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Abstract

In this paper, we describe our systems sub-
mitted to the very low resource supervised
translation task at WMT20. We participate in
both translation directions for Upper Sorbian-
German language pair. Our primary sub-
mission is a subword-level Transformer-based
neural machine translation model trained on
original training bitext. We also conduct
several experiments with backtranslation us-
ing limited monolingual data in our post-
submission work and include our results for
the same. In one such experiment, we ob-
serve jumps of up to 2.6 BLEU points over the
primary system by pretraining on a synthetic,
backtranslated corpus followed by fine-tuning
on the original parallel training data.

1 Introduction

This paper describes our submissions to the shared
task on Very Low Resource Supervised Machine
Translation at WMT 2020. The task involved
a single language pair: Upper Sorbian-German.
We submit supervised neural machine translation
(NMT) systems for both translation directions, Up-
per Sorbian→German and German→Upper Sor-
bian.

NMT models (Sutskever et al., 2014; Bahdanau
et al., 2015; Cho et al., 2014a) have achieved state-
of-the-art performance on benchmark datasets for
multiple language pairs. A big advantage of such
systems over phrase-based statistical machine trans-
lation (PBSMT) (Koehn et al., 2003) models is that
they can be trained end-to-end. The bulk of the
development, however, has been limited to a hand-
ful of high-resource language pairs. The primary
reason is that training a well-performing NMT sys-
tem requires a large amount of parallel training
data, which means a lot of equivalent investment
in terms of resources. Koehn and Knowles (2017)
show that when compared to PBSMT approaches,
NMT models need more training data to achieve

the same level of performance.1 One of the most
popular ways to increase the amount of parallel
training data for supervised training is backtrans-
lation (Sennrich et al., 2016a). We utilize this ap-
proach to improve upon the performance of our
baseline models.

All of our systems follow the Transformer archi-
tecture (Vaswani et al., 2017). Our primary system
is a supervised NMT model trained on the original
training bitext. We also report our results on experi-
ments with backtranslation, which were completed
post the shared task and hence not a part of our
primary submissions. We use the backtranslated
data in two distinct ways - as a standalone parallel
corpus, and to create a combined parallel corpus
by mixing in a 1:1 ratio with the provided training
data. We also report the performance of fine-tuned
models originally trained only on the backtrans-
lated data. In the following sections, we begin by
briefly describing the Transformer architecture and
backtranslation. We then discuss our experimental
setup as well as our experiments with backtransla-
tion. We conclude with a discussion of our results
and possible future work.

2 Related Work

The Transformer model is the dominant archi-
tecture within current NMT models due to its
superior performance on several language pairs.
While still a sequence-to-sequence (Sutskever et al.,
2014) model composed of an encoder and a de-
coder, Transformer models are highly paralleliz-
able thanks to being composed purely of feed-
forward and self-attention layers rather than re-
current layers (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014b). The reader is encouraged to read
the original paper (Vaswani et al., 2017) to gain a
deeper understanding of the model. We adopt the
Transformer base architecture available under the

1As measured by BLEU score (Papineni et al., 2002).
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fairseq2 (Ott et al., 2019) library for all our models.
However, NMT models are known to be data-

hungry (Koehn and Knowles, 2017); their perfor-
mance improves sharply with the availability of
more parallel training data. Except for a few lan-
guage pairs (e.g. English-German), most have lit-
tle to no such data available. On the other hand,
a far greater number of languages have a decent
amount of monolingual data available online (e.g.
Wikipedia).

To address this issue of lack of parallel data, Sen-
nrich et al. (2016a) introduced the concept of back-
translation. It involves creating a synthetic parallel
corpus by translating sentences from the target-side
monolingual data to the source language and mak-
ing corresponding pairs. A baseline target→source
model (PBSMT or NMT), trained with limited data,
is generally used for this purpose. It enables the
use of large corpora of monolingual data for sev-
eral languages, the size of which is typically orders
of magnitude larger than any corresponding bitext
available. What is notable is that only the source-
side data is synthetic in such a scenario and the
target-side still corresponds to original monolin-
gual data.

Some studies (Poncelas et al., 2018; Popel, 2018)
have investigated the effects of varying the amount
of backtranslated data as a proportion of the to-
tal training corpus, including training only on the
synthetic dataset as a standalone corpus. We fol-
low some of the related experiments conducted by
Kocmi and Bojar (2019) on Gujarati-English (an-
other low-resource pair) with a few exceptions. Be-
sides, we also report performance when pretraining
solely on the synthetic corpus following by fine-
tuning on either original or mixed data. While
not quite the same, one could think of this ap-
proach as having some similarities with transfer
learning (Zoph et al., 2016) as well as domain adap-
tation (Luong and Manning, 2015; Freitag and Al-
Onaizan, 2016) for machine translation. There has
also been work on using sampling (Edunov et al.,
2018) for generating backtranslations, but we stick
to using beam search in this work.

3 Experimental Setup

3.1 Dataset
We used the complete parallel training corpus for
our primary systems. In addition, we also made
use of monolingual data from each language for

2https://github.com/pytorch/fairseq

two purposes - learning Byte Pair Encodings (BPE)
(Sennrich et al., 2016b) and backtranslation. For
Upper Sorbian (hsb), we used the monolingual cor-
pora provided by the Sorbian Institute and by the
Witaj Sprachzentrum. To control the quality of the
backtranslated data, we chose not to use the data
scraped from the web. For the German (de) side,
we made use of the News Crawl3 2009 dataset, as
it is large enough to satisfy the requirements for
our experiments.

3.2 Data Preprocessing

Source No. of sentences
hsb-de, bitext 58,389
hsb, monolingual 540,994
de, monolingual 2,000,000

Table 1: Processed training data.

Moses toolkit (Koehn et al., 2007) was used for
tokenization and punctuation normalization for all
data. Before doing any additional preprocessing,
we learned separate truecaser models using the
toolkit. For this purpose, we took first 500K sen-
tences from each of the monolingual corpora and
aggregated them with the corresponding portion
from the training bitext. After tokenizing and true-
casing, we joined the parallel training corpus with
the same monolingual data. We learned joint BPE4

with 32K merge operations over this corpus and
applied them to the parallel training data to get
vocabularies for each language. Additionally, we
used the clean-corpus-n.perl script within
Moses to filter out sentences from the parallel cor-
pus with more than 250 subwords as well as sen-
tence length ratio over 1.5 in either direction. Final
corpus statistics are presented in Table 1.

3.3 Training

Our primary system is a Transformer base model,
trained on the parallel training corpus for both trans-
lation directions till 60 epochs. We keep most of the
hyperparameters to their default values in fairseq.
More precisely, we chose Adam (Kingma and Ba,
2015) as the optimizer and Adam betas were set to
0.9 and 0.98, respectively. The maximum number
of tokens in each batch was set to 4096. Learn-
ing rate was set to 0.0005, with an inverse squared

3http://data.statmt.org/news-crawl/de/
4https://github.com/glample/fastBPE

https://github.com/pytorch/fairseq
http://data.statmt.org/news-crawl/de/
https://github.com/glample/fastBPE
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root decay schedule and 4000 steps of warmup up-
dates. Label smoothing was set to 0.1 and dropout
to 0.3. Label-smoothed cross-entropy was used as
the training criterion.

We trained all our models for a fixed number
of epochs, determined separately for each system,
and chose the last checkpoint for reporting BLEU
(Papineni et al., 2002) scores on the test sets.

All training was done using a single NVIDIA
P100 GPU. Due to the small amount of parallel
training data, each epoch of training took about 90
seconds on average for the primary system.

4 Additional Backtranslation
Experiments

In this section, we report our post-submission
work on using monolingual data for backtransla-
tion. We took the raw monolingual data that we
describe in Section 3.1 and backtranslated with
our primary submission models for the respective
translation directions, i.e., hsb→de for Upper Sor-
bian data and de→hsb for German data. We used
fairseq-generate function with a beam size
of 5 for this purpose. Once again, we limited the
number of subwords in each sentence to 250. Fi-
nally, we took all sentence pairs for backtranslated
Upper Sorbian corpus and the first two million
sentence pairs for the German corpus. Table 1 in-
dicates the size of the backtranslated corpora by
original language. For further experiments, we
name the datasets as follows:

• auth: Processed original training data.

• synth: Backtranslated de→hsb and hsb→de
corpora.

• mixed: Augmented training data obtained by
mixing auth with a portion of synth in 1:1
ratio, providing a total of 116,778 sentence
pairs.

We define the following systems for making use
of the backtranslated data. Note that the first system
only differs from the primary system in the number
of training epochs completed.

• auth-from-scratch: This system has the same
settings as the primary system. It was trained
on the auth corpus till 80 epochs (as opposed
to 60 for primary).

• mixed-from-scratch: We trained models on
mixed data from scratch for 40 epochs.5

• synth-from-scratch: Models were trained only
on the synth datasets. To adjust for the differ-
ence in the size of the respective backtrans-
lated corpora, we trained hsb→de system for
10 epochs and de→hsb system for 30 epochs.

• synth-auth-finetune: We took the models
trained via the previous system and fine-tuned
them on auth data for 20 epochs in each trans-
lation direction.

• synth-mixed-finetune: Same as the last model,
except that fine-tuning was done on mixed
data.

Fine-tuning was carried out by loading
pretrained checkpoints and adding extra
training flags in reset-optimizer and
reset-lr-scheduler.

5 Results

The systems were evaluated on the blind test set
(newstest2020) using automated metrics; no hu-
man evaluation was done. Table 2 shows cased
BLEU scores for various systems. Our primary
systems achieved a BLEU score of 47.6 for Upper
Sorbian→German and 45.2 for German→Upper
Sorbian translation. We achieved an improvement
of 0.3 and 0.4 BLEU points, respectively, by train-
ing further till 80 epochs in each direction. We
also evaluated a third system, synth-auth-finetune,
as described in Section 4, which provided a jump
of 2.6 points in BLEU score over the primary
system for Upper Sorbian→German and 2.5 for
German→Upper Sorbian.

In addition to evaluating on blind test sets, we
also report BLEU scores on the development test
set in the same table. Two outcomes are worth
highlighting:

• Model trained only on synth data for
German→Upper Sorbian translation matched
the performance of a similar model trained on
the authentic bitext.

• Best results were obtained by fine-tuning a
model trained on synth data with either auth
or mixed.

5We trained further till 60 epochs, but observed no im-
provement in BLEU scores.
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System Dataset Epochs newstest2020 devtest
hsb→de

Primary* auth 60 47.6 -
auth-from-scratch auth 80 47.9 45.6
mixed-from-scratch mixed 40 - 45.7
synth-from-scratch synth 10 - 38.0
synth-auth-finetune +auth 20 50.2 49.6
synth-mixed-finetune +mixed 20 - 48.3

de→hsb
Primary auth 60 45.2 -
auth-from-scratch auth 80 45.6 46.4
mixed-from-scratch mixed 40 - 47.4
synth-from-scratch synth 30 - 46.5
synth-auth-finetune +auth 20 47.7 49.0
synth-mixed-finetune +mixed 20 - 49.6

Table 2: BLEU scores for the blind test set (newstest2020) and the development test set. Bold values in a column
indicate the best scores among the evaluated systems. + Additional fine-tuning for models trained with backtrans-
lated corpora. * Only the primary systems were evaluated before deadline.

The second result is notable since the regime
of pretraining followed by fine-tuning improves
the BLEU scores by up to 4 points on this test
set when compared to training only on the origi-
nal bitext. Moreover, while the model trained on
synth was not able to match the performance of that
trained on auth for Upper Sorbian→German, it still
provides the same benefits as German→Upper Sor-
bian model when fine-tuned further. Looking at
the small improvements achieved by using only the
mixed corpus for training, increasing its size by
combining upsampled auth data with more synth
data might lead to even further jumps in the BLEU
scores.

6 Conclusion

In this paper, we described our Transformer model
for supervised machine translation for Upper
Sorbian-German language pair. We take note of
relatively high BLEU scores achieved by our pri-
mary systems (and those of other participants) on
this low-resource language pair, which could relate
to the high quality of the training corpus. We also
report results and takeaways from several experi-
ments with backtranslated data completed post the
shared task. A key result is matching the perfor-
mance of a system trained on the original bitext
with one trained on a limited amount of synthetic,
backtranslated data. Domain mismatch and a dif-
ference in the quality of monolingual corpus might
have prevented the system from achieving a similar

result in the other direction. We notice big improve-
ments in performance over the primary systems by
following a “pretraining then fine-tuning” regime.

An interesting future work would be to mea-
sure the applicability of this approach to other low-
resource language pairs. Additional systems could
be added as well. For instance, models trained on
mixed data and fine-tuned on auth data might pro-
vide a meaningful comparison. Prior work (Ding
et al., 2019) has shown that the number of BPE
merge operations has a significant effect on the per-
formance of NMT systems. This work was pointed
out during the review process and should be an
avenue for further improvement of the model per-
formance.
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