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Abstract

A lifelong learning system can adapt to new
data without forgetting previously acquired
knowledge. In this paper, we introduce the
first benchmark for lifelong learning machine
translation. For this purpose, we provide train-
ing, lifelong and test data sets for two language
pairs: English-German and English-French.
Additionally, we report the results of our base-
line systems, which we make available to the
public. The goal of this shared task is to en-
courage research on the emerging topic of life-
long learning machine translation.

1 Introduction

Lifelong learning can be defined as the ability to
continually acquire new and retain previous knowl-
edge. This ability characterizes humankind, but
it is also reflected in several artificial intelligence
systems (Parisi et al., 2019; Biesialska et al., 2020).
There are many challenges that have to be solved
in order to achieve this goal of continual adapta-
tion, among which catastrophic forgetting (French,
1999) seems to be the most relevant.

Lifelong learning is very useful in the area of ma-
chine translation (MT), as it allows MT systems to
adapt to new vocabularies and topics, and produce
accurate translations across time. Currently, there
are no previous works that systematically try to
solve the problem. This may be due to the lack of
a benchmark to address the challenge (Biesialska
et al., 2020).

In this context, the main goal of the shared task
on lifelong learning for MT is to develop systems
that can self-adapt relying solely on domain expert
data and are then freed from the necessity of ma-
chine learning expertise. What is more, this shared
task also allows to investigate several MT research
directions, such as: the continuous training/adapta-
tion techniques; the preparation of additional pub-

licly available corpora and evaluation sets; the ac-
tive learning methods via a controlled simulated
environment; the unsupervised adaptation of MT
systems; the document-level approaches and the
development and evaluation of MT systems across
time.

2 Related work and tasks

As mentioned in the introduction, there are not re-
ally any works in MT properly evaluating lifelong
learning systems. However, there is a long his-
tory of studies in related tasks that are useful for
addressing the lifelong learning objective.

Domain adaptation is based on the premise that
the system can adapt to a target domain known in
advance. This has been widely studied earlier for
statistical MT e.g. (Koehn and Schroeder, 2007)
and, more recently, for neural MT e.g. (Luong and
Manning, 2015)).

Instance-based adaptation exploits similarity
between training and inference instances (Li et al.,
2018), also in unsupervised scenarios (Farajian
et al., 2017). These studies have even led to the
creation of adaptive MT commercial toolkits (Fed-
erico, 2018). Importantly, in this task there is no
target domain data available.

Unsupervised learning focuses on using mono-
lingual corpora to train the translation system, with-
out relying on any parallel corpora (Artetxe et al.,
2018; Lample et al., 2018).

Active learning aims at selecting the most useful
source sentences from a monolingual set and query
their translation. This selection needs to minimize
the post-edited cost and maximize the improvement
of a finetuned model (Liu et al., 2018).

Interactive learning relies on a joint collabora-
tion between a human and an MT system to obtain
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high-quality translations while reducing the human
effort in the process (Peris et al., 2016).

Our lifelong learning setting differs from both
domain and instance-based adaptation, as it de-
pends on the target data (called the lifelong data).
The lifelong data set, unlike the training data, is
unsupervised. Therefore, it is advisable to use tech-
niques such as unsupervised learning, active learn-
ing, or interactive learning to approach the task.

3 Overview of the system and
environment

The toolchain developed to evaluate the au-
tonomous systems is described in Figure 1. It is
made of four parts:

• the input datasets (purple on Figure 1), see
section 3.1;

• the four blocks of the system (green on Fig-
ure 1 to be modified to include your own sys-
tem), see appendix A for more details;

• the user simulation (orange on Figure 1), see
section A.5;

• the evaluation blocks (blue on Figure 1), see
section 3.2

Note that input datasets, user simulation and eval-
uation blocks are fixed and guarantee the repro-
ducibility of the experiments. Participants are free
to edit the four blocks of the system in order to in-
clude their own code. Once your code is included
in this toolchain, the system will run automatically
and the BEAT platform is responsible for manag-
ing the data exchanges between the different blocks
of the architecture. Thus, you don’t need to take
care about the communication between blocks, es-
pecially, the interaction between the system and the
user simulation is automatic.

3.1 Datasets
Two different datasets are available: the training
data and what we called lifelong data. The train-
ing data is used to train the preprocessing system
(eventually) and the initial system in a supervised
way. Source text along with the translation of all
documents included in this set are available at any
time during the lifelong MT process. Note that
no development data is provided, meaning that it
is up to the participants to decide how to split the
training data into train and development (if one is
needed).

This year, we used the Europarl and NewsCom-
mentary corpora as training data as they have docu-
ment information along with their production dates.
This represents between 50M and 58.6M words per
language depending on the considered language
pair (see details in Table 1).

The lifelong data is available in a sequential
manner: each document is processed one after the
other to simulate the process along time. This data
is unsupervised, meaning that no reference trans-
lation is provided (they correspond to the data to
translate every day). The system has to provide
translations for those documents that will be evalu-
ated.

We used the WMT14 English to French and En-
glish to German corpus as lifelong learning data.
While this allows for comparison with systems that
participated in WMT14 News translation shared
task, one must keep in mind that the training data
is much smaller than what was available for the
shared task at the time. The aim here is to demon-
strate the effectiveness of the continuous adaptation
when compared to a baseline system that does not
evolve (lower bound) and the best supervised sys-
tem (retrained with all available data). In the future,
we will extend the lifelong learning data to include
that from 2014 up to the most recent one.

Training data (from 01.01.1996 to 31.12.2013)
English French English German

#Documents 15218 15472
#Segments 2308516 2246090
#Words 55.6M 58.6M 53.6M 50.4M

Lifelong data (newstest2014)
English French English German

#Documents 176 164
#Segments 3003 3003
#Words 62.3k 69.6k 59.3k 55.1k

Table 1: Statistics of the newstest2014 English-French
and English-German corpora.

3.2 Evaluation
The evaluation is performed in the mt evaluation
and BLEU collate blocks. The first block is aimed
at collecting scoring statistics for the document
being currently processed. In our case, it will cor-
respond to the BLEU modified n-gram precisions.
The second block will aggregate those statistics
along with the penalisation in order to provide a
final score for the system.

Each time the user simulation is asked for help,
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Figure 1: Flowchart of the lifelong learning MT system running on the BEAT platform.

a penalisation is calculated based o the request.
The final penalised score Spen corresponds to the
following score:

Spen = Sadapt + (Simp − Scor)

with Sadapt being the score of the adapted system
and Simp and Scor are the scores of this system
where all sentences requested to the user simulation
are considered entirely wrong and correct, respec-
tively. Note that in the case of BLEU, the brevity
penalty is not impacted by this calculation, only
the correct n-gram counts will be decreased propor-
tionally to the sentence requested for translation.
For more details, see (Prokopalo et al., 2020).

4 Baseline systems

Integrating an NMT system in the BEAT platform
requires to rethink the code so that everything is
done in memory. We chose to use the nmtpy-
torch toolkit to implement the baseline systems
(Caglayan et al., 2017).

Our baseline systems consists of a 2-layer bidi-
rectionnal GRU (Cho et al., 2014) encoder and a
2-layer Conditional GRU decoder (Sennrich et al.,
2017) equipped with an attention mechanism (Bah-
danau et al., 2014) as implemented in nmtpytorch.

Given a source sequence of embeddings
X={x1, . . . , xS} and a target sequence of embed-
dings Y={y1, . . . , yT }, the bidirectional encoder
first computes the sequence of annotations corre-
sponding to the concatenation of the hidden states
of the two GRU A={a1, . . . , aS}. At a given
timestep t of decoding, the output layer estimates

the probability of the next target word yt as follows:

dt = GRU(yt−1, d
′
t−1)

ct = Attention(A, query← dt) (1)

d′t = GRU′(ct, dt)

ot = tanh(Wcct +Wdd
′
t +Wyyt−1)

lt = Wo(Wbot + bb) + bo

P (yt|X,Y<t) = softmax(lt)

For a single training sample, we then maximise the
joint likelihood of source and target sentences:

L(X,Y ) =
T∑
t=1

log (P (yt|X,Y<t)) (2)

5 Adaptation techniques

The first adaptation technique used is rather simple.
It consists of selecting N sentences from training
data that are the closest to the sentences in the
document. The chosen similarity metric is the co-
sine between sentence embeddings obtained by a
simple average of word embeddings, as described
in (Arora et al., 2017). This data is then used to
finetune the initial model for maximum 10 epochs
with a learning rate of 0.00004, which is ten times
smaller than during initial training of the model.

Furthermore, we employed an active learning
strategy as an adaptation method. In principle,
there are two steps involved. Firstly, the model
provides a translation for each document from the
lifelong learning corpus. As the lifelong learning
data are unsupervised; therefore, a quality estima-
tion (QE) technique is used to evaluate the qual-
ity of the translations without any access to a ref-
erence translation. Every document is evaluated
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using sentence-level HTER scores (Specia et al.,
2018). Secondly, an OpenKiwi QE model (Kepler
et al., 2019) is used to rank the sentences according
to their quality, and those with the worst HTER
score are sent to the user simulation (active learn-
ing), which provides the correct translation of the
selected sentences. This process implies the penali-
sation of the BLEU score as explained in Section 3.

6 Experimental setup

The dimensions of embeddings and GRU hidden
states are set to 128 and 256, respectively. The
embeddings are shared in the decoder (Press and
Wolf, 2017). We use ADAM (Kingma and Ba,
2014) as the optimiser and set the learning rate
and mini-batch size to 0.0004 and 64, respectively.
Regularisation is done by means of a weight decay
of 1e−5 and the use of dropout on the embeddings,
the source context and the output (set at 0.4) (Sri-
vastava et al., 2014). We clip the gradients if the
norm of the full parameter vector exceeds 1 (Pas-
canu et al., 2013).

The data is processed by a joint BPE model with
30k merge operations (Sennrich et al., 2016a). This
leads to respectively 20.7k and 25.1k units for En-
glish and French and 17.2k and 26.5k units for
English and German, respectively.

We train each model for a maximum of 100
epochs and early stop the training if validation
BLEU (Papineni et al., 2002) does not improve
for 10 epochs (Figure 2). We also halve the learn-
ing rate if no improvement is obtained for three
epochs. The number of learnable parameters is
around 8.7M for En-Fr and 8.5M for En-De.

Figure 2: Training loss and BLEU scores for the
English→German MT system.

7 Results

The results of the baseline systems and the adapted
ones can be found in Table 2.

English→French English→German

Baseline
SHEFFIELD 25.7 15.6
UPC 26.2 14.7

Data selection + finetuning
SHEFFIELD 26.4 15.5
UPC 26.4 15.1

Table 2: BLEU scores on the newstest2014
English→French and English→German.

Results show that a simple data selection method
along with finetuning can provide a small improve-
ment of the system’s performance for English to
French. German is known to be a more complicated
language, as demonstrated by the lower results and
the inefficient effect of the adaptation method.

8 Discussion and next year evaluation

We can see that the task, given the very constrained
data is very hard. A simple comparison with the re-
sults of the systems that participated in the WMT14
News translation task shows more than 10 BLEU
points difference. We insist on the fact that the
main goal of the challenge is to provide new meth-
ods to incrementally adapt the model to incoming
documents. Without loss of generality, it is very
probable that even with a better baseline system
(trained on more data), the adapted models would
exhibit a similar improvement.

Many questions and challenges remain open as
to how lifelong learning for MT should be imple-
mented. Next year, we ought to push further the
evaluation by improving the QE model in order to
better select the sentences to be sent to the user
Simulation (Active Learning module). Hence, this
will require to reconsider how the systems are eval-
uated. This year, we introduced a way of penalising
the systems but without corresponding results.

We hope to have more participants bringing new
ideas either by using the current baseline models
(and avoiding the integration burden) or by inte-
grating their own systems into the platform.
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A LLMT system

This section describes the four different blocks that compose the LLMT system. The architecture of the
system has been developed according to standard MT architectures. In order to facilitate the development
of your system and to provide a baseline, a complete implementation of a LLMT system using nmtpytorch
(Caglayan et al., 2017) is provided on the evaluation web page, see http://www.statmt.org/wmt20/

lifelong-learning-task.html for more details.
General note: the prototypes of the process functions must not be changed!

A.1 Train and apply preprocessing

This block is responsible for preparing the training data. Preprocessing may include tokenization, learning
subword decomposition model, etc. It is also responsible for creating the source and target vocabularies
that will be used by the system. To do so, the entire training set is available at once (as in standard training
protocol). The prepared training data is sent to the train initial model (sec. A.2) block while the subword
model and vocabularies are sent to the apply preprocessing block (sec. A.3).

def process(self, data_loaders, outputs):
# Get the training data
data_loader = data_loaders[0]
for i in range(data_loader.count()):

(data, _, end_index) = data_loader[i]
... data["train_source_raw"].text
... data["train_target_raw"].text
... data["train_file_info"]

#Note: setup_for_nmtpytorch(data_loaders) does that for you

#HERE: DO AS MUCH DATA PREPARATION AS YOU WISH

#Create vocabulary and BPE or SPM model
data_dict_tok, src_vocab, trg_vocab, subword_model =

preprocess(data_dict, self.source_language, self.target_language,
self.min_freq, self.short_list)

data_dict_pickle = pickle.dumps(data_dict_tok).decode("latin1")

#Write all the necessary outputs
outputs[’train_data_tokenized’].write({’text’:data_dict_pickle}, end_index)
outputs[’source_vocabulary’].write({’text’:src_vocab}, end_index)
outputs[’target_vocabulary’].write({’text’:trg_vocab}, end_index)
outputs[’subword_model’].write({’text’:subword_model}, end_index)

# always return True, it signals BEAT to continue processing
return True

A.2 Train initial model

The initial training of the system is implemented in the file algorithms/loicbarrault/mt train model/1.py.
The process method is the main one. From this method, you can access all the training data from the
train preprocessing block. This block outputs a model.

# this will be called each time the sync’d input has more data available to be processed
def process(self, data_loaders, outputs):

(data, _,end_data_index) = data_loaders[0][0]
data_dict = pickle.loads(data["train_data"].text.encode("latin1"))

#HERE: USE YOUR SOFTWARE FUNCTIONS TO TRAIN A MODEL

# The model is Pickled with torch.save() and converted into a 1D-array of uint8
# Pass the model to the next block
outputs[’model’].write({’value’: model}, end_data_index)

# always return True, it signals BEAT to continue processing
return True

The data is available through the data loader. In the provided baseline system, the processing consists
of: tokenizing the data with Moses tokenizers (Koehn et al., 2007), training and applying a BPE model
with subword nmt (Sennrich et al., 2016b). As for the previous block, the output is written in the
corresponding variable.

http://www.statmt.org/wmt20/lifelong-learning-task.html
http://www.statmt.org/wmt20/lifelong-learning-task.html
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A.3 Apply preprocessing

The apply preprocessing’s algorithm is defined in the process function of the algorithm in algorithm-
s/loicbarrault/mt apply preprocessing/1.py . The aim is to preprocess the lifelong data similarly to the
training data using the vocabularies and subword models trained in the train preprocessing block.

The documents from the lifelong learning corpus are provided one after the other in the input parameter.
Other information from previous blocks is available from the data loaders as before.

# this will be called each time the sync’d input has more data available to be processed
def process(self, inputs, data_loaders, outputs):
#Get the information from previous block,
#NOTE: this should be done only once and stored in instance variable
if self.src_bpe is None or self.trg_bpe is None \

or self.src_vocab is None or self.trg_vocab is None:
(data, _, end_data_index) = data_loaders[0][0]
#Source and target vocabularies from the train_preprocessing block
self.src_vocab = data["source_vocabulary"].text
self.trg_vocab = data["target_vocabulary"].text
#Source and target BPE objects to separate text into subwords units
subword_model = io.StringIO(data["subword_model"].text)
self.src_bpe = BPE(subword_model, vocab=self.src_vocab)
self.trg_bpe = BPE(subword_model, vocab=self.trg_vocab)

# Accessing lifelong data, one document at a time
lifelong_source_raw = inputs[’lifelong_source_raw’].data.text
lifelong_target_raw = inputs[’lifelong_target_raw’].data.text

#HERE: APPLY THE PREPROCESSING TO THE DOCUMENT
lifelong_source_tok = ...
lifelong_target_tok = ...

#Write all the necessary outputs
outputs[’lifelong_source_tokenized’].write({’text’:lifelong_source_tok})
outputs[’lifelong_target_tokenized’].write({’text’:lifelong_target_tok})
if not inputs.hasMoreData():
# DO SOMETHING WHEN ALL THE LIFELONG DATA HAS BEEN PROCESSED

# always return True, it signals BEAT to continue processing
return True

A.4 Lifelong learning loop

This block receives the initial model from the mt train initial model block (sec. A.2) and process all files
from the lifelong dataset provided by the apply preprocessing block, one at a time. This block has access
to the whole training dataset and may store every processed document in memory in order to re-use it for
further adaptation and/or any processing of your choice.

The output of this block is the translated document. This hypothesis might be obtained by simply
translating the source document with the actual model (this is what the baseline model does). Eventually,
you will plug your favorite unsupervised/semi-supervised or supervised adaptation scheme to create a
better model before translating the document.

This module has also access to the user simulation (sec. A.5) from which the system can get reference
translation for some segments in order to provide the best possible output.

A.5 User simulation

This module simulates the human in the loop. It receives requests from your system and provides answers
to them. The requests and messages to the human are implemented in the lifelong loop block as dictionaries
as follows:

request = {
"request_type": "reference",
"file_id": ’{}’.format(file_id),
"sentence_id": np.uint32(0)

}

message_to_user = {
"file_id": file_id, # ID of the file the question is related to
"hypothesis": current_hypothesis[request[’sentence_id’]] ,

# The current hypothesis
"system_request": request, # the question for the human in the loop

}
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As for now, only one type of request is available, namely ’reference’. This asks the user simulation to
provide a correct translation for sentence number sentence id from document file id.

The answers are also a dict (see below) and can be obtained with the validate method as follows.
answer = {

"answer": {"value": self.reference.text[sent_id]},
"response_type": "reference",
"file_id": self.file_info.file_id,
"sentence_id": sent_id

}
#Get the answer from the user simulation
human_assisted_learning, user_answer = loop_channel.validate(message_to_user)

Asking for human assistance is not free and will result in a penalisation of the system score, as described
in sec. 3.2.

B How to setup a local platform for system development

B.1 Install
Installing the system requires to have a working conda1 environment.

Then, the baseline system is available in the following repository: https://github.com/

loicbarrault/allies_llmt_beat. Simply install using the install.bash script

B.2 Data
The data is available here: https://github.com/loicbarrault/allies_llmt_data. Simply follow
the guidelines to recreate the data.

Update the root folder at the bottom of the file allies llmt beat/beat/databases/allies-mt-internal/1.json
with the path to the repository allies llmt data/¡language-pair¿ directory (replace ¡language-pair¿ by the
desired language pair, i.e. en-fr or en-de).

B.3 Run
Run the English→French system with the following command:
b e a t −−p r e f i x / p a t h / t o / g i t / a l l i e s l l m t b e a t / b e a t exp run l o i c b a r r a u l t / l o i c b a r r a u l t / t r a n s l a t i o n l l d e v / 1 / t r a n s l a t i o n l l d e v

Run the English→German system with the following command:
b e a t −−p r e f i x / p a t h / t o / g i t / a l l i e s l l m t b e a t / b e a t exp run l o i c b a r r a u l t / l o i c b a r r a u l t / t r a n s l a t i o n l l d e v / 2 / t r a n s l a t i o n l l d e v

1https://docs.conda.io/en/latest/

https://github.com/loicbarrault/allies_llmt_beat
https://github.com/loicbarrault/allies_llmt_beat
https://github.com/loicbarrault/allies_llmt_data

