
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 122–131, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

122

Trafilatura: A Web Scraping Library and Command-Line Tool
for Text Discovery and Extraction

Adrien Barbaresi
Center for Digital Lexicography of German (ZDL)
Berlin-Brandenburg Academy of Sciences (BBAW)

Jgerstr. 22-23, 10117 Berlin, Germany
barbaresi@bbaw.de

Abstract

An essential operation in web corpus construc-
tion consists in retaining the desired content
while discarding the rest. Another challenge
finding one’s way through websites. This ar-
ticle introduces a text discovery and extrac-
tion tool published under open-source license.
Its installation and use is straightforward, no-
tably from Python and on the command-line.
The software allows for main text, comments
and metadata extraction, while also providing
building blocks for web crawling tasks. A
comparative evaluation on real-world data also
shows its interest as well as the performance of
other available solutions.

The contributions of this paper are threefold: it
references the software, features a benchmark,
and provides a meaningful baseline for similar
tasks. The tool performs significantly better
than other open-source solutions in this evalu-
ation and in external benchmarks.

1 Introduction

1.1 Gathering texts from the Web
As useful monolingual text corpora across lan-
guages are highly relevant for the NLP community
(Caswell et al., 2020), web corpora seem to be a
natural way to gather language data. Corpus con-
struction usually involves “crawling, downloading,
‘cleaning’ and de-duplicating the data, then linguis-
tically annotating it and loading it into a corpus
query tool” (Kilgarriff, 2007). However, although
text is ubiquitous on the Web, drawing accurate
information from web pages can be difficult. In ad-
dition, the vastly increasing variety of corpora, text
types and use cases makes it more and more diffi-
cult to assess the usefulness and appropriateness of
certain web texts for given research objectives. As
a result, content adequacy, focus and quality need
to be evaluated after the downloads (Baroni et al.,
2009).

A significant challenge lies in the ability to ex-
tract and pre-process web data to meet scientific
expectations with respect to text quality. An es-
sential operation in corpus construction consists
in retaining the desired content while discarding
the rest, a task carrying various names referring to
specific subtasks or to pre-processing as a whole:
web scraping, boilerplate removal, web page seg-
mentation, web page cleaning, template extraction,
or content extraction. This step is sometimes over-
looked although it involves a series of design de-
cisions and turning points in data processing. De-
pending on the purpose of data collection, adequate
filtering and quality assessment can be crucial. It
has a significant impact on a wide range of down-
stream applications like text analysis, information
retrieval, link analysis, page adaptation to other ter-
minals and screens, and especially natural language
processing pipelines.

Another challenge is how to find one’s way
through the Web, notably as linguistic data are
gathered by running targeted web crawlers (Scan-
nell, 2007). As web crawling involves discarding
much of the downloaded content (Olston and Na-
jork, 2010), especially link filtering and prioritiza-
tion can prove to be tricky for contexts in which
data collection is just the first step of a project, so
that time resources for this task are scarce. Data
collection approaches using the CommonCrawl1

have flourished as they allow for faster download
and processing by skipping (or more precisely out-
sourcing) the crawling phase. Barring the fact that
finding one’s “own” way through the Web can be
preferable, such data should not be used without
forethought and exhaustive filtering. Beside the dis-
covery of relevant websites, a major issue consists
in selecting appropriate content after download and
processing (Schäfer et al., 2013), which can be com-

1https://commoncrawl.org



123

plex due to unexpected machine-generated flaws
and biases.

Finally, depending on the project’s jurisdiction,
legal aspects of retrieving and granting access
to web documents can be unclear or restrictive.
Boundaries of copyright law are not clear when it
comes to corpus building (De Clercq and Perez,
2010) so that some corpus infrastructure projects
leave it to users to decide what to do from a copy-
right standpoint (Benko, 2016). Copyright and
intellectual property rights usually do not apply
to resources such as language models or n-grams
(Buck et al., 2014), so are shuffled sentences (Bie-
mann et al., 2007). Web corpora focusing on man-
ually selected sources under Creative Commons
licenses have been built (Brunello, 2009; Lyding
et al., 2014), although only a very small propor-
tion of websites use them (Barbaresi and Würzner,
2014). Corpora based on machine-checked licenses
have also been developed (Habernal et al., 2016), as
well as systems to merge annotation with web parts
from the CommonCrawl (Schäfer, 2016). Consid-
ering the progresses of annotation tools, is can be
easier to retrieve documents directly from the Web
or from archives and to process them to one’s taste.

1.2 Research context
This effort is part of methods to derive informa-
tion from web documents in order to build text
databases for a lexicographic information plat-
form (Geyken et al., 2017). Extracting and pre-
processing web texts to the exacting standards of
scientific research turned out to be a substantial
challenge where existing open-source solutions
were not entirely convincing in terms of accuracy,
versatility, and ease of use. The current tool fol-
lows from earlier work on news and blog articles
extraction (Barbaresi, 2015, 2016). Its packaging
into a directly re-usable format generalizes the pro-
cess and makes it available to the community, with
thorough testing it has also become much more
robust and versatile.

1.3 Contributions
Distinguishing between a whole page and the
page’s essential parts can help to alleviate many
quality problems related to web text processing, no-
tably by dealing with the noise caused by recurring
elements (headers and footers, ads, links/blogroll,
etc.). This can be particularly useful to de-duplicate
recurring language samples. Tasks related to con-
tent extraction and language modeling also benefit

from a cleaner text base. In the concrete case of
linguistic and lexicographic research, it allows for
content queries on meaningful parts of the docu-
ments.

The remainder of this article introduces a text
extraction and web navigation tool published un-
der open-source license. Its installation and use is
straightforward, notably from Python and on the
command-line. The software makes it easier to ex-
tract the main text, comments and metadata, while
also providing building blocks for text discovery
tasks such as web crawling. The following also
entails a comparative evaluation of text extraction
on real-world data. The contributions of this paper
are thus threefold as it references the software, fea-
tures a benchmark, and provides a fast, meaningful
baseline for similar tasks.

2 State of the art

2.1 “A difficult IE problem”
Even before the “Web 2.0” paradigm with web
pages assembling information from and for a va-
riety of sources (notably the advertising industry),
web pages have been known for their lack of focus
on directly usable text content. Despite the quantity
of pages following an article format where there is
a main text to be found, web pages now accessible
through archives cannot be expected to be easy to
process: “Articles published on the WWW often
contain extraneous clutter. Most articles consist
of a main body which constitutes the relevant part
of the particular page. [...] Identifying the main
body of a web page in a general robust manner is
a difficult information extraction problem.” (Finn
et al., 2001)

Web pages come in different shapes and sizes
mostly because of the wide variety of platforms
and content management systems, and not least be-
cause of varying reasons to publish and diverging
goals followed during web publication. Web page
structure is also constantly evolving from the per-
spective of standards. HTML 5 was first released in
2008 to provide support for multimedia and graph-
ical elements. This standard streamlined syntax
while retaining backward-compatibility. Web con-
tent extraction is also an active field of research in
user experience, resulting from the need for higher
download and rendering speeds as well as from a
growing amount of “Web bloat” requiring the de-
velopment of “reader modes” and “distillers”2 for

2https://chromium.googlesource.com/chromium/dom-



124

web browsers (Ghasemisharif et al., 2019).

2.2 Wrappers

Data extraction has first been based on “wrappers”
(now called “scrapers”) which were mostly rely-
ing on manual design and tended to be brittle and
hard to maintain (Crescenzi et al., 2001). These
extraction procedures have also been used early
on by blogs search engines (Glance et al., 2004).
Since the genre of “web diaries” was established
before the blogs in Japan, there have been attempts
to target not only blog software but also regular
pages (Nanno et al., 2004), in which the extraction
of metadata also allows for a distinction based on
heuristics. Regarding metadata extraction for pages
in article form and blogs in particular, common
targets include the title of the entry, the date, the
author, the content, the number of comments, the
archived link, and the trackback link (Glance et al.,
2004); they can also aim at comments specifically
(Mishne and Glance, 2006).

2.3 Generic web content extraction

Generic extraction techniques ground on Document
Object Model (DOM) examination. An earlier,
language-independent approach uses entropy mea-
sures applied to features, links, and content in order
to discriminate among parts of a web page (Kao
et al., 2004). Another notable technique, Visual
Page Segmentation, applies heuristics to find vi-
sually grouped blocks (Cai et al., 2003). Other
methods are based on style tree induction, that is
detection of similarities of DOM trees on site-level
(Yi et al., 2003; Vieira et al., 2006). Overall, efforts
made to automatically generate wrappers have been
centered on three different approaches (Guo et al.,
2010): wrapper induction (e.g. building a grammar
to parse a web page), sequence labeling (e.g. la-
beled examples or a schema of data in the page),
and statistical analysis. This approach combined to
the inspection of DOM tree characteristics (Wang
et al., 2009; Guo et al., 2010) is a common ground
to the information retrieval and computational lin-
guistics communities, with the categorization of
HTML elements and linguistic features (Ziegler
and Skubacz, 2007) for the former and boilerplate
removal for the latter.

The DOM considers a given HTML document as
a tree structure whose nodes represent parts of the
document to be operated on. Text, tag and/or link

distiller

density have proven to be good indicators in order
to select or discard content nodes, using the cu-
mulative distribution of tags (Finn et al., 2001), or
with approaches such as the content extraction via
tag ratios (Weninger et al., 2010) and the content
extraction via text density algorithms (Sun et al.,
2011). Statistical selection of informative nodes
through a combination of both methods proved
more efficient on comparable datasets (Qureshi and
Memon, 2012). The large majority of DOM-based
approaches try to leverage semantic information
conveyed by HTML tags, notably paragraphs (p) on
which text-to-tag ratios are calculated (Carey and
Manic, 2016), or tag ratios and semantic features
from id and class attributes (Peters and Lecocq,
2013).

Machine learning approaches have also been
used, whose interest generally consists in lever-
aging advances in classification tasks by treating a
HTML document as a series of blocks to be classi-
fied. Relevant algorithms include conditional ran-
dom fields learning header, text, and noisy blocks
with markup-based, content-based, and document-
related features (Spousta et al., 2008), support vec-
tor machines trained on linguistic, structural and
visual features (Bauer et al., 2007), Naive Bayes
(Pasternack and Roth, 2009), multi-layer percep-
tron based on paragraph-level features (Schäfer
and Bildhauer, 2012), or logistic regressions (Pe-
ters and Lecocq, 2013). More recently, deep learn-
ing has also been used for similar classifications,
e.g. the Web2Text system is based on convolutional
neural networks learning combinations of DOM-
based features (Vogels et al., 2018).

Despite the number of article on this topic, very
few systems are open-source or freely available
(Alarte et al., 2019).

2.4 Corpus linguistics and NLP

There are few comparable projects coming from
the linguistics or natural language processing com-
munities and focused on making software publicly
available and usable. Boilerpipe uses shallow text
features like word counts and link density with
decision tree and SVM classifiers (Kohlschütter
et al., 2010). JusText is based on length heuristics
as well as link and stop word densities (Pomikálek,
2011). Both algorithms have been prevalent since
their release and are now mostly used through their
subsequent forks, as software needs to be kept up-
to-date. More recent initiatives explicitly targeting



125

corpus creation feature the Corpus Crawler3 or
Texrex4 (Schäfer, 2017), neither of which appears
to be actively maintained.

An evaluation and discussion following from the
Cleaneval initiative (Baroni et al., 2008) would put
the topic back into focus, as content processing on
the Web is affected by both time and geography.
This benchmark could be elaborated on, results are
not consistent in different languages and metrics
sometime fail to capture the variable influence of
extractors on downstream modules (Lejeune and
Zhu, 2018). Often, tools are developed with partic-
ular page styles in mind, mostly from the English-
speaking world (Barbaresi and Lejeune, 2020). For
certain projects, customized scrapers which are ad-
justed to each website remain feasible (Krasselt
et al., 2020). A generic approach can really save
human time and resources, albeit at a certain cost
in terms of accuracy depending on the context.

3 Introducing the Trafilatura tool

3.1 Features

Trafilatura is a web scraping tool for text discovery
and retrieval which seamlessly downloads, parses,
and scrapes web page data. It can crawl and dis-
cover texts within a website and process them ac-
cordingly. The extractor focuses on metadata, main
body text and comments while preserving parts
of the text formatting and page structure. It aims
to be precise enough in order not to miss texts or
to discard valid documents, as it must be robust
but also reasonably fast. With these objectives in
mind, Trafilatura is designed to run in production
on millions of web documents.

The software features parallel online and offline
processing: URLs, HTML files or parsed HTML
trees can be used as input. Although straight out-
put of Python variables is possible, conversion to
various common output formats makes the soft-
ware more versatile: plain text (minimal format-
ting), CSV (with metadata, tab-separated values),
JSON (with metadata), XML and XML-TEI (for
metadata and structure). The latter support for TEI
format (following the recommendations of the Text
Encoding Initiative) also includes a validator for
Python which can be used apart from the extraction.
The scraping and conversion parts also work with
existing archives, Raw HTML documents can be

3https://github.com/google/corpuscrawler
4https://github.com/rsling/texrex

retrieved from sources such as the CommonCrawl5

or the Internet Archive6.
In addition, download utilities are included, no-

tably using a multi-threaded but “polite” processing
of URL queues, i.e. time restrictions based on do-
main names. Persistent connections are managed
by a connection pool, thus maintaining connec-
tions with websites to be scraped. The tool also
entails web crawling capacities which provide ac-
cessible and fail-safe ways to gather data based on
a series of target sites. First, support for sitemaps
(XML and TXT formats) according to the sitemap
protocol. Second, support for web feeds (ATOM,
RDF and RSS formats) which make it possible to
build a seamless news crawler. Third, crawling
components to discover content. It can also manip-
ulate URL lists, including filtering and prioritiza-
tion based on site characteristics or language-aware
heuristics based on internationalization.

The package provides a relatively light-weight
and modular architecture, letting users choose the
components they wish to include. It has been tested
on Linux, MacOS and Windows, and can be used
with Python, on the command-line, with R (us-
ing the reticulate adapter package), and through a
graphical user interface. The package documenta-
tion also acts as a manual on web text collection.7

3.2 Extraction process

The extraction combines two acknowledged li-
braries, readability-lxml8 and jusText9, which are
used as safety nets and fallbacks. Trafilatura’s own
extraction algorithm is based on a cascade of rule-
based filters and content heuristics:
(1) Content delimitation is performed by XPath ex-
pressions targeting common HTML elements and
attributes as well as idiosyncrasies of main content
management systems, first in a negative perspec-
tive with the exclusion of unwanted parts of the
HTML code (e.g. <div class=”nav”>) and next
by centering on the desirable content (e.g. <section
id=”entry-content”>). The same operations are
performed for comments in case they are part of
the extraction. The selected nodes of the HTML
tree are then processed, i.e. checked for relevance
(notably by element type, text length and link den-
sity) and simplified as to their HTML structure.

5https://commoncrawl.org/
6https://archive.org/
7https://trafilatura.readthedocs.io/
8https://github.com/buriy/python-readability
9https://github.com/miso-belica/jusText



126

(2) If fallbacks are selected and triggered by a pos-
sibly faulty extraction, the other algorithms are run
as a backup. Since they proceed differently their
approach is complementary. They notably apply
heuristics based on line length, text-to-markup ra-
tio, and position/depth of elements in the HTML
tree. If applicable, the output of these generic algo-
rithms is compared to the “homegrown” extraction
and heuristics are applied to determine the most
efficient extraction, mostly in terms of extraction
length (all algorithms are fairly reliable, so much
longer is better) and “impurities” (e.g. no media
elements).
(3) In case nothing worked, a baseline extraction is
run in order to look for “wild” text elements that
most probably have been missed, which implies to
discard unwanted parts and to look for any element
which may contain useful text content (e.g. div
elements without paragraphs).

The extraction is designed to be robust and mod-
ular and provides a trade-off between precision
and recall in most settings. As a result, main texts
and potential comments are returned, with optional
preservation of structural elements (paragraphs, ti-
tles, lists, quotes, code, line breaks, in-line text for-
matting). Extraction of metadata is also included,
that is by descending frequency title, site name,
author, date, categories and tags. For date extrac-
tion the library acts like a wrapper around htmldate
(Barbaresi, 2020), a module specifically developed
for this task.

An optional language detection can be run on
the extracted content, currently using the Compact
Language Detector v3 (CLD3)10, which can be
subject to accuracy issues depending on text length
and language modeling (Caswell et al., 2020).

4 Evaluation

4.1 Benchmark
The evaluation focuses on the ability to retain ap-
propriate text spans and discarded unwanted clutter,
a functionality shared by many tools. Text discov-
ery and conversion utilities are not evaluated here
as most solutions do not include them. The bench-
mark is run on a collection of 500 documents which
are either typical for Internet articles (news outlets,
blogs) or non-standard and thus harder to process.
Some contain mixed content (lists, tables) and/or
non-standard, not fully valid HTML code. They
were selected from large collections of web pages

10https://github.com/google/cld3

in German, for the sake of completeness a few doc-
uments in other languages are added (notably En-
glish, French, other European languages, Chinese
and Arabic). The evaluation is reproducible, the
needed script and instructions are available from
the project repository.11

Target of the extraction is the main content,
which is usually the part displayed centrally, with-
out the left or right bars, the header or the footer,
but including potential titles and (optionally) com-
ments. This task is also known as web scraping,
boilerplate removal, DOM-based content extrac-
tion, main content identification, or web page clean-
ing.

Decisive document segments of a few words
each are singled out, about three per webpage are
manually annotated as being part of the main text
or unwanted boilerplate. They represent parts of
the documents which are of high significance in
the perspective of working with the texts, most
notably beginnings and endings, left/right columns,
additional header, author or footer information such
as imprints or addresses, as well as affiliated and
social network links.

Raw text segments are expected as a way to eval-
uate extraction quality without markup, i.e. HTML
to TXT in itself, which avoids indirectly factoring
in how the systems deal with markup. The chosen
segments are included in a single HTML element
span and they do not imply trimming or normaliz-
ing spaces, which makes the output strings directly
comparable. Due to the language diversity of the
sample the documents entail different text encod-
ings. Since not all packages deal with them in a
similar way, the given input string is in Unicode
format.

4.2 Tools
The benchmark focuses on the Python program-
ming language, reportedly the most popular pro-
gramming language in academia and one of the
most popular overall.12 A few algorithms have
been ported from other languages such as Java and
JavaScript, which contributes to giving an exhaus-
tive yet incomplete panorama of available solutions
overall. In case software packages are not actively
maintained the most prominent usable fork is used.

First, these packages are provided for reference
as they keep the structure intact but do not focus

11https://github.com/adbar/trafilatura/
12https://spectrum.ieee.org/computing/software/the-top-

programming-languages-2019



127

on main text extraction:

• html2text13 converts HTML pages to Markup
language

• html text14 converts HTML code to plain text

• inscriptis15 converts HTML to text with a par-
ticular emphasis on nested tables

The following packages are strictly comparable
as they focus on main text extraction:

• boilerpy316 is a Python version of the boiler-
pipe algorithm (Kohlschütter et al., 2010) for
boilerplate removal and fulltext extraction

• dragnet17 features machine-learning and com-
bined approaches (Peters and Lecocq, 2013)
but requires more dependencies and poten-
tially fine-tuning: it is used with its default
training data

• goose318 can extract information for embed-
ded content but doesnt preserve markup

• jusText19 is designed to preserve mainly text
containing full sentences along with some
markup, it has been explicitly developed to
create linguistic resources (Pomikálek, 2011)

• newspaper20 is mostly geared towards news-
paper texts, provides additional functions but
no structured text or comment extraction

• news-please21 is a news crawler that extracts
structured information (Hamborg et al., 2017)

• readability-lxml22 cleans the page and pre-
serves some markup

The tools are compared to the raw page source
and to a meaningful baseline also provided by Trafi-
latura which consists in extracting all the text con-
tained in JSON data or paragraph, code or quoting
elements.

Two variants of Trafilatura are evaluated, first
using its own algorithm and second including its
fallback mechanisms based on external libraries.

13https://github.com/Alir3z4/html2text
14https://github.com/TeamHG-Memex/html-text
15https://github.com/weblyzard/inscriptis
16https://github.com/jmriebold/BoilerPy3
17https://github.com/dragnet-org/dragnet
18https://github.com/goose3/goose3
19https://github.com/miso-belica/jusText
20https://github.com/codelucas/newspaper
21https://github.com/fhamborg/news-please
22https://github.com/buriy/python-readability

4.3 Results

The results are listed in Table 1. Baseline extrac-
tion is simple and fast, it beats a few systems, show-
ing its interest. JusText is highly configurable and
tweaking its configuration leads to better perfor-
mance than its generic settings, that is why it has
been done here. The only solid conclusions which
can be drawn for execution times are that goose3
and newspaper are slower than the rest while news-
pleases execution time isn’t comparable because of
operations unrelated to text extraction. The news-
paper and boilerpy3 modules do not work without
errors on every HTML file in the test set, probably
because of malformed HTML, encoding or parsing
bugs.

It turns out that rule-based approaches such as
Trafilatura’s own algorithm (“fast” option) obtain
balanced results despite a lack of precision. Al-
though the library in itself is already above the rest,
it performs significantly better than the other tested
solutions when combined with generic algorithmic
approaches.

4.4 External evaluations

A few external evaluations are already available,
they ground on early releases of the software dur-
ing its development. A previous version of Trafi-
latura is the most efficient open-source library in
ScrapingHub’s article extraction benchmark.23 Sig-
nificantly better results are also reported in the case
of French and Swedish for a previous version (Laip-
pala et al., 2020), as well as the best overall macro-
mean on the multilingual and manually-annotated
DANIEL corpus comprising about 1,600 web-
pages in five different languages (Lejeune and Bar-
baresi, 2020). In a further context, the tool has
proven to be efficient on main text extraction to
create Russian-Turkic parallel corpora (Khusainov
et al., 2020).

4.5 Discussion

In some cases, no text is returned, but there is no
way to return text at all costs without impacting pre-
cision. Trafilatura as a whole is currently made for
users aiming for better text quality. While rule-
based approaches are both easier to use and to
parameterize and could be more efficient in the
long-run (Barbaresi and Lejeune, 2020), extrac-
tion presets would be useful in order to make the

23https://github.com/scrapinghub/article-extraction-
benchmark



128

Python Package Precision Recall Accuracy F-Score Diff.
naive baseline: raw HTML 0.527 0.878 0.547 0.659 0
html2text 2020.1.16 0.488 0.714 0.484 0.580 8.9x
html text 0.5.2 0.526 0.958 0.548 0.679 1.9x
inscriptis 1.1 0.531 0.958 0.556 0.683 2.4x
justext 2.2.0 (custom) 0.870 0.584 0.749 0.699 6.1x
newspaper3k 0.2.8 0.921 0.574 0.763 0.708 12.9x
boilerpy3 1.0.2 (article mode) 0.851 0.696 0.788 0.766 4.8x
goose3 3.1.9 0.950 0.644 0.806 0.767 18.8x
trafilatura baseline 0.746 0.804 0.766 0.774 1x
dragnet 2.0.4 0.906 0.689 0.810 0.783 3.1x
readability-lxml 0.8.1 0.917 0.716 0.826 0.804 5.9x
news-please 1.5.21 0.924 0.718 0.830 0.808 60x
trafilatura 0.8.2 (fast) 0.925 0.868 0.899 0.896 3.9x
trafilatura 0.8.2 0.934 0.890 0.914 0.912 8.4x

Table 1: Benchmark on 500 documents, 1487 text and 1496 boilerplate segments.

tool more adaptable to research contexts, such as
precision-based settings where discarding more el-
ements is paramount or recall-based settings where
empty or nearly empty documents are a concern
(Gao et al., 2020).

Even if text encoding detection is performed at
least as well and possibly better than the competi-
tion, a compromise has to be found between speed
and accuracy. This issue impedes results to a vari-
able extent, as character sequences are improperly
recognized or completely skipped.

5 Conclusions and outlook

The variety of contexts and text genres leads to
important design decisions impacting web corpora:
could and should the tooling be adapted to par-
ticular sources that are targeted or should the ex-
traction be as generic as possible to provide op-
portunistic ways of gathering information? Due
to corpus size or limited resources, the second op-
tion is often best. The software package introduced
here can help facilitate text data collection and en-
hance corpus quality. It can answer two research
questions related to web corpus construction: How
can an accessible generic extraction be run on web
pages? And how can text content be found given a
list of websites? In the evaluation, Trafilatura per-
forms significantly better than other open-source
solutions, which is corroborated by external bench-
marks. The article also provided a fast and mean-
ingful baseline which can be used in similar extrac-
tion tasks.

Most scraping tools are developed considering

particular page styles, whereas linguistic and ge-
ographic factors are most probably reflected in
HTML structure diversity. In addition, different
eras of web development result in diverging “HTM-
Lects”. These discrepancies deeply affect extrac-
tion processes and can lead to diverging perfor-
mances. Trafilatura tries to mitigate these biases
but cannot bridge all potential gaps. While some
large-scale natural language processing and lan-
guage modeling algorithms can be expected to
smooth out irregularities to a certain extent, uses
requiring a low margin of error and close reading
approaches can greatly benefit from refinements
during construction and processing of corpora. As
this tool has been released under an open-source
license and field-tested by users, feedback loops
and collaborative work will hopefully be carried on
and foster further improvements.

Although the extraction parameters are config-
urable, recall- and precision-oriented settings will
be made available to make major extraction set-
tings more convenient. Presets corresponding to
different usage scenarios could be developed. Com-
ment extraction still has to be evaluated although
most libraries do not offer this functionality. Forth-
coming additions include refinements of navigation
functions, notably further work on a spider in order
to be able to derive links from websites which do
not provide sitemaps or web feeds.



129

References
Julian Alarte, Josep Silva, and Salvador Tamarit. 2019.

What Web Template Extractor Should I Use?A
Benchmarking and Comparison for Five Template
Extractors. ACM Transactions on the Web (TWEB),
13(2):1–19.

Adrien Barbaresi. 2015. Ad hoc and general-purpose
corpus construction from web sources. Ph.D. thesis,
École Normale Supérieure de Lyon.

Adrien Barbaresi. 2016. Efficient construction of
metadata-enhanced web corpora. In Proceedings of
the 10th Web as Corpus Workshop, pages 7–16. As-
sociation for Computational Linguistics.

Adrien Barbaresi. 2020. htmldate: A Python package
to extract publication dates from web pages. Journal
of Open Source Software, 5(51):2439.

Adrien Barbaresi and Gaël Lejeune. 2020. Out-of-the-
Box and Into the Ditch? Multilingual Evaluation of
Generic Text Extraction Tools. In Proceedings of
the 12th Web as Corpus Workshop, pages 5–13.

Adrien Barbaresi and Kay-Michael Würzner. 2014.
For a fistful of blogs: Discovery and comparative
benchmarking of republishable German content. In
Proceedings of KONVENS 2014, NLP4CMC work-
shop, pages 2–10. Hildesheim University Press.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky Wide Web: a
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Marco Baroni, Francis Chantree, Adam Kilgarriff, and
Serge Sharoff. 2008. Cleaneval: a Competition for
Cleaning Web Pages. In Proceedings of the 6th
Conference on Language Resources and Evaluation
(LREC’08), pages 638–643. ELRA.

Daniel Bauer, Judith Degen, Xiaoye Deng, Priska
Herger, Jan Gasthaus, Eugenie Giesbrecht, Lina
Jansen, Christin Kalina, Thorben Kräger, Robert
Märtin, Martin Schmidt, Simon Scholler, Johannes
Steger, Egon Stemle, and Stefan Evert. 2007. FI-
ASCO: Filtering the internet by automatic subtree
classification. In Building and Exploring Web Cor-
pora: Proceedings of the 3rd Web as Corpus Work-
shop (WAC-3), pages 111–121.

Vladimı́r Benko. 2016. wo Years of Aranea: Increas-
ing Counts and Tuning the Pipeline. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC’16), pages 4245–
4248. ELRA.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and
Matthias Richter. 2007. The Leipzig Corpora Col-
lection: Monolingual Corpora of Standard Size. In
Proceedings of the Corpus Linguistics Conference.

Marco Brunello. 2009. The creation of free linguistic
corpora from the web. In Proceedings of the Fifth
Web as Corpus Workshop (WAC5), pages 9–16. El-
huyar Fundazioa.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen.
2014. N-gram Counts and Language Models from
the Common Crawl. In Proceedings of the 9th In-
ternational Conference on Language Resources and
Evaluation (LREC’14). ELRA.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying
Ma. 2003. VIPS: a Vision-based Page Segmenta-
tion Algorithm. Technical report, Microsoft Tech-
nical Report (MSR-TR-2003-79).

Howard J. Carey and Milos Manic. 2016. HTML web
content extraction using paragraph tags. In 25th
International Symposium on Industrial Electronics
(ISIE), pages 1099–1105. IEEE.

Isaac Caswell, Theresa Breiner, Daan van Esch, and
Ankur Bapna. 2020. Language ID in the wild:
Unexpected challenges on the path to a thousand-
language web text corpus. In Proceedings of the
28th International Conference on Computational
Linguistics, pages 6588–6608. International Com-
mittee on Computational Linguistics.

Valter Crescenzi, Giansalvatore Mecca, and Paolo
Merialdo. 2001. Roadrunner: Towards Automatic
Data Extraction From Large Web Sites. In Proceed-
ings of the 27th VLDB Conference, pages 109–118.

Orphée De Clercq and Maribel Montero Perez. 2010.
Data Collection and IPR in Multilingual Parallel
Corpora. Dutch Parallel Corpus. In Proceedings
of the 7th International Conference on Language
Resources and Evaluation (LREC’10), pages 3383–
3388. ELRA.

Aidan Finn, Nicholas Kushmerick, and Barry Smyth.
2001. Fact or Fiction: Content Classification for
Digital Libraries. In Joint DELOS-NSF Workshop:
Personalization andRecommender Systems in Digi-
tal Libraries.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB Dataset of Diverse Text for Lan-
guage Modeling. arXiv preprint arXiv:2101.00027.

Alexander Geyken, Adrien Barbaresi, Jrg Didakowski,
Bryan Jurish, Frank Wiegand, and Lothar Lemnitzer.
2017. Die Korpusplattform des ”Digitalen Wrter-
buchs der deutschen Sprache” (DWDS). Zeitschrift
fr germanistische Linguistik, 45(2):327–344.

Mohammad Ghasemisharif, Peter Snyder, An-
drius Aucinas, and Benjamin Livshits. 2019.
SpeedReader: Reader Mode Made Fast and Private.
In Proceedings of the World Wide Web Conference,
pages 526–537.



130

Natalie Glance, Matthew Hurst, and Takashi Tomokiyo.
2004. Blogpulse: Automated Trend Discovery for
Weblogs. In WWW 2004 Workshop on the Weblog-
ging Ecosystem: Aggregation, Analysis and Dynam-
ics.

Yan Guo, Huifeng Tang, Linhai Song, Yu Wang, and
Guodong Ding. 2010. ECON: an Approach to Ex-
tract Content from Web News Page. In Proceedings
of 12th International Asia-Pacific Web Conference
(APWEB), pages 314–320. IEEE.

Ivan Habernal, Omnia Zayed, and Iryna Gurevych.
2016. C4Corpus: Multilingual Web-size Corpus
with Free License. In Proceedings of the 10th
Conference on Language Resources and Evaluation
(LREC’16), pages 914–922.

Felix Hamborg, Norman Meuschke, Corinna Bre-
itinger, and Bela Gipp. 2017. news-please: A
Generic News Crawler and Extractor. In Proceed-
ings of the 15th International Symposium of Infor-
mation Science, pages 218–223.

Hung-Yu Kao, Shian-Hua Lin, Jan-Ming Ho, and
Ming-Syan Chen. 2004. Mining web informative
structures and contents based on entropy analysis.
IEEE Transactions on Knowledge and Data Engi-
neering, 16(1):41–55.

Aidar Khusainov, Dzhavdet Suleymanov, Rinat
Gilmullin, Alina Minsafina, Lenara Kubedinova,
and Nilufar Abdurakhmonova. 2020. First Results
of the TurkLang-7 Project: Creating Russian-Turkic
Parallel Corpora and MT Systems. In Proceedings
of the Computational Models in Language and
Speech Workshop (CMLS 2020), pages 90–101.
CEUR.

Adam Kilgarriff. 2007. Googleology is bad science.
Computational Linguistics, 33(1):147–151.

Christian Kohlschütter, Peter Fankhauser, and Wolf-
gang Nejdl. 2010. Boilerplate detection using shal-
low text features. In Proceedings of the Third ACM
International Conference on Web Search and Data
Mining, WSDM 10, pages 441–450.

Julia Krasselt, Philipp Dressen, Matthias Fluor, Cerstin
Mahlow, Klaus Rothenhäusler, and Maren Runte.
2020. Swiss-AL: A multilingual Swiss Web corpus
for applied linguistics. In Proceedings of the 12th
Conference on Language Resources and Evaluation
(LREC’20), pages 4145–4151. ELRA.

Veronika Laippala, Samuel Rönnqvist, Saara Hell-
ström, Juhani Luotolahti, Liina Repo, Anna Salmela,
Valtteri Skantsi, and Sampo Pyysalo. 2020. From
Web Crawl to Clean Register-Annotated Corpora. In
Proceedings of the 12th Web as Corpus Workshop,
pages 14–22.

Gaël Lejeune and Adrien Barbaresi. 2020. Bien choisir
son outil d’extraction de contenu à partir du Web
(Choosing the appropriate tool for Web Content Ex-
traction). In Actes de la 6e conférence conjointe

JEP, TALN, RÉCITAL. Volume 4: Démonstrations et
résumés d’articles internationaux, pages 46–49.

Gaël Lejeune and Lichao Zhu. 2018. A New Proposal
for Evaluating Web Page Cleaning Tools. Com-
putación y Sistemas, 22(4).

Verena Lyding, Egon Stemle, Claudia Borghetti, Marco
Brunello, Sara Castagnoli, Felice Dell’Orletta, Hen-
rik Dittmann, Alessandro Lenci, and Vito Pirrelli.
2014. The PAISÁ Corpus of Italian Web Texts.
In 9th Web as Corpus Workshop (WaC-9) @ EACL
2014, pages 36–43. European chapter of the Associ-
ation for Computational Linguistics.

Gilad Mishne and Natalie Glance. 2006. Leave a
Reply: An Analysis of Weblog Comments. In
Third Annual Workshop on the Weblogging Ecosys-
tem, WWW 2006.

Tomoyuki Nanno, Toshiaki Fujiki, Yasuhiro Suzuki,
and Manabu Okumura. 2004. Automatically Col-
lecting, Monitoring, and Mining Japanese Weblogs.
In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters,
pages 320–321. ACM.

Christopher Olston and Marc Najork. 2010. Web
Crawling. Foundations and Trends in Information
Retrieval, 4(3):175–246.

Jeff Pasternack and Dan Roth. 2009. Extracting article
text from the web with maximum subsequence seg-
mentation. In Proceedings of the 18th international
conference on World Wide Web, pages 971–980.

Matthew E. Peters and Dan Lecocq. 2013. Content ex-
traction using diverse feature sets. In Proceedings
of the 22nd International Conference on World Wide
Web, pages 89–90.

Jan Pomikálek. 2011. Removing boilerplate and du-
plicate content from web corpora. Ph.D. thesis,
Masaryk University.

Pir Abdul Rasool Qureshi and Nasrullah Memon. 2012.
Hybrid model of content extraction. Journal of Com-
puter and System Sciences, 78(4):1248–1257.

Kevin P. Scannell. 2007. The Crúbadán Project: Cor-
pus building for under-resourced languages. In Pro-
ceedings of the 3rd Web as Corpus Workshop, vol-
ume 4, pages 5–15, Louvain-la-Neuve.

Roland Schäfer. 2016. CommonCOW: massively huge
web corpora from CommonCrawl data and a method
to distribute them freely under restrictive EU copy-
right laws. In Proceedings of the 10th International
Conference on Language Resources and Evaluation
(LREC’16), pages 4500–4504. ELRA.

Roland Schäfer. 2017. Accurate and efficient general-
purpose boilerplate detection for crawled web
corpora. Language Resources and Evaluation,
51(3):873–889.



131

Roland Schäfer, Adrien Barbaresi, and Felix Bildhauer.
2013. The Good, the Bad, and the Hazy: Design De-
cisions in Web Corpus Construction. In Proceedings
of the 8th Web as Corpus Workshop, pages 7–15.

Roland Schäfer and Felix Bildhauer. 2012. Building
Large Corpora from the Web Using a New Efficient
Tool Chain. In Proceedings of the 8th Conference
on Language Resources and Evaluation (LREC’12),
pages 486–493. ELRA.

Miroslav Spousta, Michal Marek, and Pavel Pecina.
2008. Victor: the Web-Page Cleaning Tool. In 4th
Web as Corpus Workshop (WAC-4), pages 12–17.

Fei Sun, Dandan Song, and Lejian Liao. 2011. DOM-
based content extraction via text density. In Proceed-
ings of the 34th international ACM SIGIR confer-
ence on Research and development in Information
Retrieval, pages 245–254.

Karane Vieira, Altigran S Da Silva, Nick Pinto,
Edleno S De Moura, Joao MB Cavalcanti, and Ju-
liana Freire. 2006. A Fast and Robust Method for
Web Page TemplateDetection and Removal. In Pro-
ceedings of the 15th ACM International Conference
on Information and Knowledge Management, pages
258–267.

Thijs Vogels, Octavian-Eugen Ganea, and Carsten
Eickhoff. 2018. Web2text: Deep structured boiler-
plate removal. In European Conference on Informa-
tion Retrieval, pages 167–179. Springer.

Junfeng Wang, Xiaofei He, Can Wang, Jian Pei, Jia-
jun Bu, Chun Chen, Ziyu Guan, and Gang Lu. 2009.
News Article Extraction with Template-Independent
Wrapper. In Proceedings of the WWW 2009, pages
1085–1086. ACM.

Tim Weninger, William H Hsu, and Jiawei Han. 2010.
CETR: content extraction via tag ratios. In Proceed-
ings of the 19th international conference on World
Wide Web, pages 971–980.

Lan Yi, Bing Liu, and Xiaoli Li. 2003. Eliminating
noisy information in web pages for data mining. In
Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 296–305.

Cai-Nicolas Ziegler and Michal Skubacz. 2007. Con-
tent Extraction from News Pages using Particle
Swarm Optimization on Linguistic and Structural
Features. In Proceedings of the IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, pages
242–249. IEEE.


