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José Carlos Rosales
Univ. Paris-Saclay,
& CNRS, LIMSI

& Inria Paris

{firstname.lastname}@limsi.fr

Pham Minh Quang
Univ. Paris-Saclay,
& CNRS, LIMSI
& Systran Paris

François Yvon
Univ. Paris-Saclay,
& CNRS, LIMSI

Abstract

This paper describes LIMSI’s submissions
to the translation shared tasks at WMT’20.
This year we have focused our efforts on
the biomedical translation task, developing a
resource-heavy system for the translation of
medical abstracts from English into French,
using back-translated texts, terminological re-
sources as well as multiple pre-processing
pipelines, including pre-trained representa-
tions. Systems were also prepared for the ro-
bustness task for translating from English into
German; for this large-scale task we devel-
oped multi-domain, noise-robust, translation
systems aim to handle the two test conditions:
zero-shot and few-shot domain adaptation.

1 Introduction

This paper describes LIMSI’s submissions to the
translation shared tasks at WMT’20. This year
we have focused our efforts on the biomedical
translation task, developing a resource-heavy sys-
tem for the translation of medical abstract from
English into French, using back-translated texts,
terminological resources as well as multiple pre-
processing pipelines, including pre-trained repre-
sentations. Systems where also prepared for the
robustness task for translating from English into
German; for this large-scale task we developed
multi-domain, noise-robust, translation systems
aim to handle the two test conditions: zero-shot
and few-shot domain adaptation.

Machine translation for the biomedical domain
is gaining interest owing to the unequivocal sig-
nificance of medical scientific texts. The vast ma-
jority of these texts are published in English and
Biomedical MT aims to also make them available
in multiple languages. This is a rather challenging
task, due to the scope of this domain, and the cor-
responding large and open vocabulary, including
terms and non-lexical forms (for dates, biomedical
entities, measures, etc). The quality of the resulting

MT output thus varies depending on the amount
of biomedical (in-domain) resources available for
each target language.

We participated in this years WMT’20 biomedi-
cal translation evaluation for English to French di-
rection. English-French is a reasonably resourced
language pair with respect to Biomedical parallel
corpora, allowing us to train our Neural Machine
Translation (NMT) (Sutskever et al., 2014) with
only in-domain corpora and dispense with the pro-
cessing of large out-of-domain data that exist for
this language pair. Our main focus for this year’s
participation was to develop strong baselines by
making the best of auxiliary resources: back trans-
lation of monolingual data; partial pre-translation
of terms; pre-trained multilingual contextual em-
beddings and IR retrieved in domain corpora. Two
pre-prossessing pipelines, one using the standard
Moses tools1 and subword-nmt (Sennrich et al.,
2016b) and other using HuggingFace BERT API
were developed and compared. All systems are
based on the transformer architecture (Vaswani
et al., 2017), or and on the related BERT-fused
transformer model of Zhu et al. (2020). If our base-
lines were actually strong, we only managed to get
relatively small gains from our auxiliary resources,
for reasons that by and large remain to be analyzed
in depth. Our biomedical systems are presented in
Section 2.

We also participated in the Robustness transla-
tion task, developing a multi-domain, noise-robust
and amenable to fast adaptation translation system
for the translation direction English-German. Our
main focus was to study in more depth the adap-
tor architecture initially introduced in (Bapna and
Firat, 2019) in a large-scale setting, where multi-
ple heterogeneous corpora of unbalanced size are
available for training, and explore ways to make
the system robust to spelling noise in the test data.
The zero-shot system is a generic system which

1http://www.statmt.org/moses/

http://www.statmt.org/moses/
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does not use any adaptation layer; for our few-shot
adaptation submission, we did not use the supple-
mentary data provided by the organizers, which
turned out to be only mildly relevant for the test
condition, but resorted to a data selection strategy.
In any case, our submissions are constrained and
only use the parallel WMT data for this language
pair; they are further described in Section 3.

2 Bio-medical translation from English
into French

2.1 Data sources

We trained our baseline systems on a collection of
biomedical corpora, excluding by principle any out-
of-domain parallel corpus, so as to keep the size of
our systems moderate and a reduced training time.
Table 1 details the corpora used in training.

Parallel
Corpus Wrds (M) Sents.

English French

Ufal 89.5 100.3 2.72 M
Edp 0.04 0.04 2.44 K
Medline titles 5.97 6.43 0.63 M
Medline abstracts 1.23 1.44 0.06 M
Scielo 0.17 0.21 7.84 K

Cochrane-Reference 2.23 2.74 0.12 M
Cochrane-PE 0.43 0.53 20.5 K
Cochrane-GooglePE 0.63 0.77 30.3 K
Taus 20.1 23.2 8.86 M

IR Retrieved 13.2 14.7 3.6M

Development

Scielo 0.09 0.13 4333
Edp 6.2K 7.1K 328
Khresmoi 28K 33K 1500

Test

Medline 18 5.7K 6.9K 265
Medline 19 9.8K 12.4K 537
Medline 20 12.7K 16.2K 699

Monolingual

Corpus English French Sent.
(Synthetic) (Human)

Lissa 8.79 7.70 0.33 M
Med Fr 16.3 16.2 0.06 M

Table 1: Data sources for the English-French biomedi-
cal task (before tokenization)

We gathered parallel and monolingual corpora

available for English-French in the biomedical do-
main. These first included the biomedical texts
provided by the WMT’20 organizers: Edp, Med-
line abstracts and titles (Jimeno Yepes et al., 2017),
Scielo (Neves et al., 2016) and the Ufal Medical
corpus2 consisting of Cesta, Ecdc, Emea (Open-
Subtitles), PatTR Medical and OpenSubtitles. In
addition, we used the Cochrane bilingual paral-
lel corpus (Ive et al., 2016)3 and the Taus Corona
Crisis corpus.4. We finally experimented with ad-
ditional in-domain data selected using Informa-
tion Retrieval (IR) techniques from general domain
corpora including News-Commentary, Books and
Wikipedia corpus obtained from Open Parallel Cor-
pus (OPUS) (Tiedemann, 2012). These were se-
lected using the data selection scheme described
in (Abdul-Rauf and Schwenk, 2009). Medline titles
were used as queries to find the related sentences.
We used 3-best sentences returned from the IR
pipeline as additional corpus to build the models
(these are shown as X7 in table2).

For development purposes, we used Khresmoi,
Edp and Scielo test corpora. The Medline test sets
of WMT’18 and 195 were used as internal test data.

2.1.1 Monolingual sources
Supplementary French data from two monolingual
sources were collected from public archives: ab-
stracts of medical papers published by Elsevier
from the Lissa portal6 and a collection of research
articles collected from various sources7 henceforth
referred to as Med Fr (Maniez, 2009). The former
corpus contains 41K abstract and totals approx-
imately 7.7M running words; the latter contains
65K sentences, for a little more than 1.5M running
words.

These texts were back-translated (Sennrich et al.,
2016a; Burlot and Yvon, 2018) into French us-
ing a relatively basic neural French-English engine
trained with the official WMT data sources for the
biomedical task, using the HuggingFace pipeline
(see details below). This system had a BLEU score
of 31.2 on Medline 18 test set.

Note that back-translation has also been effec-
2https://ufal.mff.cuni.cz/ufal_

medical_corpus
3https://github.com/fyvo/

CochraneTranslations/
4https://md.taus.net/corona
5With our own sentence alignment.
6https://www.lissa.fr/dc/#env=lissa
7https://crtt.univ-lyon2.fr/

les-corpus-medicaux-du-crtt-613310.kjsp

2

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
https://github.com/fyvo/CochraneTranslations/
https://github.com/fyvo/CochraneTranslations/
https://md.taus.net/corona
https://www.lissa.fr/dc/#env=lissa
https://crtt.univ-lyon2.fr/les-corpus-medicaux-du-crtt-613310.kjsp
https://crtt.univ-lyon2.fr/les-corpus-medicaux-du-crtt-613310.kjsp
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Symptoms of bacterial pneumonia frequently overlap those present with viral infections or
reactive airway disease.
Symptoms of pneumonie bactérienne frequently overlap those present with infections virales
or reactive airway maladie.

Figure 1: An example sentence containing pre-translated terms in French

tively used to cater for parallel corpus shortage in
the Biomedical domain in (Stojanovski et al., 2019;
Peng et al., 2019; Soares and Krallinger, 2019).

2.2 Pre and post-processing

The document level corpora were first retrieved
from xml, split8 into sentences and sentence
aligned using Microsoft bilingual aligner (Moore,
2002): these include Cochrane, Scielo and some
unaligned documents from Edp. All train, develop-
ment and test corpora were cleaned by removing
instances of empty lines, URLs and lines contain-
ing more than 60% non-alphabetic forms.

For tokenization into words and subwords units,
two pipelines were considered. The first one is
set up as follows (a) tokenize the French and En-
glish texts using Moses scripts9; (b) compute a
joint Byte-pair Encoding (BPE) inventory of 32K
units with subword-nmt;10 (c) generate the transla-
tion; (d) detokenize and truecase the output, again
with Moses scripts. Systems based on this pipeline
are prefixed M*. The second one is slightly more
complex as it heavily relies on the HuggingFace
API11 for accessing pre-trained BERT models. The
corresponding systems are prefixed with H* and
comprise the following steps: (a) a simple tok-
enization script, (b) a multilingual segmenter map-
ping BPE units to pre-trained encodings generated
according to (Devlin et al., 2019) as input to the
translation system (step (c)). In that case, the MT
output is also a sequence of multilingual BPE units
that further needs (d) to be reaccentuated and re-
cased, before a final (e) detokenization. Step (d)
is non-trivial and is performed by a monolingual
translation system trained to convert HuggingFace
BPE units into Moses BPE units,12 which can then
be properly reassembled and detokenized as for the

8https://github.com/berkmancenter/
mediacloud-sentence-splitter

9http://www.statmt.org/moses/
10https://github.com/rsennrich/

subword-nmt
11https://Huggingface.co/transformers/

model_doc/bert.html
12This process is not completely error prone, and yields a

BLEU score of 98.2 on Medline 18 test set.

Moses pipeline.

2.2.1 Fine-tuning
The fine-tuning process starts from corresponding
models trained to convergence, based on BLEU
score on dev sets. These are then further fine-tuned
using a selected part of the training corpus con-
taining only the Medline abstracts and the three
Cochrane corpora, again until convergence. The
corresponding systems are post-fixed with *-ft.

2.2.2 Pre-translating terms
Medical terms, made of monolexical or polylexical
units, are abound in medical terms, and getting their
translation right is a very difficult task. Approaches
to Biomedical MT have tried to deal this in vari-
ous ways including explicitly using terminology
list (Carrino et al., 2019), domain adaptation (Hira
et al., 2019; Stojanovski et al., 2019) and trans-
fer learning (Khan et al., 2018; Peng et al., 2019;
Saunders et al., 2019).

We developed systems aimed at improving the
translation of terms mainly following the recent
proposals of (Dinu et al., 2019; Song et al., 2019).
They mostly imply to pre-translate English terms
into French, merely replacing the English version
with a desired translation in a preprocessing step.
The translation system thus inputs mixed-language
sentences comprising both English and French
words. In our implementation, we followed (Song
et al., 2019) and did not mark the pre-translated
segments in the input. The target side (French) re-
mained unchanged. Figure 1 displays a sentence
extracted from Medline 18 before and after pre-
translation (in the latter, French segments are un-
derlined).

Terms are extracted from the French-English
version of the Medical Subject Headings thesaurus
(MeSH), available in XML format.13 We extracted
a list of about 30K English terms and their preferred
translation. This list was extended by searching
our training corpus for instances where (a) a term
is found in the English sentence; (b) a possible
translation is found in the French sentence. Step (b)

13http://mesh.inserm.fr/FrenchMesh/

3

https://github.com/berkmancenter/mediacloud-sentence-splitter
https://github.com/berkmancenter/mediacloud-sentence-splitter
http://www.statmt.org/moses/
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://Huggingface.co/transformers/model_doc/bert.html
https://Huggingface.co/transformers/model_doc/bert.html
http://mesh.inserm.fr/FrenchMesh/


806

ID Train Detail ID Medline ID Medline ID Medline
18 19 20 18 19 20 18 19 20

Moses HuggingFace

X0 wmt WMT data M0 20.7 22.6 27.3 H0 26.8 29.6 33.7 B0 26.1 29.0 32.9
X1 base All data M1 24.7 25.9 32.6 H1 27.7 30.2 35.9 B1 28.6 31.1 37.2

X2 base-ft X1 ⇒ X2 M2∗2 25.6 26.1 32.9 H2 28.1 30.0 35.5 B2 38.8 29.5 35.8
Back Translations of Monolingual data

X3 base+bt X1 + BT - - - - H3 27.9 30.8 36.7 B3 28.0 31.0 36.3

X4 base+bt-ft X3 ⇒ X4 - - - - H4∗1 28.7 30.7 37.0 B4 31.6 30.8 36.2

Using Pre-translated terms

X5 base+bt-pt X3 ⇒ X5 - - - - H5 27.5 30.0 35.9 B5 29.0 30.2 36.3

X6 base+bt-pt-ft X5 ⇒ X6 - - - - H6 33.0 27.0 32.5 B6 36.0 28.8 35.2

Using IR retrieved corpus

X7 base+bt+IR X3 + IR - - - - H7 28.8 31.4 37.2 B7 28.8 31.2 36.5

X8 base+bt+IR-ft X7 ⇒ X8 - - - - H8 29.4 31.0 37.3 B8∗3 31.7 30.6 36.5

Table 2: BLEU scores for the various biomedical systems on Medline 18, 19 and 20 test sets. Superscripts ∗n

denote the runs submitted: H4, M2, B8.

relies on a much larger list of about 800K possible
associations, also extracted from the MeSH. The
final term list contains about 40K entries.

Training was performed in two steps: starting
with our best system (M3), we resume training
with partially pre-translated sentences, using only
the following corpora: Cochrane, Medline, Taus
and a large portion of Scielo (for a grand total of
2M sentence pairs). This process is performed
until convergence. The same fine-tuning process as
described above is optionally performed.

In testing, we replace any matching English term
with its translation subject to length constraints to
avoid irrelevant, ambiguous or accidental matches.
We only substitute terms of (source+target) length
greater or equal to 7 characters, yielding the pre-
translation of 462 and 795 terms respectively in
the Medline 18 and Medline 19 test sets. Cases
where one term has several translations are dis-
ambiguated based on frequency of occurrences in
training. These systems appear in the last two rows
of Table 2 with the postfix *-pt.

2.3 Translation framework

We mostly used two architectures to build our
systems: basic Transformer models (Vaswani
et al., 2017) as well as BERT-fused transformer
models (Zhu et al., 2020). All systems use
Facebook’s seq-2-seq library fairseq (Ott et al.,

2019) with parameters settings borrowed from
transformer iwslt de en.14 We used mem-
ory efficient FP16 optimizer. The ReLU activation
function was used in all 6 encoder and 6 decoder
layers, 1024 hidden layer size and batch size of 4K.
Training was optimized using Adam and a learning
rate of 0.0005 was fixed for all experiments.

For the BERT-based models, we relied on BERT-
NMT.15 This allowed us to build the BERT-fused
models using the same architecture and parameters
as the baseline transformer models and to establish
fair comparisons. In BERT-fused NMT model, the
contextual representations are first computed by
the BERT model for each token (in the source and
target), these are then combined at each encoder
and decoder layer using the attention mechanism.
Full details are in Zhu et al. (2020).

Given the size of our training data, the ”lazy”
output dataset implementation was used to enable
data loading in the RAM. Systems were trained
until convergence based on the BLEU score on
the development sets. Evaluation is performed
using sacrebleu (Post, 2018). Scores are chosen
based on the best score on the development set
(Khres+Edp+Scielo) and the corresponding scores
for that checkpoint are reported on Medline 18 and

14https://fairseq.readthedocs.io/en/
latest/models.html

15https://github.com/bert-nmt/bert-nmt

4
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Medline 19 test sets. For systems using terminol-
ogy pre-translation, Khresmoi and Edp were used
as development sets.

2.4 Results

Results are in Table 2, where we report BLEU
scores for the three tracks explored in this work.
M∗ denotes the Moses tokenization pipeline, H∗
represents the HuggingFace pipeline and B∗ de-
notes the BERT models with HuggingFace tok-
enization. We computed the scores on Medline 18,
Medline 19 and Medline 20 test sets,16 based on
the best checkpoint on our development corpus.
Base systems are given on the left, (⇒) identifies
the derived (fine-tuned) systems.

We first built baseline systems for the three
tracks. X0 denotes the systems built using only
the data provided by the organizers. X1 are our
baseline systems built using all our parallel cor-
pora. We see a unanimous improvement in all
tracks ranging from 0.6 to 5.3 BLEU points, which
is obtained by adding around 1M sentences of ad-
ditional Cochrane and Taus corpora to the already
available 2.9M sentences from WMT20. This
hints at the relevance of the additional in-domain
parallel corpora used.

These baselines X1 are then further fine-tuned
with Cochrane and Medline abstracts as discussed
in section 2.2.1, these are shown post-fixed with
*-ft. All the systems show an improvement in
the Moses track. Similarly, we see gain for all
tracks for Medline 18 with the highest improve-
ment on BERT-fused systems. For Medline 19 and
20, fine-tuning resulted in a small drop in perfor-
mance across the board (except than Moses track),
for reasons that remain to be analyzed.

Comparing M1-M2 with H1-H2, we see that
the Moses pre-processing, which is simpler that
HuggingFace’s and relies on domain-adapted BPE
units is slightly better than the alternative. As using
HuggingFace’s tools was a way to also experiment
with BERT and other extensions, it was nonetheless
used for the other systems.

Having established the adequacy of the sup-
plementary parallel corpora, we built systems
with back-translated monolingual corpora (sec-
tion 2.1.1). These appear as X3 and X4 in Table 2.
These back-translations were somewhat helpful,
not to the extent that we were expecting them to
be. Comparing with our baseline X1 systems, we

16Again with our own sentence alignment.

see a small gain of (0.2,0.6,0.8) for our transformer
models using HuggingFace tokenization (H1 vs.
H3) but no gain for the BERT track (B1 vs. B3).
We can speculate about various reasons for this be-
haviour: (a) genre mismatch with the test set: even
though the monolingual corpora also contain sci-
entific texts in biomedical domain, the use of full
documents might yield subtle differences in style
and term used with what is observed in abstracts,
which are more rigidly structured; (b) the use of a
comparatively small amount of back-translations
as compared to the baseline corpora; (c) the quality
of back translations.

Our experiments with pre-translated terms re-
sulted in a small drop of the BLEU scores for the
corresponding systems (X5, X6). Our initial analy-
sis of term use17 in the references and in the system
outputs helps understand why this is the case. As it
turns out, references translations contain a smaller
proportion of licensed terms than our baseline trans-
lations (55.6% for the reference, 61.1% and 61.6%
for respectively X3 and X4), which in turn contain
less terms than our term-sensitive systems (H5 and
H6, for which these numbers are respectively 68.9
and 64.2). Another way to look at this is to real-
ize that only 58.6% of our pre-translations were
actually in the reference. All in all, using more
translations from the MeSH makes our output less
similar to the reference than the baselines, and con-
tributes to degrade the BLEU score. It is however
reinsuring to see that pre-translating terms actu-
ally increases the number of terms in the output
– in fact, for H5 and H6 we find that respectively
84.2% and 81.9% of these pre-translations are ac-
tually copied in the target, even though there was
no indication of these French inserts in the mixed-
language input. We can also note that the majority
of the pre-translated terms were frequent Biomed-
ical terms (such as ”patients”, ”health”, etc) that
were also correctly translated by the baseline sys-
tems. Evaluating these outputs with more useful
metrics than BLEU still needs to be performed.

Adding the IR retrieved sentences finally
brought us nearly one extra BLEU point on all test
sets for the HuggingFace systems, but not much
improvement for the BERT-fused system.

17Based on the proportion of source word in our term list
that are actually translated with a translation that exists in the
Mesh. These proportions are computed on an aggregate of
the Medline testsets for 2018, 2019 and 2020, only counting
terms with source+target length greater than 7.

5
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Domain Corpus sents. words words
(en) (de)

web Paracrawl 50,875 978 919

economy Tilde EESC 2,858 61 58

news
Commoncrawl 2,399 51 47
Tilde rapid 940 20 19
News commentary 361 8 8

tourism Tilde tourism 7 0.1 0.1

gov Epps 1,828 45 42

medical Tilde EMEA 347 5 5

banking Tilde ECB 4 0.085 0.074

wiki Wikipedia Matrix 5,473 91 88

Table 3: Data used in the Robustness task: number of
parallel lines (×103), number of tokens (×106)

2.5 Conclusion

In conclusion, our participation to this year’s WMT
biomedical task has enabled us to develop basic
tools and pipelines for a variety of architectures
and to start exploring domain-adapted extensions
of a baseline Transformer architecture, using com-
plementary resources, such as supplementary cor-
pora, pre-trained embeddings and terminological
resources. If all these extensions were not equally
useful, we still were able to develop strong systems
for this task that provide us with a solid starting
point for further developments of domain-adapted
NMT systems.

3 Robustness: translating English
challenge test sets into German

3.1 Data sources

Our sole data sources are the parallel corpora dis-
tributed by the organizers for the News task, which
we significantly down-sampled in order to reduce
the overall computational training cost. Monolin-
gual data sources were not considered. These paral-
lel corpora were then grouped into 8 broad domains.
Statistics for each corpus / domain are in Table 3.

Our development set is composed of a varied set
of common benchmarks, aimed to represent a wide
diversity of genres and domains.

3.2 Pre-processing

The first step of pre-processing consists of cleaning
the parallel corpora using the following rules: (a)
discard sentences based on length (with a maxi-
mum length of 99 words), and on the source/target
length ratio (in the interval [2/3; 3/2]); (b) dis-

card instances of non-English and non-German
sentences, using the langid toolkit;18 (c) remove
duplicates sentence pairs. After cleaning, the par-
allel corpus used in training contains 50,875,449
sentences pairs.

The next step is to lowercase and to tokenize
the text into words and subword units. We use the
Tokenizer library from OpenNMT.19 We first low-
ercased every word, adding a special marker at the
beginning of capitalized words, and likewise for
uppercased words and segments. For instance, this
procedure replaces ”It” with ”U it”, and ”NOVEM-
BER RAIN” with ”BU november EU BU rain EU”.
These markers are preserved during the BPE tok-
enization. We learned a joint BPE vocabulary for
both languages using 32K merge operations.

3.3 Training a robust multi-domain system

Our approach to robustness aims at building a sys-
tem that (a) could fare well for test sets that would
be similar to the training domain; (b) could also
accommodate data from new, unseen, domains; (c)
would be easy to adapt to a new domain (for the
few-shot condition); (d) could be robust to spelling
noise in the test. Requirements (a)-(c) lead us to im-
plement an extension of the baseline Transformer
architecture with residual adapters (more on this in
section 3.3.2); to meet requirement (d), we imple-
mented a data augmentation technique described
in Section 3.3.3.

3.3.1 Baseline
The baseline system relies on the Transformer
Large architecture from (Vaswani et al., 2017). We
set the embeddings size and the hidden layers size
to 1024. Transformers use multi-head attention
with 16 heads in each of the 6+6 layers; the inner
feedforward layer contains 4096 cells. Training
uses a batch size of 12288 tokens; optimization
uses Adam with parameters β1 = 0.9, β2 = 0.98
and Noam decay (warmup steps = 4000) and a
dropout rate of 0.1 for all layers.

3.3.2 Residual adapters
Our main source of inspiration is the work of Bapna
and Firat (2019), who initially introduced the use
of residual adapter modules for domain adaption.
In a nutshell, this proposal adds an additional,
domain-specific layer on top of every layer of the
encoder and the decoder. It thus provides us with

18https://github.com/saffsd/langid.py
19https://github.com/OpenNMT/Tokenizer

6
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a lightweight, computationally efficient alternative
to domain adaptation with full fine-tuning, which
implies to update all the system parameters. We
generalize this approach by training (or rather fine-
tuning) a distinct residual adapter for each of the
8 train domains, while freezing the parameters of
the baseline (generic) system. These adapter mod-
ules are made of 2-layer perceptrons, with an inner
ReLU activation function operating on normalized
entries of dimension 2048.

Any test sentence from a known domain would
then use the corresponding adapter; for test sen-
tences from new domains two options are possible:
use only the generic system (without adapter), or
use the adapter for the more similar domain. This
methodology was chosen in the view of the few-
shot task, where a new adapter could easily be
learned for a new domain, even with a very small
amount of data.

We evaluate the effectiveness of the residual
adapters architecture using a varied set of internal
test sets. Table 4 reports the BLEU scores of the
baseline, generic model, prior to adaptation, as well
as the adapted system. As expected, performance
are overall better when selecting the appropriate
domain for each test set.

We applied this idea to improve the ability our
generic model to handle noisy data. Recall that
most of the training data (with the exception of the
web domain) comes from ”clean” sources. To this
end, we generated artificial training data for an ad-
ditional ”noise” domain, by automatically altering
the source side of randomly selected training data.
The noise generation procedure is described below.
By doing this way, we expect the model to take ad-
vantage of the residual layer when input with noisy
data that is similar to our artificial noisy domain,
while keeping (a) its good performance on the other
known domains, (b) a reasonable behaviour on any
other clean data (using the generic baseline model
without adapter).

3.3.3 Artificial noise generation
In order to account for possible user generated con-
tent (UGC) at test time, we explored the possibility
of learning typical UGC noise at the character-level.
To this end, we used an automatically scrapped
Wikipedia correction corpus (Grundkiewicz and
Junczys-Dowmunt, 2014), which has been filtered
to keep only word replacements with, at most, a
character edit distance of 30% of the word length.
In the end, we kept a total of roughly 17.8M pairs

of errors and editions. We then trained a character-
level Transformer with the same architecture as
our base translation model, which had a perfect-
match error rate of 22% on the test data partition.
Finally, we augmented the original training data
by sampling random original words according to
a uniform probability distribution and replacing
them with the prediction of our character-based
UGC noise generator, resulting in the same num-
ber of sentences in the original corpora. We have
set a 7% probability of replacement, that has been
estimated by the percentage of Out-of-Vocabulary
words in a real-world UGC corpus. This heuristic
later seemed, as discussed in Section 3.4, to overes-
timate the quantity of noise to be added and, in ret-
rospective, we should have used other metrics to es-
timate the noise level, such as the n-gram Kullback-
Leibler divergence, as discussed in (Alonso et al.,
2016; Rosales Núñez et al., 2019). Table 5 dis-
plays some examples of noise entries produced by
our character-based generator. Regarding these,
although typographical errors prevail, due to the
nature of automatic filtering of the Wikipedia edi-
tions, some learned replacements operations can
change the semantics and syntax of the sentence,
e.g. (using→ use), (for→ in) or (may→ can); thus
introducing unexpected confusion in the training
data.

3.4 Results

We report the BLEU scores of our various systems
in Table 6. Our submission to the zero-shot eval-
uation was FT-Adapt-Noise, which we found
was sub-optimal afterwards. However, interest-
ingly, the residual adapter mechanism proved to
substantially outperform the classical fine-tuning
of the whole model (i.e. FT-Full-Noise). Fi-
nally, the residual adapter fine-tuned using the
ParaCrawl corpus (FT-Adapt-Web) had the best
performance on the test set, probably due to
the higher similarity of this corpus to the tar-
get test. In addition, we noted that the base-
line and FT-Adapt-Noise output a consider-
able number of English phrases, leaving most
of the source sentence unchanged, whereas the
FT-Adapt-Web reduced the number of sen-
tences that presented this issue.

In order to assess how much the 172 sen-
tences that were left completely untranslated im-
pact the performance of the FT-Adapt-Noise
model, we replaced them with the output of the

7



810

Test set IT Khresmoi NT17 NT18 NT19 EPPS EESC RAPID Tourism Wiki ECB
Domain tech medical news gov eco news tourism wiki bank

Baseline 36.27 29.78 26.24 41.27 37.24 29.31 30.48 31.93 17.64 14.92 38.11

FT-Adapt
domain - 29.46 26.48 41.43 37.24 29.65 30.45 32.43 19.21 - 48.99

Table 4: BLEU scores on various test sets using our baseline and adapted NMT systems for each domain. NT
stands for NewsTest

original the combination may concerning using no common developing for status also
noisy this combonation can concering use not comon developping in staus aslo

Table 5: Examples of clean and artificially noisy word inputs

baseline and observed a performance increase
to 31.3 BLEU. This suggests that our data augmen-
tation technique introduced confusion to the base
model after fine-tuning and the resulting translation
system was less adapted to the zero-shot test set.

robustness-set1 #EN Sents.
Baseline 31.6 120

FT-Adapt-Noise 30.2 172
FT-Full-Noise 24.6 256

FT-Adapt-Web 34.2 34
FT-Full-Web 33.8 49

Table 6: BLEU scores for the EN-De models developed
for the Robustness track. We also report, for each sys-
tem, the number of sentences that were left unchanged.

The design and organization of the few-shot
part of the evaluation was not fully satisfactory:
while we did train an adapter module using the
new data seemingly corresponding to a novel do-
main, it seems that the corresponding test set was
never released and we could not fully evaluate our
approach. Working on this task was nonetheless
very instructive, and helped us better understand
the strength and pitfall of the residual adapter archi-
tecture when applied to a very large scale task and
in the face of unbalanced, heterogeneous, training
data.

4 Conclusions

In this paper, we have described the development
undertaken for this year’s participation to WMT
shared tasks. Taking part to the Biomedical track as
allowed us to collect and prepare useful resources
(monolingual and bilingual corpora, term lists) for
this domain, and to explore several pipelines and
translation architectures. The general results are

overall satisfactory, even though a deeper analysis
of the MT is still needed to strengthen our conclu-
sions. They will also help us prepare for next year
tasks, where we expect to work on more language
pairs. Our experiment for the Robustness track
were less successful: we were not really prepared
for the general tone and style that was observed in
the zero-shot test set; we also did not understand
the general orientation taken for the few-shot adap-
tation, as it seemed to us that the adaptation data
was not really relevant for the only test set that was
ever released.
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