
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020), pages 87–93
Barcelona, Spain (Online), December 13, 2020

87

Configurable Dependency Tree Extraction from CCG Derivations

Kilian Evang
Heinrich Heine University Düsseldorf

Germany
evang@hhu.de

Abstract

We revisit the problem of extracting dependency structures from the derivation structures of
Combinatory Categorial Grammar (CCG). Previous approaches are often restricted to a narrow
subset of CCG or support only one flavor of dependency tree. Our approach is more general
and easily configurable, so that multiple styles of dependency tree can be obtained. In an initial
case study, we show promising results for converting English, German, Italian, and Dutch CCG
derivations from the Parallel Meaning Bank into (unlabeled) UD-style dependency trees.

1 Introduction

In a world of heterogeneous linguistically annotated resources, the need often arises to convert annota-
tions from one format into another. The purpose may be to extract features, make data available as input
for tools that were not designed for it, or to compare heterogeneous tool outputs on an equal footing. For
example, sentences annotated with derivations of Combinatory Categorial Grammar (CCG) (Steedman,
2001) must often be converted to dependency graphs or trees. Figure 1 shows an example.

Anne

NP

swims

S[dcl]\NP

in

((S \NP)\(S \NP))/NP

Rio

NP

(S \NP)\(S \NP)
>0

S[dcl]\NP
<0

S[dcl]
<0

(a)

Anne swims in Rio

(b)

Figure 1: A CCG derivation and corresponding unlabeled UD dependency tree

Clark et al. (2002) define a conversion from derivations to dependency graphs (containing both local
and long-range dependencies) by annotating every lexical category that occurs in the English CCGbank
(Hockenmaier and Steedman, 2007), specifying the bilexical dependency (or dependencies) that each
argument category gives rise to. This annotated inventory of categories and variations thereof have since
widely been used to train and evaluate CCG parsers, e.g., Clark and Curran (2007), Zhang and Clark
(2011), Lewis and Steedman (2014), Stanojević and Steedman (2019). The obvious drawback of this
approach is that each category has to be annotated manually, and adapting the scheme to other languages,
other flavors of CCG, or other flavors of dependency graph, is thus labor-intensive.

A simple alternative is to just extract a dependency for each argument category, with the word cor-
responding to the argument as the dependent, and the word corresponding to the result category as the
head. This is, e.g., used for parser training and evaluation for English by Lewis and Steedman (2014)
and for English and Japanese by Yoshikawa et al. (2017). Koller and Kuhlmann (2009) define a simi-
lar algorithm operating on derivations rather than lexical categories, which however only supports pure

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

88

first-order CCGs. The main drawback is that only one flavor of dependency tree is supported, in which
modifiers and function words such as determiners end up as heads of what they modify due to the way
CCG uses functional categories for them. Bisk and Hockenmaier (2013) use a simple algorithm with
some tricks to accomodate a variety of different dependency treebank formats, but it only supports a
heavily simplified version of CCG with two basic categories, S and N.

In this paper we present a novel approach to extracting dependencies from CCG derivations. It is
similar to Clark et al.’s approach in that the lexical categories, augmented with dependency information
for each argument category, serve as the basis for the extraction. However, we do not annotate each
possible lexical category manually, but rather define a limited and mostly language-independent set of
rules to do so automatically, which can be adapted to different dependency flavors easily. Like the other
approaches mentioned, we limit ourselves to local dependencies. As a result, the resulting structures are
guaranteed to be trees. As a case study, we experiment with converting English, German, Italian, and
Dutch derivations from the Parallel Meaning Bank (Abzianidze et al., 2017) to (unlabeled) dependency
trees compatible with the annotation guidelines of Basic Universal Dependencies (UD) (Nivre et al.,
2016).

2 CCG-to-Dependency Conversion by Argument Category Augmentation

In a CCG derivation, each word is assigned a syntactic category that encodes its combinatory potential
in terms of syntactic arguments. For example, an English transitive verb like sees in Mary sees John has
the category (S \NP)/NP, meaning that it combines with an (object) NP to the right and then with a
(subject) NP on the left, and that the resulting constituent is a sentence (S):

(1) Mary
NP

sees
(S \NP)/NP

John
NP

Categories with slashes (i.e., with arguments) are called functional, others are called basic. We call the
basic category that remains after stripping all arguments from a functional category its top category, e.g.,
S is the top category of (S \NP)/NP.

The first step in our conversion algorithm is to augment each basic category with a pair of variables
X,D, where X represents its identity and D will later be bound to a marker (F or A) that indicates the
direction of the dependency:

(2) Mary
NPA,V

sees
(SB,W \NPC,X)/NPD,Y

John
NPE,Z

We then unify argument categories of functors with the categories of their arguments (this can be done
by traversing the derivation):

(3) Mary
NPA,V

sees
(SB,W \NPA,V)/NPD,Y

John
NPD,Y

We now bind the identity variable of the top category of each word to its token number:

(4) Mary
NP1,V

sees
(S2,W \NP1,V)/NP3,Y

John
NP3,Y

In the next step, each argument category gets a dependency direction marker. In our example,
there are two argument categories, NP1,V and NP3,Y , both arguments of the functor category
(S2,W \NP1,V)/NP3,Y . In this case, the functor-argument relation of CCG corresponds exactly to the
head-dependent relation of most dependency grammars. We indicate this by binding the top category of
every argument category to F, meaning that the functor is the head:

(5) Mary
NP1,F

sees
(S2,W \NP1,F)/NP3,F

John
NP3,F

But the functor is not always the head. Consider the following example:

89

Remaining category Head word New dependency

3
((S3,U \NP1,F)\(S2,A \NPE,X))/NP4,A 4 〈4, 3〉
(S3,U \NP1,F)\(S2,A \NPE,X) 2 〈2, 4〉
S3,U \NP1,F 2 〈2, 1〉
S3,U 2

Table 1: Conversion of the category of in in (7) into dependencies

(6) Anne
NP1,R

swims
S2,S \NPE,X

in
((S3,U \NP1,R)\(S2,S \NPE,X))/NP4,Y

Rio
NP4,Y

Under this CCG analysis, the preposition in is a functor that takes two arguments: first, the NP Rio, and
second, the VP that it modifies (swims). However, in a UD tree, in would not be the head of either Rio or
swims. Instead, the preposition should become a dependent of its object (Rio), which in turn becomes a
dependent of the verb that it modifies (swims). Thus, the dependency direction markers of the arguments
of in are bound to A, indicating that the argument is the head. The other argument categories are still
marked F:

(7) Anne
NP1,F

swims
S2,A \NPE,X

in
((S3,U \NP1,F)\(S2,A \NPE,X))/NP4,A

Rio
NP4,A

Unfortunately, it is not obvious from this representation between which pairs of words dependencies
exist. For example, the presence of NP1,F as an argument category in the category of in might suggest
that Anne depends on in when it should depend on swims. To correctly convert categories into sets of
dependencies, we need to process arguments from outermost to innermost and take into account that the
head word we need to attach dependents to changes every time we encounter an A-type dependency.

The process is illustrated in Table 1 for in. We start out with word 3 (in) itself as the head word, but
already the first argument is A-type, so the argument head, word 4, becomes the new head word, and
we generate a dependency from it to the former head, word 3. The second argument is A-type as well,
so the argument head, word 2, becomes the new head word, and we generate a dependency from it to
the former head, word 4. The third argument is F-type, so we generate a dependency from the current
head, word 2, to the argument head, word 1. Word 2 remains the final head associated with in. Note that
when we speak of “argument heads”, we mean the final heads associated with argument categories (more
properly: with the words whose categories have the same top category), found by recursively processing
them.

3 Identifying Modifiers and Function Words

Which arguments to mark with F, and which with A, depends on the style of dependency tree one wishes
to obtain. Marking every argument with F would yield very modifier-centric and function-word-centric
trees due to CCG’s treatment of adjectives, adverbs, adpositions, conjunctions, etc., as functors. Most
dependency grammars, however, prefer a modifiee-centric, and to varying degrees also content-word-
centric, style. Universal Dependencies (Nivre et al., 2016) is an example of an especially content-word-
centric style, treating function words as dependents of content words whenever possible. SUD (Gerdes
et al., 2018) is a variant of UD that differs mainly in being less content-word-centric. Non-UD treebanks
show considerable variation as to which function words they treat as heads and which as dependents, cf.
Gelling et al. (2012).

Our solution is to mark arguments with F by default, but to define a list of rules that identify modifier
and function word categories whose outermost argument category should be marked with A. We group
the rules into different modules (one for modifiers, one for determiners, etc.) that can be turned on and
off individually, so various dependency styles are supported. We base our rules on the CCG category
inventory of the Parallel Meaning Bank (PMB) (Abzianidze et al., 2017), a large quadrilingual corpus of
sentences annotated with CCG derivations. Our rule inventory is shown in Table 2, where X,Y match

90

Module Symbols Semtags Category

Coordinating conjunctions NIL QUE GRP COO (X\X)/X

Modifiers X|X

Adjective copulas be (S[X]\NP)|(S[adj]\NP)
(S[q]/(S[adj]\NP))/NP ∗

Noun copulas be (S[X]\NP)|NP
(S[q]/NP)/NP ∗

Adposition copulas be (S[X]\NP)|PP
(S[q]/PP)/NP ∗

Auxiliaries and modals NOW PST FUT PRG PFT NEC POS NIL (S[X]\NP)|(S[Y]\NP)
(S[q]/(S[X]\NP))/NP ∗

Adpositions PP |NP
(X|X)|Y

Determiners NP /N
NP /(N /PP)

Possessive suffix (NP /(N /PP))\NP

Subordinating conjunctions (S | S)| S[X]
(S | S)|(S |NP)
((S \NP)|(S \NP))| S[X]
((S \NP)|(S \NP))|(S[X]|NP)
((S /NP)|(S /NP))| S[X]
((S /NP)|(S /NP))|(S[X]|NP)

Complementizers S[em]/ S[dcl]
(S[to]\NP)/(S[b]\NP)

Relativizers (N \N)/(S[dcl]|NP)
(NP \NP)/(S[dcl]|NP)
((N \N)/(S[dcl]|NP))/N
((NP \NP)/(S[dcl]|NP))/N

Fronted wh-words S[wq]/(S[q]/(S[adj]/NP))
S[wq]/X
(S[wq]/X)/Y

Table 2: Simplified rule inventory

anything and | matches both / and \.
Not in all cases are categories sufficient for identifying function words, so we use the PMB annotations

of symbols (language-independent generalization of lemmas) and semantic tags in some rules. Copulas,
auxiliaries, and modals in verb-first (question) sentences have the problem that our algorithm attaches
them to the subject, rather than the complement, due to the inverted order of arguments. We mark them
specially and reattach them automatically in postprocessing. The affected categories are marked with an
asterisk. The rule inventory shown here is simplified for space reasons. The full inventory is released
with our data and code.

4 Case Study: Converting the PMB to UD-style Dependencies1

To initially develop and test our conversion algorithm, we annotated parts 00 (for development) and 01
(for testing) of the Parallel Meaning Bank, version 3.0.0. We only used sentences whose annotation status
was marked “gold”. One trained annotator annotated the sentences with dependency trees following the
Basic UD guidelines, but without labels, indicating only the head for each word. We then converted the
PMB CCG derivations to dependency trees using the algorithm presented above, with all modules turned
on, and computed the unlabeled attachment score when comparing to the manual annotation. The results,
shown in Table 3, are consistently above 90%, suggesting that our conversion basically works, although
some discrepancies remain.

We performed a manual error analysis to see what kinds of discrepancies were encountered. In a few
cases, the discrepancies have nothing to do with our algorithm but are the result of plain annotation errors
in the PMB or attachment ambiguity that the PMB’s annotators and our annotator resolved differently.
Unlike UD, the PMB has no strict rules for attaching punctuation, so it sometimes ends up modifying
a different constituent from the one that the UD guidelines mandate. There are various relatively rare

1Our data and code is available at https://github.com/texttheater/pmb2tsv.

91

Development Testing
English German Italian Dutch English German Italian Dutch

Statistics
Sentences 383 100 73 37 208 35 27 13
Mean length 6.0 5.53 5.1 5.7 6.4 5.4 5.6 5.1

Scores
UAS .982 .993 .936 .921 .977 .937 .976 1

Error analysis
PMB annotation error 1 1
Attachment ambiguity 3 2 1
Punctuation 4 1
Tag question 2
Embedded question 1
Date 1
Subordinating conjunction 1
Possessive suffix 1 1
Copula/auxiliary/modal 1 1 1
Expletive nominal 2 1
Question verb 3 1
Inverted copula 1
Pseudo-copula 1 1 2
Non-local dependencies 4

Table 3: Evaluation results and error analysis

categories and constructions that are not yet correctly identified by our rule inventory (sometimes due
to arguably inconsistent annotation in the PMB), such as English tag questions, embedded questions,
certain date expressions, certain subordinating conjunctions, certain instances of the German and English
possessive suffix, certain copulas, auxiliaries, and modals, certain expletive nominals, certain verbs in
questions, inverted copulas that have their subject on the right rather than the left, and “pseudo-copulas”
where the PMB tags the verb like a copula in constructions like Dutch gelijk hebben (“to be right”) or
German Hunger haben (“to be hungry”). Finally, there are some dependencies that our algorithm cannot
extract correctly because they are mediated non-locally via third categories in the PMB annotation. For
example, here, the existential is mediates the dependency between person and ginger [PMB 00/0055]:

(8) There
NP[thr]

is
((S[dcl]\NP)/(S[ng]\NP))/NP

no
NP /N

person
N

cutting
(S[ng]\NP)/NP

some
NP /N

ginger
N

And here, the emphatic how mediates the dependency between slow and are [PMB 00/0778]:

(9) How
(S[dcl]/(S[dcl]/S[adj]\NP))/ S[adj]\NP

slow
S[adj]\NP

you
NP

are
(S[dcl]\NP)/(S[adj]\NP)

5 Conclusions

We have presented a general and configurable algorithm to convert CCG derivations into dependency
trees, together with a rule inventory for the Parallel Meaning Bank, achieving promising accuracy for
conversion to unlabeled Basic UD on English, German, Italian, and Dutch. Compared to the method of
Clark et al. (2002), the need for manually marking up all lexical category types in a CCG treebank is
reduced because we only have to list the categories of modifiers and function words. However, if our
approach was to be extended to dependency schemes with nonlocal dependencies, such as Enhanced UD
(Schuster and Manning, 2016), or if labeled dependencies were desired, markup of content words would
be required as well. And as our error analysis shows, at least in the PMB, there is a long tail of categories
that cannot be discovered by looking at a small sample. Still, the modularity of our approach enables it
to support different dependency treebank formats. The work has many possible applications, including
feature extraction from CCG parses and cross-framework and cross-language parser evaluation.

92

Acknowledgments

The author would like to thank the anonymous reviewers for helpful feedback. This research was carried
out within the TreeGraSP project, funded by a Consolidator Grant of the European Research Council
(ERC).

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel Haagsma, Rik van Noord, Pierre Ludmann, Duc-Duy

Nguyen, and Johan Bos. 2017. The Parallel Meaning Bank: Towards a multilingual corpus of translations
annotated with compositional meaning representations. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 242–247, Valencia,
Spain, April. Association for Computational Linguistics.

Yonatan Bisk and Julia Hockenmaier. 2013. An HDP model for inducing Combinatory Categorial Grammars.
Transactions of the Association for Computational Linguistics, 1:75–88.

Stephen Clark and James R. Curran. 2007. Wide-coverage efficient statistical parsing with CCG and log-linear
models. Computational Linguistics, 33(4):493–552.

Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Building deep dependency structures using a
wide-coverage CCG parser. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 327–334, Philadelphia, Pennsylvania, USA, July. Association for Computational Linguistics.

Douwe Gelling, Trevor Cohn, Phil Blunsom, and João Graça. 2012. The PASCAL challenge on grammar in-
duction. In Proceedings of the NAACL-HLT Workshop on the Induction of Linguistic Structure, pages 64–80,
Montréal, Canada, June. Association for Computational Linguistics.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and Guy Perrier. 2018. SUD or surface-syntactic universal
dependencies: An annotation scheme near-isomorphic to UD. In Proceedings of the Second Workshop on Uni-
versal Dependencies (UDW 2018), pages 66–74, Brussels, Belgium, November. Association for Computational
Linguistics.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: A corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. Computational Linguistics, 33(3):355–396.

Alexander Koller and Marco Kuhlmann. 2009. Dependency trees and the strong generative capacity of CCG. In
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 460–468, Athens,
Greece, March. Association for Computational Linguistics.

Mike Lewis and Mark Steedman. 2014. A* CCG parsing with a supertag-factored model. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 990–1000, Doha,
Qatar, October. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Uni-
versal Dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Con-
ference on Language Resources and Evaluation (LREC 2016), pages 1659–1666, Portorož, Slovenia, May.
European Language Resources Association (ELRA).

Sebastian Schuster and Christopher D. Manning. 2016. Enhanced English universal dependencies: An improved
representation for natural language understanding tasks. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC 2016), pages 2371–2378, Portorož, Slovenia, May. European
Language Resources Association (ELRA).

Miloš Stanojević and Mark Steedman. 2019. CCG parsing algorithm with incremental tree rotation. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 228–239, Minneapolis, Minnesota,
June. Association for Computational Linguistics.

Mark Steedman. 2001. The Syntactic Process. The MIT Press.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto. 2017. A* CCG parsing with a supertag and dependency
factored model. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 277–287, Vancouver, Canada, July. Association for Computational Linguistics.

93

Yue Zhang and Stephen Clark. 2011. Shift-reduce CCG parsing. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pages 683–692, Portland, Oregon,
USA, June. Association for Computational Linguistics.

