook?
Human I like to bake a lot. I make really good choco-

late chip cookies.

Table 3: One example conversation between Blender-
Bot and human collected by LEGOEval.


