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Abstract

To advance multi-domain (cross-domain) dia-

logue modeling as well as alleviate the short-

age of Chinese task-oriented datasets, we

proposeCrossWOZ, thefirst large-scale Chinese

Cross-Domain Wizard-of-Oz task-oriented data-

set. It contains 6K dialogue sessions and

102K utterances for 5 domains, including

hotel, restaurant, attraction, metro, and taxi.

Moreover, the corpus contains rich annotation

of dialogue states and dialogue acts on both

user and system sides. About 60% of the

dialogues have cross-domain user goals that

favor inter-domain dependency and encourage

natural transition across domains in conversa-

tion. We also provide a user simulator and

several benchmark models for pipelined task-

oriented dialogue systems, which will facilitate

researchers to compare and evaluate their

models on this corpus. The large size and rich

annotation of CrossWOZ make it suitable to

investigate a variety of tasks in cross-domain

dialogue modeling, such as dialogue state

tracking, policy learning, user simulation, etc.

1 Introduction

Recently, there have been a variety of task-oriented

dialogue models thanks to the prosperity of neural

architectures (Yao et al., 2013; Wen et al., 2015;

Mrkšić et al., 2017; Peng et al., 2017; Lei et al.,

2018; Gür et al., 2018). However, research is still

largely limited by the lack of large-scale high-

quality dialogue data. Many corpora have advanced

the research of task-oriented dialogue systems,

most of which are single domain conversations,

including ATIS (Hemphill et al., 1990), DSTC 2

(Henderson et al., 2014), Frames (El Asri et al.,

2017), KVRET (Eric et al., 2017), WOZ 2.0

(Wen et al., 2017), and M2M (Shah et al., 2018).
∗Corresponding author.

Despite the significant contributions to the

community, these datasets are still limited in size,

language variation, or task complexity. Further-

more, there is a gap between existing dialogue

corpora and real-life human dialogue data. In

real-life conversations, it is natural for humans to

transition between different domains or scenarios

while still maintaining coherent contexts. Thus,

real-life dialogues are much more complicated

than those dialogues that are only simulated

within a single domain. To address this issue,

some multi-domain corpora have been proposed

(Budzianowski et al., 2018b; Rastogi et al.,

2019). The most notable corpus is MultiWOZ

(Budzianowski et al., 2018b), a large-scale multi-

domain dataset that consists of crowdsourced

human-to-human dialogues. It contains 10K

dialogue sessions and 143K utterances for 7

domains, with annotation of system-side dialogue

states and dialogue acts. However, the state

annotations are noisy (Eric et al., 2019), and user-

side dialogue acts are missing. The dependency

across domains is simply embodied in imposing

the same pre-specified constraints on different

domains, such as requiring both a hotel and an

attraction to locate in the center of the town.

In comparison to the abundance of English

dialogue data, surprisingly, there is still no widely

recognized Chinese task-oriented dialogue corpus.

In this paper, we propose CrossWOZ, a large-

scale Chinese multi-domain (cross-domain) task-

oriented dialogue dataset. An dialogue example

is shown in Figure 1. We compare CrossWOZ to

other corpora in Tables 1 and 2. Our dataset has

the following features comparing to other corpora

(particularly MultiWOZ (Budzianowski et al.,

2018b)):

1. The dependency between domains is more

challenging because the choice in one domain

will affect the choices in related domains

281

Transactions of the Association for Computational Linguistics, vol. 8, pp. 281–295, 2020. https://doi.org/10.1162/tacl a 00314

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.
Action Editor: Bonnie Webber. Submission batch: 10/2019; Revision batch: 1/2020; Published 6/2020.

https://doi.org/10.1162/tacl_a_00314


in CrossWOZ. As shown in Figure 1 and

Table 2, the hotel must be near the attraction

chosen by the user in previous turns, which

requires more accurate context understanding.

2. It is the first Chinese corpus that contains

large-scale multi-domain task-oriented dia-

logues, consisting of 6K sessions and 102K

utterances for 5 domains (attraction, restau-

rant, hotel, metro, and taxi).

3. Annotation of dialogue states and dialogue

acts is provided for both the system side

and user side. The annotation of user states

enables us to track the conversation from

the user’s perspective and can empower

the development of more elaborate user

simulators.

In this paper, we present the process of

dialogue collection and provide detailed data

analysis of the corpus. Statistics show that

our cross-domain dialogues are complicated. To

facilitate model comparison, benchmark models

are provided for different modules in pipelined

task-oriented dialogue systems, including natural

language understanding, dialogue state tracking,

dialogue policy learning, and natural language

generation. We also provide a user simulator,

which will facilitate the development and

evaluation of dialogue models on this corpus.

The corpus and the benchmark models are

publicly available at https://github.com/

thu-coai/CrossWOZ.

2 Related Work

According to whether the dialogue agent is human

or machine, we can group the collection methods

of existing task-oriented dialogue datasets into

three categories. The first one is human-to-human

dialogues. One of the earliest and well-known is

the ATIS dataset (Hemphill et al., 1990) used this

setting, followed by El Asri et al. (2017), Eric et al.

(2017), Wen et al. (2017), Lewis et al. (2017),

Wei et al. (2018), and Budzianowski et al.

(2018b). Though this setting requires many human

efforts, it can collect natural and diverse dialogues.

The second one is human-to-machine dialogues,

which need a ready dialogue system to converse

with humans. The famous Dialogue State Tracking

Challenges provided a set of human-to-machine

dialogue data (Williams et al., 2013; Henderson

Figure 1: A dialogue example. The user state is

initialized by the user goal: Finding an attraction and

one of its nearby hotels, then booking a taxi to commute

between these two places. In addition to expressing pre-

specified informable slots and filling in requestable

slots, users need to consider and modify cross-domain

informable slots (bold) that vary through conversation.

We only show a few turns (turn number on the left),

each with either user or system state of the current

domain, which are shown above each utterance.

et al., 2014). The performance of the dialogue

system will largely influence the quality of

dialogue data. The third one is machine-to-

machine dialogues. It needs to build both user and
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Type Single-domain goal Multi-domain goal

Dataset DSTC2 WOZ 2.0 Frames KVRET M2M MultiWOZ Schema CrossWOZ

Language EN EN EN EN EN EN EN CN

Speakers H2M H2H H2H H2H M2M H2H M2M H2H

# Domains 1 1 1 3 2 7 16 5

# Dialogues 1,612 600 1,369 2,425 1,500 8,438 16,142 5,012

# Turns 23,354 4,472 19,986 12,732 14,796 115,424 329,964 84,692

Avg. domains 1 1 1 1 1 1.80 1.84 3.24

Avg. turns 14.5 7.5 14.6 5.3 9.9 13.7 20.4 16.9

# Slots 8 4 61 13 14 25 214 72

# Values 212 99 3,871 1363 138 4,510 14,139 7,871

Table 1: Comparison of CrossWOZ to other task-oriented corpora (training set). H2H, H2M, and

M2M represent human-to-human, human-to-machine, machine-to-machine respectively. The average

numbers of domains and turns are for each dialogue.

MultiWOZ CrossWOZ

usr: I’m looking for a college type attraction. usr:

. . . Hello, could you recommend an attraction with a rating of 4.5 or higher?

usr: I would like to visit in town centre please. sys:

. . . Tiananmen, Gui Street, and Beijing Happy Valley are very nice places.

usr: Can you find an Indian restaurant for me usr:

that is also in the town centre? I like Beijing Happy Valley. What hotels are around this attraction?

Schema sys:

usr: I want a hotel in San Diego and I want to There are many, such as hotel A, hotel B, and hotel C.

check out on Thursday next week. usr:

. . .

usr: I need a one way flight to go there. Great! I am planning to find a hotel to stay near the attraction.

Which one has a rating of 4 or higher and offers wake-up call service?

Table 2: Cross-domain dialog examples in MultiWOZ, Schema, and CrossWOZ. The value of cross-

domain constraints(bold) are underlined. Some turns are omitted to save space. Names of hotels are

replaced by A,B,C for simplicity. Cross-domain constraints are pre-specified in MultiWOZ and Schema,

while determined dynamically in CrossWOZ. In CrossWOZ, the choice in one domain will greatly affect

related domains.

system simulators to generate dialogue outlines,

then use templates (Peng et al., 2017) to

generate dialogues or further use people to

paraphrase the dialogues to make them more

natural (Shah et al., 2018; Rastogi et al., 2019).

It needs much less human effort. However, the

complexity and diversity of dialogue policy are

limited by the simulators. To explore dialogue

policy in multi-domain scenarios, and to collect

natural and diverse dialogues, we resort to the

human-to-human setting.

Most of the existing datasets only involve

single domain in one dialogue, except MultiWOZ

(Budzianowski et al., 2018b) and Schema (Rastogi

et al., 2019). The MultiWOZ dataset has attracted

much attention recently, due to its large size and

multi-domain characteristics. It is at least one

order of magnitude larger than previous datasets,

amounting to 8,438 dialogues and 115K turns in

the training set. It greatly promotes the research

on multi-domain dialogue modeling, such as

policy learning (Takanobu et al., 2019), state

tracking (Wu et al., 2019), and context-to-text

generation (Budzianowski et al., 2018a). Recently

the Schema dataset has been collected in a

machine-to-machine fashion, resulting in 16,142

dialogues and 330K turns for 16 domains in

the training set. However, the multi-domain

dependency in these two datasets is only embodied

in imposing the same pre-specified constraints on
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different domains, such as requiring a restaurant

and an attraction to locate in the same area, or the

city of a hotel and the destination of a flight to be

the same (Table 2).

Table 1 presents a comparison between our

dataset with other task-oriented datasets. In com-

parison to MultiWOZ, our dataset has a com-

parable scale: 5,012 dialogues and 84K turns in

the training set. The average number of domains

and turns per dialogue are larger than those

of MultiWOZ, which indicates that our task is

more complex. The cross-domain dependency in

our dataset is natural and challenging. For exam-

ple, as shown in Table 2, the system needs to

recommend a hotel near the attraction chosen by

the user in previous turns. Thus, both system

recommendation and user selection will dynam-

ically impact the dialogue. We also allow the

same domain to appear multiple times in a user

goal since a tourist may want to go to more than

one attraction.

To better track the conversation flow and model

user dialogue policy, we provide annotation of

user states in addition to system states and

dialogue acts. While the system state tracks the

dialogue history, the user state is maintained by

the user and indicates whether the sub-goals have

been completed, which can be used to predict

user actions. This information will facilitate the

construction of the user simulator.

To the best of our knowledge, CrossWOZ is the

first large-scale Chinese dataset for task-oriented

dialogue systems, which will largely alleviate

the shortage of Chinese task-oriented dialogue

corpora that are publicly available.

3 Data Collection

Our corpus is to simulate scenarios where a

traveler seeks tourism information and plans her

or his travel in Beijing. Domains include hotel,

attraction, restaurant, metro, and taxi. The data

collection process is summarized as follows:

1. Database Construction: We crawled travel

information in Beijing from the Web,

including Hotel, Attraction, and Restaurant

domains (hereafter we name the three

domains as HAR domains). Then, we used

the metro information of entities in HAR

domains to build the metro database. For the

taxi domain, there is no need to store the

information. Instead, we can call the API

directly if necessary.

2. Goal Generation: A multi-domain goal

generator was designed based on the

database. The relation across domains is

captured in two ways. One is to constrain two

targets that locate near each other. The other

is to use a taxi or metro to commute between

two targets in HAR domains mentioned in

the context. To make workers understand

the task more easily, we crafted templates

to generate natural language descriptions for

each structured goal.

3. Dialogue Collection: Before the formal data

collection starts, we required the workers to

make a small number of dialogues and gave

them feedback about the dialogue quality.

Then, well-trained workers were paired to

converse according to the given goals. The

workers were also asked to annotate both

user states and system states.

4. Dialogue Annotation: We used some rules

to automatically annotate dialogue acts

according to user states, system states,

and dialogue histories. To evaluate the

quality of the annotation of dialogue acts

and states, three experts were employed to

manually annotate dialogue acts and states

for 50 dialogues. The results show that

our annotations are of high quality. Finally,

each dialogue contains a structured goal, a

task description, user states, system states,

dialogue acts, and utterances.

3.1 Database Construction

We collected 465 attractions, 951 restaurants, and

1,133 hotels in Beijing from the Web. Some

statistics are shown in Table 3. There are three

types of slots for each entity: common slots

such as name and address; binary slots for

hotel services such as wake-up call; and nearby

attractions/restaurants/hotels slots that contain

nearby entities in the attraction, restaurant, and

hotel domains. Because it is not usual to find

another nearby hotel in the hotel domain, we did

not collect such information. This nearby relation

allows us to generate natural cross-domain goals,

such as ‘‘find another attraction near the first

one’’ and ‘‘find a restaurant near the attraction’’.
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Domain Attract. Rest. Hotel

# Entities 465 951 1133

# Slots 9 10 8 + 37∗

Avg. nearby attract. 4.7 3.3 0.8

Avg. nearby rest. 6.7 4.1 2.0

Avg. nearby hotels 2.1 2.4 -

Table 3: Database statistics. ∗ indicates that there

are 37 binary slots for hotel services such as wake-

up call. The last three rows show the average

number of nearby attractions/restaurants/hotels for

each entity. We did not collect nearby hotels

information for the hotel domain.

Nearest metro stations of HAR entities form the

metro database. In contrast, we provided the

pseudo car type and plate number for the taxi

domain.

3.2 Goal Generation

To avoid generating overly complex goals, each

goal has at most five sub-goals. To generate

more natural goals, the sub-goals can be of the

same domain, such as two attractions near each

other. The goal is represented as a list of (sub-

goal id, domain, slot, value) tuples, named as

semantic tuples. The sub-goal id is used to

distinguish sub-goals, which may be in the same

domain. There are two types of slots: informable

slots, which are the constraints that the user

needs to inform the system, and requestable

slots, which are the information that the user

needs to inquire from the system. As shown in

Table 4, besides common informable slots (italic

values) whose values are determined before the

conversation, we specially design cross-domain

informable slots (bold values) whose values refer

to other sub-goals. Cross-domain informable slots

utilize sub-goal id to connect different sub-goals.

Thus the actual constraints vary according to the

different contexts instead of being pre-specified.

The values of common informable slots are

sampled randomly from the database. Based on

the informable slots, users are required to gather

the values of requestable slots (blank values in

Table 4) through conversation.

There are four steps in goal generation. First, we

generate independent sub-goals in HAR domains.

For each domain in HAR domains, with the same

probability P we generate a sub-goal, while with

Id Domain Slot Value

1 Attraction fee free

1 Attraction name

1 Attraction nearby hotels

2 Hotel name near (id = 1)

2 Hotel wake-up call yes

2 Hotel rating

3 Taxi from (id = 1)

3 Taxi to (id = 2)

3 Taxi car type

3 Taxi plate number

Table 4: A user goal example (translated into

English). Slots with bold/italic/blank value are

cross-domain informable slots, common inform-

able slots, and requestable slots. In this example,

the user wants to find an attraction and one of

its nearby hotels, then book a taxi to commute

between these two places.

the probability of 1 − P we do not generate

any sub-goal for this domain. Each sub-goal has

common informable slots and requestable slots.

As shown in Table 5, all slots of HAR domains

can be requestable slots, while the slots with an

asterisk can be common informable slots.

Second, we generate cross-domain sub-goals

in HAR domains. For each generated sub-goal

(e.g., the attraction sub-goal in Table 4), if its

requestable slots contain ‘‘nearby hotels’’, we

generate an additional sub-goal in the hotel domain

(e.g., the hotel sub-goal in Table 4) with the

probability of Pattraction→hotel . Of course, the

selected hotel must satisfy the nearby relation to

the attraction entity. Similarly, we do not generate

any additional sub-goal in the hotel domain with

the probability of 1− Pattraction→hotel . This also

works for the attraction and restaurant domains.

Photel→hotel = 0 because we do not allow the user

to find the nearby hotels of one hotel.

Third, we generate sub-goals in the metro and

taxi domains. With the probability of Ptaxi, we

generate a sub-goal in the taxi domain (e.g., the

taxi sub-goal in Table 4) to commute between

two entities of HAR domains that are already

generated. It is similar for the metro domain and

we set Pmetro = Ptaxi. All slots in the metro or

taxi domain appear in the sub-goals and must be

filled. As shown in Table 5, from and to slots are
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Attraction domain

name∗, rating∗, fee∗, duration∗, address, phone,

nearby attract., nearby rest., nearby hotels

Restaurant domain

name∗, rating∗, cost∗, dishes∗, address, phone,

open, nearby attract., nearby rest., nearby hotels

Hotel domain

name∗, rating∗, price∗, type∗, 37 services∗,

phone, address, nearby attract., nearby rest.

Taxi domain

from, to, car type, plate number

Metro domain

from, to, from station, to station

Table 5: All slots in each domain (translated

into English). Slots in bold can be cross-domain

informable slots. Slots with asterisk are inform-

able slots. All slots are requestable slots except

‘‘from’’ and ‘‘to’’ slots in the taxi and metro

domains. The ‘‘nearby attractions/restaurants/

hotels’’ slots and the ‘‘dishes’’ slot can be multiple

valued (a list). The value of each ‘‘service’’ is

either yes or no.

always cross-domain informable slots, whereas

others are always requestable slots.

Last, we rearrange the order of the sub-goals to

generate more natural and logical user goals. We

require that a sub-goal should be followed by its

referred sub-goal as immediately as possible.

To make the workers aware of this cross-domain

feature, we additionally provide a task description

for each user goal in natural language, which is

generated from the structured goal by hand-crafted

templates.

Compared with the goals whose constraints are

all pre-specified, our goals impose much more

dependency between different domains, which

will significantly influence the conversation. The

exact values of cross-domain informable slots

are finally determined according to the dialogue

context.

3.3 Dialogue Collection

We developed a specialized website that allows

two workers to converse synchronously and make

annotations online. On the website, workers are

free to choose one of the two roles: tourist (user)

or system (wizard). Then, two paired workers are

sent to a chatroom. The user needs to accomplish

the allocated goal through conversation while

the wizard searches the database to provide the

necessary information and gives responses. Before

the formal data collection, we trained the workers

to complete a small number of dialogues by giving

them feedback. Finally, 90 well-trained workers

participated in the data collection.

In contrast, MultiWOZ (Budzianowski et al.,

2018b) hired more than a thousand workers to

converse asynchronously. Each worker received a

dialogue context to review and had to respond for

only one turn at a time. The collected dialogues

may be incoherent because workers may not

understand the context correctly and multiple

workers contributed to the same dialogue session,

possibly leading to more variance in the data qual-

ity. For example, some workers expressed two

mutually exclusive constraints in two consecutive

user turns and failed to eliminate the system’s

confusion in the next several turns. Compared

with MultiWOZ, our synchronous conversation

setting may produce more coherent dialogues.

3.3.1 User Side

The user state is the same as the user goal before

a conversation starts. At each turn, the user needs

to 1) modify the user state according to the system

response at the preceding turn, 2) select some

semantic tuples in the user state, which indicates

the dialogue acts, and 3) compose the utterance

according to the selected semantic tuples. In

addition to filling the required values and updating

cross-domain informable slots with real values in

the user state, the user is encouraged to modify

the constraints when there is no result under such

constraints. The change will also be recorded in

the user state. Once the goal is completed (all the

values in the user state are filled), the user can

terminate the dialogue.

3.3.2 Wizard Side

We regard the database query as the system

state, which records the constraints of each

domain till the current turn. At each turn, the

wizard needs to 1) fill the query according to the

previous user response and search the database if

necessary, 2) select the retrieved entities, and

3) respond in natural language based on the

information of the selected entities. If none of the
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entities satisfy all the constraints, the wizard will

try to relax some of them for a recommendation,

resulting in multiple queries. The first query

records original user constraints while the last

one records the constraints relaxed by the system.

3.4 Dialogue Annotation

After collecting the conversation data, we used

some rules to annotate dialogue acts automati-

cally. Each utterance can have several dialogue

acts. Each dialogue act is a tuple that consists of

intent, domain, slot, and value. We pre-define 6

types of intents and use the update of the user state

and system state as well as keyword matching to

obtain dialogue acts. For the user side, dialogue

acts are mainly derived from the selection of

semantic tuples that contain the information of

domain, slot, and value. For example, if (1,

Attraction, fee, free) in Table 4 is selected by

the user, then (Inform, Attraction, fee, free) is

labelled. If (1, Attraction, name, ) is selected,

then (Request, Attraction, name, none) is labeled.

If (2, Hotel, name, near (id=1)) is selected, then

(Select, Hotel, src domain, Attraction) is labeled.

This intent is specially designed for the ‘‘nearby’’

constraint. For the system side, we mainly applied

keyword matching to label dialogue acts. Inform

intent is derived by matching the system utterance

with the information of selected entities. When

the wizard selects multiple retrieved entities and

recommend them, Recommend intent is labeled.

When the wizard expresses that no result satisfies

user constraints, NoOffer is labeled. For General

intents such as ‘‘goodbye’’, ‘‘thanks’’ at both user

and system sides, keyword matching is applied.

We also obtained a binary label for each seman-

tic tuple in the user state, which indicates whether

this semantic tuple has been selected to be

expressed by the user. This annotation directly

illustrates the progress of the conversation.

To evaluate the quality of the annotation of

dialogue acts and states (both user and system

states), three experts were employed to manually

annotate dialogue acts and states for the same 50

dialogues (806 utterances), 10 for each goal type

(see Section 4). Because dialogue act annotation is

not a classification problem, we didn’t use Fleiss’

kappa to measure the agreement among experts.

We used dialogue act F1 and state accuracy to

measure the agreement between each two ex-

perts’ annotations. The average dialogue act F1 is

Train Valid Test

# Dialogues 5,012 500 500

# Turns 84,692 8,458 8,476

# Tokens 1,376,033 137,736 137,427

Vocab 12,502 5,202 5,143

Avg. sub-goals 3.24 3.26 3.26

Avg. STs 14.8 14.9 15.0

Avg. turns 16.9 16.9 17.0

Avg. tokens 16.3 16.3 16.2

Table 6: Data statistics. The average numbers

of sub-goals, turns, and STs (semantic tuples)

are for each dialogue. The average number of

tokens is for each turn.

94.59% and the average state accuracy is 93.55%.

We then compared our annotations with each

expert’s annotations, which are regarded as gold

standard. The average dialogue act F1 is 95.36%

and the average state accuracy is 94.95%, which

indicates the high quality of our annotations.

4 Statistics

After removing uncompleted dialogues, we collec-

ted 6,012 dialogues in total. The dataset is split

randomly for training/validation/test, where the

statistics are shown in Table 6. The average

number of sub-goals in our dataset is 3.24,

which is much larger than that in MultiWOZ

(1.80) (Budzianowski et al., 2018b) and Schema

(1.84) (Rastogi et al., 2019). The average number

of turns (16.9) is also larger than that in MultiWOZ

(13.7). These statistics indicate that our dialogue

data are more complex.

According to the type of user goal, we group the

dialogues in the training set into five categories:

Single-domain (S) 417 dialogues have only one

sub-goal in HAR domains.

Independent multi-domain (M)1,573 dialogues

have multiple sub-goals (2∼3) in HAR do-

mains. However, these sub-goals do not have

cross-domain informable slots.

Independent multi-domain + traffic (M+T) 691

dialogues have multiple sub-goals in HAR

domains and at least one sub-goal in the

metro or taxi domain (3∼5 sub-goals). The

sub-goals in HAR domains do not have

cross-domain informable slots.
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Goal type S M M+T CM CM+T

# Dialogues 417 1573 691 1759 572

NoOffer rate 0.10 0.22 0.22 0.61 0.55

Multi-query rate 0.06 0.07 0.07 0.14 0.12

Goal change rate 0.10 0.28 0.31 0.69 0.63

Avg. dialogue acts 1.85 1.90 2.09 2.06 2.11

Avg. sub-goals 1.00 2.49 3.62 3.87 4.57

Avg. STs 4.5 11.3 15.8 18.2 20.7

Avg. turns 6.8 13.7 16.0 21.0 21.6

Avg. tokens 13.2 15.2 16.3 16.9 17.0

Table 7: Statistics for dialogues of different goal

types in the training set. NoOffer rate and Goal

change rate are for each dialogue. Multi-query rate

is for each system turn. The average number of

dialogue acts is for each turn.

Cross multi-domain (CM) 1,759 dialogues have

multiple sub-goals (2∼5) in HAR domains

with cross-domain informable slots.

Cross multi-domain + traffic (CM+T) 572 dia-

logues have multiple sub-goals in HAR

domains with cross-domain informable slots

and at least one sub-goal in the metro or taxi

domain (3∼5 sub-goals).

The data statistics are shown in Table 7. As

mentioned in Section 3.2, we generate indepen-

dent multi-domain, cross multi-domain, and traffic

domain sub-goals one by one. Thus in terms of

the task complexity, we have S<M<CM and

M<M+T<CM+T, which is supported by the

average number of sub-goals, semantic tuples,

and turns per dialogue in Table 7. The average

number of tokens also becomes larger when

the goal becomes more complex. About 60% of

dialogues (M+T, CM, and CM+T) have cross-

domain informable slots. Because of the limit of

maximal sub-goals number, the ratio of dialogue

number of CM+T to CM is smaller than that of

M+T to M.

CM and CM+T are much more challenging

than other tasks because additional cross-domain

constraints in HAR domains are strict and will

result in more ‘‘NoOffer’’ situations (i.e., the

wizard finds no result that satisfies the current

constraints). In this situation, the wizard will try to

relax some constraints and issue multiple queries

to find some results for a recommendation while

the user will compromise and change the original

Figure 2: Distributions of dialogue length for different

goal types in the training set.

goal. The negotiation process is captured by

‘‘NoOffer rate’’, ‘‘Multi-query rate’’, and ‘‘Goal

change rate’’ in Table 7. In addition, ‘‘Multi-

query rate’’ suggests that each sub-goal in M and

M+T is as easy to finish as the goal in S.

The distribution of dialogue length is shown

in Figure 2, which is an indicator of the task

complexity. Most single-domain dialogues termi-

nate within 10 turns. The curves of M and M+T

are almost of the same shape, which implies that

the traffic task requires two additional turns on

average to complete the task. The curves of CM

and CM+T are less similar. This is probably

because CM goals that have 5 sub-goals (about

22%) can not further generate a sub-goal in traffic

domains and become CM+T goals.

5 Corpus Features

Our corpus is unique in the following aspects:

• Complex user goals are designed to favor

inter-domain dependency and natural transi-

tion between multiple domains. In return, the

collected dialogues are more complex and

natural for cross-domain dialogue tasks.

• A well-controlled, synchronous setting is

applied to collect human-to-human dia-

logues. This ensures the high quality of the

collected dialogues.

• Explicit annotations are provided at not only

the system side but also the user side. This

feature allows us to model user behaviors or

develop user simulators more easily.
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Figure 3: Pipelined user simulator (left) and Pipelined

task-oriented dialogue system (right). Solid connec-

tions are for natural language level interaction, and

dashed connections are for dialogue act level. The con-

nections without comments represent dialogue acts.

6 Benchmark and Analysis

CrossWOZ can be used in different tasks or

settings of a task-oriented dialogue system. To

facilitate further research, we provide bench-

mark models for different components of a pipe-

lined task-oriented dialogue system (Figure 3),

including natural language understanding (NLU),

dialogue state tracking (DST), dialogue policy

learning, and natural language generation (NLG).

These models are implemented using ConvLab-2

(Zhu et al., 2020), an open-source task-oriented

dialog system toolkit. We also provide a rule-

based user simulator, which can be used to train

dialogue policy and generate simulated dialogue

data. The benchmark models and simulator will

greatly facilitate researchers to compare and eval-

uate their models on our corpus.

6.1 Natural Language Understanding

Task: The natural language understanding com-

ponent in a task-oriented dialogue system takes an

utterance as input and outputs the corresponding

semantic representation, namely, a dialogue act.

The task can be divided into two sub-tasks: intent

classification that decides the intent type of an

utterance, and slot tagging which identifies the

value of a slot.

Model: We adapted BERTNLU from ConvLab-

2. BERT (Devlin et al., 2019) has shown strong

performance in many NLP tasks. We use Chinese

pre-trained BERT1 (Cui et al., 2019) for initial-

1BERT-wwm-ext model in https://github.com/

ymcui/Chinese-BERT-wwm.

ization and then fine-tune the parameters on

CrossWOZ. We obtain word embeddings and

the sentence representation (embedding of [CLS])

from BERT. Because there may exist more than

one intent in an utterance, we modify the tradi-

tional method accordingly. For dialogue acts

of inform and recommend intents such as

(intent=Inform, domain=Attraction, slot=fee,

value=free) whose values appear in the sentence,

we perform sequential labeling using an MLP

which takes word embeddings (‘‘free’’) as input

and outputs tags in BIO schema (‘‘B-Inform-

Attraction-fee’’). For each of the other dialogue

acts (e.g., (intent=Request, domain=Attraction,

slot=fee)) that do not have actual values, we use

another MLP to perform binary classification on

the sentence representation to predict whether the

sentence should be labeled with this dialogue

act. To incorporate context information, we use

the same BERT to get the embedding of last

three utterances. We separate the utterances with

[SEP] tokens and insert a [CLS] token at the

beginning. Then each original input of the two

MLP is concatenated with the context embedding

(embedding of [CLS]), serving as the new input.

We also conducted an ablation test by removing

context information. We trained models with both

system-side and user-side utterances.

Result Analysis: The results of the dialogue act

prediction (F1 score) are shown in Table 8. We

further tested the performance on different intent

types, as shown in Table 9. In general, BERTNLU

performs well with context information. The

performance on cross multi-domain dialogues

(CM and CM+T) drops slightly, which may be

due to the decrease of ‘‘General’’ intent and the

increase of ‘‘NoOffer’’ as well as ‘‘Select’’ intent

in the dialogue data. We also noted that the F1

score of ‘‘Select’’ intent is remarkably lower than

those of other types, but context information can

improve the performance significantly. Because

recognizing domain transition is a key factor for a

cross-domain dialogue system, natural language

understanding models need to utilize context

information more effectively.

6.2 Dialogue State Tracking

Task: Dialogue state tracking is responsible for

recognizing user goals from the dialogue context

and then encoding the goals into the pre-defined
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S M M+T CM CM+T Overall

BERTNLU
Dialogue act F1

96.69 96.01 96.15 94.99 95.38 95.53

– context 94.55 93.05 93.70 90.66 90.82 91.85

RuleDST Joint state accuracy (single turn) 84.17 78.17 81.93 63.38 67.86 71.33

TRADE Joint state accuracy 71.67 45.29 37.98 30.77 25.65 36.08

SL policy
Dialogue act F1 50.28 44.97 54.01 41.65 44.02 44.92

Dialogue act F1 (delex) 67.96 67.35 73.94 62.27 66.29 66.02

Simulator
Joint state accuracy (single turn) 63.53 48.79 50.26 40.66 41.76 45.00

Dialogue act F1 (single turn) 85.99 81.39 80.82 75.27 77.23 78.39

DA Sim

Task finish rate

76.5 49.4 33.7 17.2 15.7 34.6

NL Sim (Template) 67.4 33.3 29.1 10.0 10.0 23.6

NL Sim (SC-LSTM) 60.6 27.1 23.1 8.8 9.0 19.7

Table 8: Performance of Benchmark models. ‘‘Single turn’’ means having the gold information of the

last turn. Task finish rate is evaluated on 1000 times simulations for each goal type. It’s worth noting that

‘‘task finish’’ does not mean the task is successful, because the system may provide wrong information.

Results show that cross multi-domain dialogues (CM and CM+T) is challenging for these tasks.

General Inform Request Recom NoOffer Select

BERTNLU 99.45 94.67 96.57 98.41 93.87 82.25

– context 99.69 90.80 91.98 96.92 93.05 68.40

Table 9: F1 score of different intent type. ‘‘Recom.’’ represents ‘‘Recommend’’.

system state. Traditional state tracking models

take as input user dialogue acts parsed by natural

language understanding modules, while recently

there are joint models that obtain the system state

directly from the context.

Model: We implemented a rule-based model

(RuleDST) and adapted TRADE (Transferable

Dialogue State Generator)2 (Wu et al., 2019)

in this experiment. RuleDST takes as input

the previous system state and the last user

dialogue acts. Then, the system state is updated

according to hand-crafted rules. For example,

If one of user dialogue acts is (intent=Inform,

domain=Attraction, slot=fee, value=free), then the

value of the ‘‘fee’’ slot in the attraction domain

will be filled with ‘‘free’’. TRADE generates

the system state directly from all the previous

utterances using a copy mechanism. As mentioned

in Section 3.3.2, the first query of the system often

records full user constraints, while the last one

records relaxed constraints for recommendation.

Thus the last one involves system policy, which

2https://github.com/jasonwu0731/trade-

dst.

is out of the scope of state tracking. We used the

first query for these models and left state tracking

with recommendation for future work.

Result Analysis: We evaluated the joint state

accuracy (percentage of exact matching) of these

two models (Table 8). TRADE, the state-of-the-

art model on MultiWOZ, performs poorly on

our dataset, indicating that more powerful state

trackers are necessary. At the test stage, RuleDST

can access the previous gold system state and

user dialogue acts, which leads to higher joint

state accuracy than TRADE. Both models perform

worse on cross multi-domain dialogues (CM and

CM+T). To evaluate the ability of modeling cross-

domain transition, we further calculated joint state

accuracy for those turns that receive ‘‘Select’’

intent from users (e.g., ‘‘Find a hotel near the

attraction’’). The performances are 11.6% and

12.0% for RuleDST and TRADE respectively,

showing that they are not able to track domain

transition well.

6.3 Dialogue Policy Learning

Task: Dialogue policy receives state s and out-

puts system action a at each turn. Compared
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with the state given by a dialogue state tracker,

s may have more information, such as the last

user dialogue acts and the entities provided by the

backend database.

Model: We adapted a vanilla policy trained in a

supervised fashion from ConvLab-2 (SL policy).

The state s consists of the last system dialogue acts,

last user dialogue acts, system state of the current

turn, the number of entities that satisfy the con-

straints in the current domain, and a terminal signal

indicating whether the user goal is completed. The

action a is delexicalized dialogue acts of current

turn which ignores the exact values of the slots,

where the values will be filled back after

prediction.

Result Analysis: As illustrated in Table 8, there

is a large gap between F1 score of exact dialogue

act and F1 score of delexicalized dialogue act,

which means we need a powerful system state

tracker to find correct entities. The result also

shows that cross multi-domain dialogues (CM

and CM+T) are harder for system dialogue act

prediction. Additionally, when there is ‘‘Select’’

intent in preceding user dialogue acts, the F1

score of exact dialogue act and delexicalized

dialogue act are 41.53% and 54.39% respectively.

This shows that the policy performs poorly for

cross-domain transition.

6.4 Natural Language Generation

Task: Natural language generation transforms

a structured dialogue act into a natural language

sentence. It usually takes delexicalized dialogue

acts as input and generates a template-style sen-

tence that contains placeholders for slots. Then,

the placeholders will be replaced by the exact

values, which is called lexicalization.

Model: We provided a template-based model

(named TemplateNLG) and SC-LSTM (Semanti-

cally Conditioned LSTM) (Wen et al., 2015) for

natural language generation. For TemplateNLG,

we extracted templates from the training set and

manually added some templates for infrequent

dialogue acts. For SC-LSTM we adapted the

implementation3 on MultiWOZ and trained

two SC-LSTM with system-side and user-side

utterances respectively.

3https://github.com/andy194673/nlg-sclstm-

multiwoz.

Input:

(Inform, Restaurant, name, $name)

(Inform, Restaurant, cost, $cost)

SC-LSTM:

$name, $cost.

I Recommend you $name. It costs $cost.

TemplateNLG:

1)$name

$cost.

$name is a nice choice. But it costs $cost.

2)

$name,

The dish you want doesn’t cost so much. I

recommend you $name. It costs $cost.

Table 10: Comparison of SC-LSTM and Template-

NLG. The input is delexicalized dialogue acts,

where the actual values are replaced with $name

and $cost. Two retrieved results are shown for

TemplateNLG.

Result Analysis: We calculated corpus-level

BLEU as used by Wen et al. (2015). We took all

utterances with the same delexicalized dialogue

acts as references (100 references on average),

which results in high BLEU score. For user-side

utterances, the BLEU score for TemplateNLG

is 0.5780, while the BLEU score for SC-LSTM

is 0.7858. For system-side, the two scores are

0.6828 and 0.8595. As exemplified in Table 10,

the gap between the two models can be attributed

to that SC-LSTM generates common pattern while

TemplateNLG retrieves original sentence which

has more specific information. We do not provide

BLEU scores for different goal types (namely, S,

M, CM, etc.) because BLEU scores on different

corpus are not comparable.

6.5 User Simulator

Task: A user simulator imitates the behavior of

users, which is useful for dialogue policy learning

and automatic evaluation. A user simulator at

dialogue act level (e.g., the ‘‘Usr Policy’’ in

Figure 3) receives the system dialogue acts and

outputs user dialogue acts, while a user simulator

at natural language level (e.g., the left part in

Figure 3) directly takes system’s utterance as

input and outputs user’s utterance.
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Model: We built a rule-based user simulator that

works at dialogue act level. Different from agenda-

based (Schatzmann et al., 2007) user simulator

that maintains a stack-like agenda, our simulator

maintains the user state straightforwardly

(Section 3.3.1). The simulator will generate a

user goal as described in Section 3.2. At each

user turn, the simulator receives system dialogue

acts, modifies its state, and outputs user dialogue

acts according to some hand-crafted rules. For

example, if the system inform the simulator that

the attraction is free, then the simulator will fill the

‘‘fee’’ slot in the user state with ‘‘free’’, and ask

for the next empty slot such as ‘‘address’’. The

simulator terminates when all requestable slots are

filled, and all cross-domain informable slots are

filled by real values.

Result Analysis: During the evaluation, we

initialized the user state of the simulator using the

previous gold user state. The input to the simulator

is the gold system dialogue acts. We used joint

state accuracy (percentage of exact matching) to

evaluate user state prediction and F1 score to

evaluate the prediction of user dialogue acts. The

results are presented in Table 8. We can observe

that the performance on complex dialogues (CM

and CM+T) is remarkably lower than that on

simple ones (S, M, and M+T). This simple rule-

based simulator is provided to facilitate dialogue

policy learning and automatic evaluation, and

our corpus supports the development of more

elaborated simulators as we provide the annotation

of user-side dialogue states and dialogue acts.

6.6 Evaluation with User Simulation

In addition to corpus-based evaluation for each

module, we also evaluated the performance of a

whole dialogue system using the user simulator

as described above. Three configurations were

explored:

DA Sim Simulation at dialogue act level. As

shown by the dashed connections in Figure 3,

we used the aforementioned simulator at the

user side and assembled the dialogue system

with RuleDST and SL policy.

NL Sim (Template) Simulation at natural lan-

guage level using TemplateNLG. As shown

by the solid connections in Figure 3, the simu-

lator and the dialogue system were equipped

with BERTNLU and TemplateNLG addi-

tionally.

NL Sim (SC-LSTM) Simulation at natural lan-

guage level using SC-LSTM. TemplateNLG

was replaced with SC-LSTM in the second

configuration.

When all the slots in a user goal are filled by real

values, the simulator terminates. This is regarded

as ‘‘task finish’’. It’s worth noting that ‘‘task

finish’’ does not mean the task is success, because

the system may provide wrong information. We

calculated ‘‘task finish rate’’ on 1,000 simulations

for each goal type (See Table 8). Findings are

summarized below:

1. Cross multi-domain tasks (CM and CM+T)

are much harder to finish. Comparing M and

M+T, although each module performs well in

traffic domains, additional sub-goals in these

domains are still difficult to accomplish.

2. The system-level performance is largely

limited by RuleDST and SL policy. Although

the corpus-based performance of NLU and

NLG modules is high, the two modules still

harm the performance. Thus more powerful

models are needed for all components of a

pipelined dialogue system.

3. TemplateNLG has a much lower BLEU

score but performs better than SC-LSTM

in natural language level simulation. This

may be attributed to that BERTNLU prefers

templates retrieved from the training set.

7 Conclusion

In this paper, we present the first large-scale

Chinese Cross-Domain task-oriented dialogue

dataset, CrossWOZ. It contains 6K dialogues

and 102K utterances for 5 domains, with the

annotation of dialogue states and dialogue acts at

both user and system sides. About 60% of the

dialogues have cross-domain user goals, which

encourage natural transition between related

domains. Thanks to the rich annotation of dialogue

states and dialogue acts at both user side and

system side, this corpus provides a new testbed

for a wide range of tasks to investigate cross-

domain dialogue modeling, such as dialogue

state tracking, policy learning, and so forth.
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Our experiments show that the cross-domain

constraints are challenging for all these tasks. The

transition between related domains is especially

challenging to model. Besides corpus-based

component-wise evaluation, we also performed

system-level evaluation with a user simulator,

which requires more powerful models for all

components of a pipelined cross-domain dialogue

system.
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