
Proceedings of the 5th Conference on Machine Translation (WMT), pages 479–482
Online, November 19–20, 2020. c©2020 Association for Computational Linguistics

479

JUST System for WMT20 Chat Translation Task

Roweida Mohammed, Mahmoud Al-Ayyoub and Malak Abdullah
Jordan University of Science and Technology

Irbid, Jordan
roweida.221@gmail.com,{maalshbool, mabdullah}@just.edu.jo

Abstract

Machine Translation (MT) is a sub-field of
Artificial Intelligence and Natural Language
Processing that investigates and studies the
ways of automatically translating a text from
one language to another. In this paper, we
present the details of our submission to the
WMT20 Chat Translation Task, which consists
of two language directions, English→German
and German→English. The major feature of
our system is applying a pre-trained BERT em-
bedding with a bidirectional recurrent neural
network. Our system ensembles three mod-
els, each with different hyperparameters. De-
spite being trained on a very small corpus, our
model produces surprisingly good results.

1 Introduction

The language of chat texts is considered a common
language where people are rarely paying attention
to correct spelling. Therefore, using the traditional
methods of Machine Translation (MT), like dictio-
naries, is insufficient (Hernández, 2009). As deep
learning (DL) models are becoming more evolved
and complex, this motivates the natural language
processing (NLP) community researchers to em-
ploy them for challenging tasks such as MT of
informal language, such as what is used in chat.
Techniques like contextual word embeddings and
pre-trained DL models are becoming very common
in natural language generation (NLG) tasks such as
MT (Kusner et al., 2015; Zou et al., 2013; Abdullah
and Shaikh, 2018; Al-Bdour et al., 2019).

The Chat Translation Task is a new task in
the Fifth Conference on Machine Translation
(WMT20).1 Translating chat text, specifically the
chats of customer support, is a main and exciting
task in the field of MT. This kind of tasks has not
been widely considered in previous MT studies,

1http://www.statmt.org/wmt20/chat-task.html

mostly because of the absence of openly existing
datasets. The target of this new Chat Translation
Task is to translate the customer support chat text
from English to German and vice versa. The essen-
tial goal of this task is to develop models that can
translate conversational text and study the use of
multilingual models.

We take part in the WMT20 shared chat
translation task in two language directions:
English→German and German→English. In this
paper, we discuss our submission for this task,
which is based on the bidirectional recurrent neu-
ral networks (bi-RNN) (Schuster and Paliwal,
1997) and using the pre-trained BERT embed-
ding, known as bert-base-multilingual-cased (De-
vlin et al., 2018).

This paper is constructed as follows. In Sec-
tion 2, the task and data descriptions are provided.
Section 3 discusses our proposed model. Section 4
shows the experiments we conduct and their results.
Finally, the Conclusion is in Section 5.

2 Task and Data Description

The Chat Translation shared task of WMT20 offers
participants the opportunity to address a challeng-
ing problem faced by many companies today as
they expand their customer support units to multi-
ple different languages.

The shared task provides a dataset consisting
of a set of conversations between agents and cus-
tomers. The organizers supplied a corpus for the
English-German language pair. Specifically, the
task involves translating the chat text of an agent
speaking English and a customer speaking German.
We are asked to translate the agent’s chat text from
English to German, and the customer’s from Ger-
man to English.

The dataset used for this shared task depends
on the corpus of Taskmaster-1 (Byrne et al., 2019),



480

which has the English language, and it consists of
dialogues in six fields. A small part of this dataset
was chosen and translated to German. The shared
task has been provided with train, development,
and test sets in JSON format. Each chat in the
data file has a specific structure. Table 1 shows the
number of conversations in each file of the dataset.

Dataset # of Conversation
Train dataset 550
Dev dataset 78
Test dataset 78

Table 1: Number of conversations in each set.

Each conversation contains a speaker (who is ei-
ther an agent or a customer), a source chat text, and
a target chat text. For the test set file, we are asked
to translate the source chat text to target depending
on the speaker. If it is an agent, the translation is
from English to German. Otherwise, the translation
is from German to English. For evaluating the par-
ticipating models, the task organizers employ both
automatic metrics (BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006)) as well as human
evaluation.

3 JUST System

Our System follows the sequence of steps shown in
Figure 1. In the following subsections, we discuss
each step in details.

3.1 Preprocessing Data

For the dataset preprocessing, we first converted
the files from JSON file, as given in the shared
task, to text files, so we can work with them easily.
The training, dev, and test sets are divided into two
groups: one that contains the agent as the speaker
(English→German) and one that contains the cus-
tomer as the speaker (German→English). Table 2
shows the number of examples in each group.

Groups Train Dev Test
Agent 7,629 1,040 1,133

Customer 6,215 862 967

Table 2: Number of examples in each group.

3.2 Extracting Features

After preparing the dataset and preprocessing it, we
use the pre-trained BERT model to get the word em-

beddings of the dataset. Specifically, we use Bert-
base-multilingual-cased2 to extract feature vectors
of the dataset to be used in the training of our mod-
els. For each word in the sentence of the encoder
side, we get a file containing the word’s embedding.
The same is done for the decoder side.

3.3 The System Architecture

Our system is an adaptation of OpenNMT3, an
open-source toolkit for neural machine translation
(NMT) (Klein et al., 2017). It is created on the
PyTorch framework (Paszke et al., 2017). After
ensuring that the dataset is ready to be trained in
our system, we feed our dataset to the bi-RNN with
long short-term memory (LSTM) cells (Hochreiter
and Schmidhuber, 1997) and an attention mecha-
nism (Luong et al., 2015) along with the word em-
beddings we extract from the dataset and trained
everything jointly. For each different set of hyper-
parameters, we train the model separately. We save
the best three models. Table 3 shows the different
hyperparameters used for the three models as well
some of the experiments that have been done using
GloVe embedding (Pennington et al., 2014) + byte
pair encoding (BPE) (Sennrich et al., 2015) with
a vocabulary of 10K sub-word units (Experiment-
1), GloVe + without BPE (Experiment-2), and the
default model. The rest of the hyperparameters are
left at their default value.

Models Batch size Dropout BPE Embedding
Default 64 0.3 Yes GloVe

Experiment-1 64 0.4 Yes GloVe
Experiment-2 64 0.3 No GloVe

Model-A 32 0.6 No BERT
Model-B 100 0.7 No BERT
Model-C 182 0.7 No BERT

Table 3: Different hyper parameters of the three
models.

We also experiment with the celebrated Trans-
former mode (Vaswani et al., 2017). However, this
model results in very low BLEU scores when eval-
uated on the dev set. Moreover, it takes about four
days to finish training in one experiment. So, we
decide to exclude it from further consideration.

3.4 Model Ensembling

Before the test set is released, we train different
models using the training set and evaluate them

2https://github.com/google-research/bert
3https://opennmt.net/OpenNMT-py/options/train.html



481

Figure 1: Flowchart of our system.

using the dev set. After training our system, we
choose the best three models and ensemble them to
get the final output.

4 Results

The results based on the dev set are show in Table 4.
The table shows the results of our three models,
which we choose for the ensembling step, as well
as the other experiments mentioned earlier. The
Table shows the difference between them using
the BLEU score. From the above table we can
notice that training without using BPE improves the
results. Moreover, we have chosen the pre-trained
BERT because it improves the results compared to
the GloVe embedding.

Models BLEU
Default 32.99

Experiment-1 34.80
Experiment-2 35.21

Model-A 36.88
Model-B 37.07
Model-C 40.93

Table 4: Results of our experiments for the dev dataset.

For evaluation on the test set, we combine the
train and dev dataset of each group into one file.
Table 5 shows the number of examples in each
group after combining them into one file.

Agent Customer
Combined
train + dev

8,669 7,077

Table 5: Number of examples after combining the
files.

We train each group separately and then we en-
semble the three models into one. This model is
used to get the target of each sentence in the test
set of each group. It is worth mentioning that we

only use the small dataset provided with the shared
task.

Table 6 shows the results for the human evalua-
tion between the human, best score and our model
for the English→German scores.

Team Agent Ave.
Human 91.43

Best 88.21
Our Model 63.93

Table 6: Results of the human evaluation.

Table 7 shows the results we get in the shared
task compared to the baseline and the best results.
We can see that the agent BLEU score of our model
is higher than the baseline, which is translating
from English to German. On the other hand, the
customer BLEU score for the baseline beat our
model, which is translating from German to En-
glish.

5 Conclusion

This work describes JUST’s submission to
the WMT20 chat translation task. For all
two translation directions, English→German and
German→English, we used the pre-trained BERT
embedding with the bi-RNN. We trained one model
with different hyperparameters and then ensembled
to one final system to translate the test set provided
by the shared task. At the end of this work, we find
out that a simple NMT model with BERT embed-
ding can achieve surprisingly good results even if
it is trained on a very small corpus.

References
Malak Abdullah and Samira Shaikh. 2018. Teamuncc

at semeval-2018 task 1: Emotion detection in en-
glish and arabic tweets using deep learning. In Pro-
ceedings of the 12th international workshop on se-
mantic evaluation, pages 350–357.



482

Agent BLEU Customer BLEU Agent TER Customer TER
Best - 60 62 0.25 0.23

FAIR-
WMT19

Baseline 43.4 49.7 0.379 0.3195

test1 corpus Our model 46.4 42.5 0.382 0.4015

Table 7: Results of the shared task.

Ghadeer Al-Bdour, Raffi Al-Qurran, Mahmoud Al-
Ayyoub, and Ali Shatnawi. 2019. A detailed com-
parative study of open source deep learning frame-
works. arXiv preprint arXiv:1903.00102.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Daniel Duckworth,
Semih Yavuz, Ben Goodrich, Amit Dubey, Andy
Cedilnik, and Kyu-Young Kim. 2019. Taskmaster-1:
Toward a realistic and diverse dialog dataset. arXiv
preprint arXiv:1909.05358.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Adolfo Hernández. 2009. A ngram-based statistical
machine translation approach for text normalization
on chat-speak style communications.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Lstm
can solve hard long time lag problems. In Ad-
vances in neural information processing systems,
pages 473–479.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M Rush. 2017. Opennmt: Open-
source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International conference on ma-
chine learning, pages 957–966.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference

on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200. Cambridge, MA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Will Y Zou, Richard Socher, Daniel Cer, and Christo-
pher D Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1393–1398.


