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Abstract

Arabic is a language with numerous dialects. It becomes extremely important to device a tech-
nique to distinguish each dialect efficiently. This paper focuses on the fine-grained country-level
and province-level classification of Arabic dialects. The experiments described in this paper are
submissions of team TRY NLP for NADI SHARED TASK on Nuanced Arabic Dialect Identi-
fication. Various text feature extraction techniques such as TF-IDF, AraVec, multilingual BERT
and FastText embedding models are studied. We thereby, propose an approach of text embedding
based model with macro average F1 score of 22.32% for subtask 1 and 4.83% for subtask 2, with
the help of semi-supervised learning approach.

1 Introduction

As Arabic has a diverse collection of dialects and as Dialect Arabic varies phonologically, lexically,
and morphologically from Modern Standard Arabic (Bouamor et al., 2018), fine-grained dialect identi-
fication becomes an important task. The classification helps for studying various indigenous properties
among different dialect speakers. Previously, work on fine-grained city-level classification has been done
(Salameh et al., 2018), for MADAR tasks (Bouamor et al., 2018). NADI 2020 task consist of 21 class
country-level dialect labels and 100 class province-level fine-grained dialect labels.

With recent development in text classification, from emerging techniques like embedding models, not
only for English, but trained on multiple languages have opened opportunities for Arabic text classifica-
tion. As models like Word2Vec, FastText and BERT perform excellent in text classification of English
twitter data, these can be extended into the usage of Arabic languages. Features extracted from these
models are then further fine tuned using neural network layers, to fit the required classification.

In this paper we propose a model giving extremely good scores, using a combination of labelled and
unlabelled data, by semi-supervised learning technique. Unlabelled 10 million twitter data is collected
with their ID provided for the challenge and the top confidence predictions are added to extend the main
labelled data set to increase the training set. Repeated training with the added data in each step, increased
the F1 score significantly.

The remainder of the paper is organized as follows. Section 2 discusses the description of the data
set and preprocessing methods used. Section 3 outlines the features used for the experiments for both
subtask 1 and subtask 2. Results are discussed in Section 4. Section 5 concludes the paper.

2 Data Description and Processing

The data provided in the NADI 2020 task consist of 21,000 labelled and 10 million unlabelled data set
for training, 4,957 tweet dev set and 5,000 tweet test set. The data consist of 21 different country-level
labels and 100 different province-level labels with unequal distribution of tweets in various classes. The
details about the shared task is described in (Abdul-Mageed et al., 2020)
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Additionally 10 million tweet IDs were given without labels. These unlabelled tweets were extracted
by using the Twitter API. Out of the 10 million tweets approximately 92% of tweets are available and is
considered for semi-supervised learning.

As the texts are direct tweet messages, it contains links, hashtags and numbers, which is against
the context of our study. So tweets are cleaned by removing the unwanted links, English and special
characters, considering just the Arabic text to maintain generality.

Data type # tweets
train-labelled 21,000
train-unlabelled 10 million
dev 4,957
test 5,000

Table 1: Dataset distribution.

3 Experimental Setup

For both subtask1 and subtask2, TF-IDF, AraVec, BERT and FastText features are extracted and these
feature vectors are fine-tuned to classify dialect classes by appending an extra layer. By this method of
transfer learning we have established an effective and faster way of training the model.

Due to the large number of classes and great class imbalance, macro average F1 score is suitable and
is used in the NADI task. Also accuracy, precision and recall are observed.

3.1 TF-IDF Vectorization

TF-IDF abbreviated as term frequency-inverse domain frequency, which is a count based text-extraction
model with inverse domain frequency term normalising the representation. This representation reduces
the impact of the large repetition of one unimportant word in the sentence. This approach is better than
just count vectorization of the sentences and works well for small train set (Mishra and Mujadia, 2019).
Previously, TF-IDF model fusion models, presented to MADAR SHARED task (Bouamor et al., 2019)
have shown good performance (Abu Kwaik and Saad, 2019; Mishra and Mujadia, 2019).

3.2 AraVec

As Arabic is a language with complex morphology and having different ways to express the same mean-
ing, it becomes important to capture the syntactic and semantic relations among the words in the sentence.

Word2Vec models are shallow, two-layer neural networks, trained to reconstruct linguistic contexts of
words (Mikolov et al., 2013). So it becomes a basic approach for understanding the semantics as well
as run fast. Similar to word2vec trained on English corpus, AraVec (Soliman et al., 2017) is trained on
Arabic corpus and becomes quicker and requires lesser data to fine tune the model. AraVec model, a
n-gram model trained on Arabic twitter data and Wikipedia Arabic articles is considered suitable for this
task.

3.3 Multilingual BERT

BERT is a Bidirectional Encoder Representations from Transformers architecture (Devlin et al., 2018).
BERT is the state-of-the-art model available for twitter text classification, with transformer based unsu-
pervised learning model. As the BERT model is pre-trained on a large corpus of data, to learn the context
similarities of the sentences, it is easier to fine-tune and get good results. The multilingual cased BERT
model which is trained on 104 different languages, including Arabic is used to generate the word vectors.

3.4 Arabic FastText

We use the FastText model trained on common crawl and Wikipedia data of Arabic sentences (Grave
et al., 2018). It has been proven to give good results in (Samih et al., 2019). This produces a fixed
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embedding of length 300. The model is trained using CBOW (Continuous Bag of Words) with position-
weights, with character n-grams of length 5, a window of size 5 and 10 negatives. The FastText model
is fragment based, and gives good representation on even unseen words. The twitter dataset for the
classification, mostly contains unknown words and so gives better representation with the implementation
of FastText from magnitude (Patel et al., 2018).

Out of all the experiments conducted the Arabic FastText fine-tuned model produced great results on
the development set with up-to 0.18% macro avg F1 score, out performing the multilingual BERT model.
This is majorly because FastText Arabic specific pre-trained model is readily available, whereas BERT
only has generalized multilingual variant and the limitation in the train data set size have made FastText
shine.

3.5 Semi-supervised Learning

The limited labelled data constraints the model, to learn much and to overfit on the training corpus. To
generate a generalized model, which could perform well on the test set, it is must to increase the data set
to see any further improvements in the performance. So, by semi-supervised learning strategy (Zhang
and Abdul-Mageed, 2019), we tried to get more labelled samples by pseudo labelling the unlabelled data
with a previously trained model. The steps for semi-supervised learning used in the proposed approach
is depicted in Figure 1.

Data Preprocessing Embedding Extraction Fine tuning with an
added layer

Pseudo label 10
million dataPrepare trainset

Test results

Figure 1: Semi-supervised learning pipeline

The FastText model, which has the best performance is considered and the unlabelled 10 million tweets
are predicted along with their confidence scores. Then the top confidence score results are selected and
added to the main training data. Then the training process is repeated again, and the addition of pseudo
labelled data is repeated multiple times. The threshold of confidence score to be added to training set is
experimented with different values as explained in (Zhang and Abdul-Mageed, 2019). This process of
semi-supervised learning gave a significant improvement and reached 0.2232 macro avg F1 score.

4 Results

The pre-trained models for Arabic corpus is hard to find, making models like BERT perform slightly
lesser than expected. Even though normalized count based model is basic, TF-IDF method showed
relatively better results than the AraVec model, as TF-IDF transform is fitted on the training corpus, and
not using different corpus.

Out of all models trained on only the labelled training data, the FastText model performs the best as
its implementation with the magnitude library (Patel et al., 2018), as it assigns the same id for repeating
words that doesn’t exist in the pre-trained corpus. By this model we reach an excellent F1 score of 0.1890
for country-level classification and 0.0437 for province-level classification, on the dev set.

The results of each feature extraction technique are observed and tabulated in Table 2 and 3.
Then considering the unlabelled tweets, extracted using the tweeter API, the model is trained in a

semi-supervised fashion. First the model already trained on the labelled data, is used to produce the
labels for the 10 million tweets and out of which the top confidence results are selected and concatenated
with the labelled data. To not induce excess error into the model, various thresholds of 1, 5, 10%
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Model macro avg F1 accuracy precision recall
TF-IDF 0.1522 0.3099 0.1697 0.1487
AraVec 0.1159 0.3123 0.1321 0.1237
multilingual BERT 0.1175 0.2417 0.1294 0.1146
FastText ar 0.1890 0.3752 0.1939 0.1922
Semi-supervised FastText 0.2232 0.3674 0.2285 0.2404

Table 2: Subtask1 - Country-level classification report on dev set

is experimented. This addition of data to the train data, helped to increase the models performance
significantly, approximately 20% increase compared to the supervised learning score.

Model macro avg F1 accuracy precision recall
TF-IDF 0.0442 0.0444 0.0476 0.0447
AraVec 0.0213 0.0268 0.0253 0.0271
multilingual BERT 0.0275 0.0313 0.0278 0.0331
FastText ar 0.0437 0.0516 0.0390 0.0560
Semi-supervised FastText 0.0483 0.0551 0.0451 0.0608

Table 3: Subtask2 - Province-level classification report on dev set

The FastText model was considered for submission in the NADI 2020 tasks and the results are as
tabulated in Table 4 and 5.

Model macro avg F1 accuracy precision recall
Semi-supervised FastText 0.2004 0.3366 0.2070 0.2107

Table 4: Subtask1 - Country-level classification report on test set

Model macro avg F1 accuracy precision recall
Semi-supervised FastText 0.0403 0.0486 0.0374 0.0468

Table 5: Subtask2 - Province-level classification report on test set

5 Conclusion

coling.bst, line 1244 Fine-grained Arabic dialect classification is explored, with NADI challenge data
set. The tasks of country-level and province-level dialect identification for 21 classes and 100 classes
are studied. In this paper, we explore various models such as TF-IDF, AraVec, multi-BERT and ar-
FastText. We could see that the FastText model performed relatively better than the other models for
such small training set. And also we could see the improvement of performance, by semi-supervised
learning technique using the unlabelled data. By this strategy we achieve 0.2232 and 0.0483 macro avg
F1 for subtask 1 and subtask 2 respectively on dev data set. The model showed 0.2004 and 0.0403 macro
avg F1 for subtask 1 and subtask 2 on test data set.
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