
Proceedings of the 2020 EMNLP Workshop W-NUT: The Sixth Workshop on Noisy User-generated Text, pages 466–470
Online, Nov 19, 2020. c©2020 Association for Computational Linguistics

466

Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets

Thai Hoang
University of Washington

qthai912@cs.washington.edu

Phuong Vu ∗

University of Rochester
pvu3@u.rochester.edu

Abstract

As of 2020 when the COVID-19 pandemic
is full-blown on a global scale, people’s
need to have access to legitimate information
regarding COVID-19 is more urgent than
ever, especially via online media where the
abundance of irrelevant information overshad-
ows the more informative ones. In response
to such, we proposed a model that, given
an English tweet, automatically identifies
whether that tweet bears informative content
regarding COVID-19 or not. By ensembling
different BERTweet model configurations,
we have achieved competitive results that are
only shy of those by top performing teams
by roughly 1% in terms of F1 score on the
informative class. In the post-competition
period, we have also experimented with
various other approaches that potentially
boost generalization to a new dataset. Our
repository can be found in the following link:
https://github.com/quocthai9120/

W-NUT-2020-Shared-Task-2

1 Introduction

Following the rise of smart technology and an in-
creasingly wide coverage of Internet, social net-
work websites are becoming ubiquitous these days.
Besides serving as a platform for various types of
entertainment, social media is particularly help-
ful in spreading information, and such can be
leveraged to keep the majority of its users well-
informed amidst a natural disaster or a pandemic
like COVID-19. One major advantage of sourcing
information via social media is that all information
is updated in real-time. Any person with a social
media account can post or share information in-
stantly at the moment he/she witness a noteworthy
event. This is a much faster way to obtain infor-
mation compared to reading newspaper, watching
the news on TV, or viewing other official source

*Equal contribution with the first author

of information since most tend to be updated only
at mid-day or at the end of day. Nevertheless, in-
formation on social media platforms is mostly not
verified, heavily opinionated towards the person
who posted it, and at worst, completely inaccurate.
This highlights the need for a system that can auto-
matically identify legitimate information from the
huge pool of information.
In order to address the aforementioned need for
such a system, in this paper we attempt to tackle the
WNUT 2020 Task 2: Identification of Informative
COVID-19 English Tweets (Nguyen et al., 2020b).
As stated in the task’s description paper, this task
requires its participants to build and refine systems
that, given an English Tweet carrying COVID-19-
related content, automatically classify whether it
is informative or not. In the context of this shared
task, being informative is defined as bearing infor-
mation regarding suspected, confirmed, recovered
or death cases related to COVID-19 as well as lo-
cation or travel history of these cases.

2 Related work

Text classification is a simple but practical task
in the field of natural language processing. Early
models such as Naive Bayes, Logistic Regression,
and Support Vector Machine are widely known and
used as a headstart for experimenting classifica-
tion tasks due to their simplicity and fast training
time while still able to achieve a reasonable perfor-
mance.
The rise of modern neural network brings deep
learning to the classification tasks within the lan-
guage processing field as it helps induce features
for learning. Further development of recurrent net-
works gives us the ability to deal with sequences of
varied lengths, which improves the performance of
text classification to a great extent.
While classifying texts, it is essential to make the
machine understand deeply the characteristics of
input sequences. Because of that, having a well-

https://github.com/quocthai9120/W-NUT-2020-Shared-Task-2
https://github.com/quocthai9120/W-NUT-2020-Shared-Task-2


467

performing system that embed text sequences is an
important prerequisite in building a good model for
text classification.
Recently, pre-trained language models let us
achieve high quality text embeddings, which then
can be used for further downstream tasks. For
language processing, the most famous pre-trained
contextual language models recently are BERT (De-
vlin et al., 2018), ELMOs (Peters et al., 2018), and
XL-NET (Yang et al., 2019).

3 System Description

We use the pre-trained language model BERTweet
(Nguyen et al., 2020a), an English Tweet domain-
specific model inspired by the original BERT
model (Devlin et al., 2018), as the core for our
system (more details will be discussed later). To
accomplish the task of identifying informativeness
of COVID-19 English Tweets, we attach a classifi-
cation block on top of our BERTweet block, which
is a combination of one or more linear layers. Fig-
ure 1 indicates the high level detail of our system.

Figure 1: An overview of our model for identify Infor-
mative COVID-19 English Tweets

3.1 BERTweet

BERTweet (Nguyen et al., 2020a) is a large-scale
language model pre-trained for English Tweets.
Because of its nature of being a domain-specific
model, BERTweet has achieved state-of-the-art
performances on many downstream Tweet NLP
tasks such as part-of-speech tagging, named entity
recognition, and text classification, outperformed
top models such as RoBERTa-base (Liu et al.,
2019) and XLM-R-base (Conneau et al., 2019).
Trained on 845M Tweets streamed from 01/2012
to 08/2019 and 5M Tweets related the COVID-19
pandemic as pre-training resources, BERTweet has

an advantage compares to other models for classi-
fying COVID-19 related English Tweets.

3.1.1 Input Processing

Before feeding into the BERTweet model, we first
tokenize input sequences with BPE Tokenizer (Sen-
nrich et al., 2015), then pad the input sequences
with the [CLS] and [SEP] tokens at their begin-
ning and ending positions. To ensure all sequences
have uniform length, we also add padding blocks at
the end of the input sequences. The tokenized and
padded input sequences are then fed directly into
the Transformer block to retrieve contextualized
sequence embeddings.

3.1.2 Embedding Extraction

Each Transformer layer within BERTweet model
learns different information. We experiment dif-
ferent ways of extracting the pooled token from
our BERTweet model, which corresponds to the
encoded [CLS] token in our implementation, to
analyze the performance on this downstream task.
More detail would be discussed in the “Experi-
ments” section.

3.1.3 Global Local BERTweet

By a close manual inspection of the dataset pro-
vided for the task, we realize that many Tweets
have noteworthy information at some particular
parts. Follow that reasoning, paying special atten-
tion to smaller parts of the Tweets is also impor-
tant. Inspired by that idea, we propose a method to
train 3 BERTweet models simultaneously: one for
getting contextualized embeddings over the whole
input sequences, one for getting embeddings over
the first part of the Tweets, and one for getting
embeddings over the remaining part. The pooled
token from each model would then be extracted
and concatenated together for the system to learn
both global and local information of the Tweets.
Please refer to Figure 2 for a visualization of the
model.

3.2 Classification Block

The classification block contains one or more lin-
ear layers stacked on top of each other. The final
layer is then used to classify whether a Tweet is
informative or not.



468

Figure 2: Global Local BERTweet Model

4 Experiments

4.1 Dataset
We use the dataset released by the competition or-
ganizer, consisting of 10,000 COVID-19 English
Tweet. Each Tweet in the dataset is annotated
by 3 annotators independently, and the overall
inter-annotator agreement score of Fleiss’ Kappa
is 0.818. The dataset is then divided into 3 distinct
set for training, validation, and testing, with the
ratio of 70/10/20, respectively. Table 1 shows the
division of the dataset.

Informative Uninformative
Training Set 3303 3697

Validation Set 472 528
Test Set 944 1056

Table 1: Number of Tweets of each category in the orig-
inal dataset

4.1.1 Re-splitting Data
During the final evaluation phrase, we re-split the
dataset by combining training and validation sets
then dividing randomly with the ratio of 90/10. The
test set is not modified.

4.2 Implementation
4.2.1 Main Library and Framework
We mainly rely on the transformers library
(Wolf et al., 2019) with PyTorch framework
(Paszke et al., 2017) to run our code.

4.2.2 Two-Phrase Training
We divide the training process into two phrases.
In the first phrase, we freeze all the BERTweet

paramaters to train the classification block. In the
second phrase, we then unfreeze all parameters in
our end-to-end model for finetuning.

4.2.3 Optimizer
For all models belonging to the scope of our
project, we utilized the AdamW optimizer as im-
plemented in the transformers library. This
is a third-party implementation of the algorithm
originally proposed in the paper named Decoupled
Weight Decay Regularization (Loshchilov and Hut-
ter, 2019)

4.2.4 Hyperparameters Configuration
The max length for padding input sequences before
feeding into the BERTweet model is set to be 256.
We trained our models on 1 NVIDIA Tesla V100
and 1 NVIDIA GeForce RTX 2080 Ti using batch
size of 16 and 32 alternatively. We use an initial
learning rate of 5e − 4 in 12 epochs for the first
phrase and 4e−5 in 6 epochs for the second phrase
of training along with linear learning rate decay
then choose the best checkpoint.

4.3 Model Performance
4.3.1 Baselines
We pre-process input data by tokenizing the data,
record the count of occurrences of each token in
a matrix then transform such count matrix into a
tf-idf representation. To do so, we use CountVec-
torizer() and TfidfTransformer() as implemented in
sklearn (Pedregosa et al., 2011). We then use 3
different classifiers, namely SVM, Naive Bayes and
Logistic Regression, to get results on the original
validation set. We acknowledge that the perfor-
mance of these baselines are relatively poor; never-
theless, it is a trade-off between accuracy and effi-
ciency since follow a non-deep learning approach
which does not require much time regarding train-
ing and finetuning.

Models F1 Score
Logistic Regression 0.7827

Naive Bayes 0.7486
Support Vector Machine 0.7678

Table 2: Baseline model performances on original vali-
dation set

4.3.2 BERTweet Embedding Extraction
As mentioned above, we experiment different ways
to extract embeddings after feeding Tweets into



469

BERTweet model. Table 3 shows the results of
these implementations on original validation set.

BERTweet Embedding F1 Score
Last Layer 0.8912

All 12 Layers (concat) 0.9006
Last 4 Layers (concat) 0.8934
Last 2 Layers (concat) 0.9001

Last 2 + First 2 (concat) 0.9013
Last + First (concat) 0.9045

Last 2 + Mid 2 (concat) 0.9012
Last + Mid (concat) 0.8836

Table 3: Different BERTweet configurations

4.3.3 Global Local BERTweet
Besides experimenting ways to extract BERTweet
embeddings, we also experiment different config-
urations for our Global Local BERTweet model.
Table 4 shows the result of these implementations
on original validation set.

Global Head Tail F1
last last last 0.9021

last 4
(concat) last last 0.9028

last 4
(concat)

last + first
(concat) first 0.9075

last 4
(average)

last + first
(concat) first 0.8963

last 2 +
first 2

(concat)
last + first 2

(concat)
last + first 2

(concat) 0.9067

Table 4: Different BERTweet configuration

4.3.4 Ensembling
Define pi (dimension (1× 2)) to be the predicted
softmax vector of model i-th for each Tweet, c to
be the classes (namely Informative/Uninformative),
and N to be the number of models. Let C be a
function that takes a softmax vector as an input
and returns the corresponding binary classification
result as output.
The output omv of majority voting is calculated as
follows:

omv = argmax
c

N∑
i=1

C(pi) (1)

The output oa of averaging is calculated as follows:

oa = argmax
c

1

N

N∑
i=1

pi (2)

We ensemble all the models shown in Table 3 and
Table 4 by doing majority voting and averaging
softmax vectors. The results on original validation
set are summarized in Table 5.

Ensembling Method F1
Majority Voting 0.9130

Averaging 0.9111

Table 5: Ensembling performance

4.3.5 Final Evaluation

During final evaluation phrase, we used the Major-
ity votted prediction of our BERTweet models after
training on the re-splitted training set and got the
F1 Score of 0.8991 on the hidden test set, which
ranked 12 over 56 participated teams. The first
team got the corresponding score of 0.9096.

4.4 Additional Works

To investigate our assumption that Tweet length
does affect classification result, we analyze the
Tweets in the given dataset and come up with
an idea to choose the best models for ensem-
bling while dealing with Tweets within a partic-
ular length. In particular, we divide the Tweets
sequence into 3 categories: short Tweets (0 − 22
words), medium Tweets (23 − 44 words), long
Tweets (> 44 words). For each category, we
choose 7 models that have the most correct pre-
dictions on our training set and use these models
for predictions. With this, we gain 0.9182 F1-
Score on the original validation set. Indeed, the
reported result shows that the selective ensembling
of BERTweet models based tailor-trained for a cer-
tain range of input Tweet length does boost classi-
fication performance.

5 Conclusion

In this paper, we proposed a system that carries out
the automatic identification of informative versus
uninformative tweets. While this system is simple,
it has leveraged recent advances and state-of-the-
art results in natural language processing and deep
learning, namely BERT-based models. For our fu-
ture work, we will augment this system so that
it can work for various forms of information cir-
culating on social media such as Facebook status,
Reddit post, Instagram caption, etc.



470

References
Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised cross-
lingual representation learning at scale.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020a. BERTweet: A pre-trained language model for
English Tweets. arXiv preprint, arXiv:2005.10200.

Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi,
Mai Hoang Dao, Linh The Nguyen, and Long Doan.
2020b. WNUT-2020 Task 2: Identification of Informa-
tive COVID-19 English Tweets. In Proceedings of the
6th Workshop on Noisy User-generated Text.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. 2017.
Automatic differentiation in pytorch.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. 2019. Huggingface’s transform-
ers: State-of-the-art natural language processing.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding.

http://arxiv.org/abs/arXiv:1911.02116
http://arxiv.org/abs/arXiv:1911.02116
http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1810.04805
http://arxiv.org/abs/arXiv:1907.11692
http://arxiv.org/abs/arXiv:1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/arXiv:1802.05365
http://arxiv.org/abs/arXiv:1802.05365
http://arxiv.org/abs/arXiv:1508.07909
http://arxiv.org/abs/arXiv:1508.07909
http://arxiv.org/abs/arXiv:1910.03771
http://arxiv.org/abs/arXiv:1910.03771
http://arxiv.org/abs/arXiv:1906.08237
http://arxiv.org/abs/arXiv:1906.08237

