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Abstract

Understanding natural language questions en-

tails the ability to break down a question into

the requisite steps for computing its answer.

In this work, we introduce a Question Decom-

position Meaning Representation (QDMR) for

questions. QDMR constitutes the ordered list

of steps, expressed through natural language,

that are necessary for answering a question.

We develop a crowdsourcing pipeline, show-

ing that quality QDMRs can be annotated

at scale, and release the BREAK dataset, con-

taining over 83K pairs of questions and their

QDMRs. We demonstrate the utility of QDMR

by showing that (a) it can be used to im-

prove open-domain question answering on the

HOTPOTQA dataset, (b) it can be determin-

istically converted to a pseudo-SQL formal

language, which can alleviate annotation in

semantic parsing applications. Last, we use

BREAK to train a sequence-to-sequence model

with copying that parses questions into QDMR

structures, and show that it substantially out-

performs several natural baselines.

1 Introduction

Recently, increasing work has been devoted to

models that can reason and integrate information

from multiple parts of an input. This includes rea-

soning over images (Antol et al., 2015; Johnson

et al., 2017; Suhr et al., 2019; HudsonandManning,

2019), paragraphs (Dua et al., 2019), documents

(Welbl et al., 2018; Talmor and Berant, 2018;

Yangetal., 2018), tables (Pasupat and Liang, 2015),

and more. Question answering (QA) is commonly

used to test the ability to reason, where a complex

natural language question is posed, and is to be an-

swered given a particular context (text, image,

etc.). Although questions often share structure

across tasks and modalities, understanding the

language of complex questions has thus far been

addressed within each task in isolation. Consider

the questions in Figure 1, all of which express

operations such as fact chaining and counting.

Additionally, humans can take a complex question

and break it down into a sequence of simpler ques-

tions even when they are unaware of what or where

the answer is. This ability, to compose and decom-

pose questions, lies at the heart of human language

(Pelletier, 1994) and allows us to tackle previously

unseen problems. Thus, better question under-

standing models should improve performance and

generalization in tasks that require multi-step rea-

soning or that do not have access to substantial

amounts of data.

In this work we propose question understanding

as a standalone language understanding task. We

introduce a formalism for representing the mean-

ing of questions that relies on question decompo-

sition, and is agnostic to the information source.

Our formalism, Question Decomposition Meaning

Representation (QDMR), is inspired by database

query languages (SQL; SPARQL), and by seman-

tic parsing (Zelle and Mooney, 1996; Zettlemoyer

and Collins, 2005; Clarke et al., 2010), in which

questions are given full meaning representations.

We express complex questions via simple

(‘‘atomic’’) questions that can be executed in se-

quence to answer the original question. Each

atomic question can be mapped into a small set of

formal operations, where each operation either

selects a set of entities, retrieves information about
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their attributes, or aggregates information over

entities. While this has been formalized in

knowledge-base (KB) query languages (Chamberlin

and Boyce, 1974), the same intuition can be ap-

plied to other modalities, such as images and text.

QDMR abstracts away the context needed to an-

swer the question, allowing in principle to query

multiple sources for the same question.
In contrast to semantic parsing, QDMR oper-

ations are expressed through natural language,

facilitating annotation at scale by non-experts.

Figure 1 presents examples of complex questions

on three different modalities. The middle box lists

the natural language decompositions provided for

each question, and the bottom box displays their

corresponding formal queries.

QDMR serves as the formalism for creating

BREAK, a question decomposition dataset of 83,978

questions over ten datasets and three modalities.

BREAK is collected via crowdsourcing, with a user

interface that allows us to train crowd-workers to

produce quality decompositions (§3). Validating

the quality of annotated structures reveals 97.4%

to be correct (§4).

We demonstrate the utility of QDMR in two set-

ups. First, we regard the task of open-domain

QA over multi-hop questions from the HOTPOTQA

dataset. Combining QDMR structures in BREAK

with a reading comprehension (RC) model (Min

et al., 2019b) improves F1 from 43.3 to 52.4 (§5).

Second, we show that decompositions in BREAK

possess high annotation consistency, which indi-

cates that annotators produce high-quality QDMRs

(§4.3). In §6 we discuss how these QDMRs can

be used as a strong proxy for full logical forms in

semantic parsing.

We use BREAK to train a neural QDMR parser

that maps questions into QDMR representations,

based on a sequence-to-sequence model with copy-

ing (Gu et al., 2016). Manual analysis of generated

structures reveals an accuracy of 54%, showing

that automatic QDMR parsing is possible, though

still far from human performance (§7).

To conclude, our contributions are:

• Proposing the task of question understanding

and introducing the QDMR formalism for

representing the meaning of questions (§2)

• The BREAK dataset, which consists of 83,978

examples sampled from 10 datasets over

three distinct information sources (§3)

Figure 1: Questions over different sources share a sim-

ilar compositional structure. Natural language ques-

tions from multiple sources (top) are annotated with

the QDMR formalism (middle) and deterministically

mapped into a pseudo-formal language (bottom).

• Showing how QDMR can be used to improve

open-domain question answering (§5), as well

as alleviate the burden of annotating logical

forms in semantic parsing (§6)

• A QDMR parser based on a sequence-to-

sequencemodel with copying mechanism (§7)

The BREAK dataset, models, and entire codebase

are publicly available at: https://github.

com/tomerwolgithub/Break.

2 Question Decomposition Formalism

In this section we define the QDMR formalism

for domain agnostic question decomposition.

QDMR is primarily inspired by SQL (Codd,

1970; Chamberlin and Boyce, 1974). However,

while SQL was designed for relational databases,

QDMR also aims to capture the meaning of ques-

tions over unstructured sources such as text and

images. Thus, our formalism abstracts away from

SQL by assuming an underlying ‘‘idealized’’ KB,

which contains all entities and relations expressed

in the question. This abstraction enables QDMR

to be unrestricted to a particular modality, with

its operators to be executed also against text
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Operator Template / Signature Question Decomposition

Select
Return [entities]

w→ Se

How many touchdowns were scored

overall?

1. Return touchdowns

2. Return the number of #1

Filter
Return [ref] [condition]

So,w→ So

I would like a flight from Toronto to

San Diego please.

1. Return flights

2. Return #1 from Toronto

3. Return #2 to San Diego

Project
Return [relation] of [ref]
w,Se → So

Who is the head coach of the
Los Angeles Lakers?

1. Return the Los Angeles Lakers
2. Return the head coach of #1

Aggregate
Return [aggregate] of [ref]

wagg,So → n

How many states border Colorado? 1. Return Colorado

2. Return border states of #1

3. Return the number of #2

Group
Return [aggregate] [ref1] for each

[ref2]

wagg,So,Se → Sn

How many female students are there

in each club?

1. Return clubs

2. Return female students of #1

3. Return the number of #2 for each #1

Superlative
Return [ref1] where [ref2] is [highest

/ lowest]

Se,Sn,wsup → Se

What is the keyword, which has

been contained by the most number

of papers?

1. Return papers

2. Return keywords of #1

3. Return the number of #1 for each #2

4. Return #2 where #3 is highest

Comparative
Return [ref1] where [ref2] [compar-
ison] [number]

Se,Sn,wcom,n→ Se

Who are the authors who have more
than 500 papers?

1. Return authors
2. Return papers of #1

3. Return the number of #2 for each of #1

4. Return #1 where #3 is more than 500

Union
Return [ref1] , [ref2]

So,So → So

Tell me who the president and vice-

president are?

1. Return the president

2. Return the vice-president
3. Return #1, #2

Intersection
Return [relation] in both [ref1] and

[ref2]

w,Se,Se → So

Show the parties that have represen-

tatives in both New York state and

representatives in Pennsylvania state.

1. Return representatives

2. Return #1 in New York state

3. Return #1 in Pennsylvania state

4. Return parties in both #2 and #3

Discard
Return [ref1] besides [ref2]

So,So → So

Find the professors who are not play-

ing Canoeing.

1. Return professors

2. Return #1 playing Canoeing

3. Return #1 besides #2

Sort
Return [ref1] sorted by [ref2]

Se,Sn →〈e1...ek〉
Find all information about student

addresses, and sort by monthly rental.

1. Return students

2. Return addresses of #1

3. Return monthly rental of #2

4. Return #2 sorted by #3

Boolean
Return [if / is] [ref1] [condition]

[ref2]

So,w,So → b

Were Scott Derrickson and Ed Wood

of the same nationality?

...

3. Return the nationality of #1

4. Return the nationality of #2

5. Return if #3 is the same as #4

Arithmetic
Return the [arithmetic] of [ref1] and
[ref2]

wari,n,n→ n

How many more red objects are there
than blue objects?

...
3. Return the number of #1

4. Return the number of #2

5. Return the difference of #3 and #4

Table 1: The 13 operator types of QDMR steps. Listed are, the natural language template used to

express the operator, the operator signature, and an example question that uses the query operator in

its decomposition.

and images, while allowing in principle to query

multiple modalities for the same question.1

QDMR Definition Given a question x, its

QDMR is a sequence of n steps, s = 〈s1, ..., sn〉,
where each step si corresponds to a single query

1A system could potentially answer ‘‘Name the political

parties of the most densely populated country’’, by retrieving

‘‘the most densely populated country’’ using a database

query, and ‘‘the political parties of #1’’ via an RC model.

operator f i (see Table 1). A step, si is a sequence

of tokens, si = (si1, ..., s
i
mi

), where a token sik
is either a word from a predefined lexicon Lx

(details in §3) or a reference token, referring to

the result of a previous step sj , where j < i. The

last step, sn returns the answer to x.

Decomposition Graph QDMR structures can

be represented as a directed acyclic graph (DAG),

used for evaluating QDMR parsing models (§7.1).
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Figure 2: QDMR of the question ‘‘Return the keywords

which have been contained by more than 100 ACL

papers.’’, represented as a decomposition graph.

Given QDMR, s = 〈s1, ..., sn〉, each step si is

a node in the graph, labeled by its sequence of

tokens and index i. Edges in the graph are induced

by reference tokens to previous steps. Node si

is connected by an incoming edge (sj, si), if

ref [sj] ∈ (si1, ..., s
i
mi

). That is, if one of the to-

kens in si is a reference to sj . Figure 2 displays a

sequence of QDMR steps, represented as a DAG.

QDMR Operators A QDMR step corresponds

to one of 13 query operators. We designed the

operators to be expressive enough to represent the

meaning of questions from a diverse set of datasets

(§3). QDMR assumes an underlying KB,K, which

contains all of the entities and relations expressed

in its steps. A relation, r, is a function mapping two

arguments to whether r holds in K: [[r(x, y)]]K ∈
{true, false}. The operators operate over: (i) sets

of objects So, where objects o, are either numbers

n, boolean values b, or entities e inK; (ii) a closed

set of phrases wop, describing logical operations;

and (iii) natural language phrases w, representing

entities and relations in K. We assume the

existence of grounding functions that map a phrase

w to concrete constants in K. Table 2 describes

the aforementioned constructs. In addition, we

define the function mapK(Se, So) which maps

entity e ∈ Se to the set of corresponding objects

from So. Each o ∈ So corresponds to an e ∈ Se

by being contained in the result of a sequence of

PROJECT and GROUP operations applied to e: 2

mapK(Se, So) = {〈e, o〉 | e ∈ Se, o ∈ So,

o ∈ opk ◦ ... ◦ op1(e)}.

We now formally define each QDMR operator

and provide concrete examples in Table 1.

• SELECT: Computes the set of entities in K
corresponding to w: select(w) = groundeK(w).

2The sequence of operations op1, . . . , opk is traced using

the references to previous steps in the QDMR structure.

Function Description

agg Given a phrase wagg which describes an aggregate
operation, agg denotes the corresponding operation. Either
max, min, count , sum or avg .

sup Given wsup describing a superlative, it denotes the
corresponding function. Either argmax or argmin.

com Given wcom describing a comparison, it denotes the
corresponding relation out of: <, ≤, >,≥, =, 6=.

ari Given wari describing an arithmetic operation, it denotes
the corresponding operation out of: +, −, ∗, /.

ground e
K(w) Given a natural language phrase w, it returns the set of

corresponding KB entities, Se .

ground r
K(w) Given a natural language phrase w, it returns the

corresponding KB relation, r.

Table 2: Functions used for grounding natural

language phrases in numerical operators or KB

entities.

• FILTER: Filters a set of objects so that it

follows the condition expressed by w:

filter(So, w) = So ∩ {o | [[r(e, o)]]K ≡ true},

where r = groundrK(w), e = groundeK(w)}.

• PROJECT: Computes the objects that relate

to input entitiesSe with the relation expressed

by w,

proj(w, Se) = {o | [[r(e, o)]]K

≡ true, e ∈ Se},

where r = ground r
K(w).

• AGGREGATE: The result of applying an

aggregate operation: aggregate(wagg, So) =
{agg (So)}.

• GROUP: Receives a set of ‘‘keys’’, Se, and a

set of corresponding ‘‘values’’,So. It outputs

a set of numbers, each corresponding to

a key e ∈ Se. Each number results from

applying aggregate, wagg to the subset of

values corresponding to e.

group(wagg, So, Se) =

{agg (Vo(e)) | e ∈ Se},

where Vo(e) = {o | 〈e, o〉 ∈ mapK(Se, So)}.

• SUPERLATIVE: Receives entity set Se and

number set Sn. Each number n ∈ Sn is

the result of a mapping from an entity

e ∈ Se. It returns a subset of Se for

which the corresponding number is either

highest/lowest as indicated by wsup.

super(Se, Sn, wsup) =

{sup (mapK(Se, Sn))}.

186



• COMPARATIVE: Receives entity set Se and

number set Sn. Each n ∈ Sn is the result

of a mapping from an e ∈ Se. It returns a

subset of Se for which the comparison with

n′, represented by wcom, holds.

comparative(Se, Sn, wcom, n′) = {e | 〈e, n〉

∈ mapK(Se, Sn), com(n,n′) ≡ true}.

• UNION: Denotes the union of object sets:

union(S1
o, S

2
o) = S1

o ∪ S2
o .

• DISCARD: Denotes the set difference of two

object sets: discard(S1
o, S

2
o) = S1

o \ S
2
o .

• INTERSECTION: Computes the intersec-

tion of its entity sets and returns all objects

which relate to the entities with the relation

expressed by w.

intersect(w, S1
e , S

2
e) = {o | e ∈ S1

e ∩ S2
e ,

[[r(e, o)]]K ≡ true, r = groundrK(w)}.

• SORT: Orders a set of entities according to a

corresponding set of numbers. Each number

ni is the result of a mapping from entity ei.

sort(Se, Sn) = {〈ei1 ...eim〉 |

〈eij , nij〉 ∈ mapK(Se, Sn), ni1 ≤ ... ≤ nim}.

• BOOLEAN: Returns whether the relation ex-

pressed byw holds between the input objects:

boolean(S1
o, w, S

2
o) = {[[r(o1, o2)]]K}, where

r = groundrK(w) and S1
o , S2

o are singleton

sets containing o1, o2 respectively.

• ARITHMETIC: Computes the application of an

arithmetic operation: arith(wari, S
1
n, S

2
n) =

{ari(n1, n2)}, where S1
n, S2

n are singleton

sets containing n1, n2 respectively.

High-level Decompositions InQDMR,eachstep

corresponds to a single logical operator. In certain

contexts, a less granular decomposition might be

desirable, where sub-structures containing multi-

ple operators could be collapsed to a single node.

This can be easily achieved in QDMR by merging

certain adjacent nodes in its DAG structure. When

examining existing RC datasets (Yang et al., 2018;

Dua et al., 2019), we observed that long spans in

the question often match long spans in the text,

due to existing practices of generating questions

Figure 3: Example of a high-level QDMR. Step #1

merges together SELECT and multiple FILTER steps.

via crowdsourcing. In such cases, decomposing

the long spans into multiple steps and having an

RC model process each step independently, in-

creases the probability of error. Thus, to promote

the usefulness of QDMR for current RC datasets

and models, we introduce high-level QDMR, by

merging the following operators:

• SELECT + PROJECT on named entities:

For the question, ‘‘What is the birthdate

of Jane?’’ its high-level QDMR would be

‘‘return the birthdate of Jane’’ as opposed

to the more granular, ‘‘return Jane; return

birthdate of #1’’.

• SELECT + FILTER: Consider the first step

of the example in Figure 3. It contains both a

SELECT operator (‘‘return actress’’) as well

as twoFILTER conditions (‘‘that played...’’,

‘‘on the TV sitcom...’’).

• FILTER + GROUP + COMPARATIVE: Cer-

tain high-level FILTER steps contain im-

plicit grouping and comparison operations.

E.g., ‘‘return yard line scores in the fourth

quarter; return #1 that both teams scored

from’’. Step #2 contains an implicit GROUP

of team per yard line and a COMPARATIVE

returning the lines where exactly two teams

scored.

We provide both granular and high-level

QDMRs for a random subset of RC questions

(see Table 3). The concrete utility of high-level

QDMR to open-domain QA is presented in §5.

3 Data Collection

Our annotation pipeline for generating BREAK

consisted of three phases. First, we collected

complex questions from existing QA benchmarks.

Second, we crowdsourced the QDMR annotation

of these questions. Finally, we validated worker

annotations in order to maintain their quality.
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Dataset Example Original BREAK

ACADEMIC

(DB)
Return me the total citations of all

the papers in the VLDB conference.

195 195

ATIS

(DB)

What is the first flight from Atlanta

to Baltimore that serves lunch?

5,283 4,906

GEOQUERY

(DB)
How high is the highest point in the

largest state?

880 877

SPIDER

(DB)
How many transactions correspond

to each invoice number?

10,181 7,982

CLEVR-
HUMANS

(Images)

What is the number of cylinders

divided by the number of cubes?

32,164 13,935

NLVR2
(IMAGES)

If there are only two dogs pulling

one of the sleds?

29,680 13,517

COMQA
(TEXT)

What was Gandhi’s occupation

before becoming a freedom fighter?

11,214 5,520

CWQ
(TEXT)

Robert E Jordan is part of the

organization started by whom?

34,689 2,988,
2,991high

DROP
(TEXT)

Approximately how many years did

the churches built in 1909 survive?

96,567 10,230,
10,262high

HOTPOTQA-
HARD

(TEXT)

Benjamin Halfpenny was a foot-

baller for a club that plays its home

matches where?

23,066 10,575high

Total: 83,978

Table 3: The QA datasets in BREAK. Lists the

number of examples in the original dataset and

in BREAK. Numbers of high-level QDMRs are

denoted by high.

Question Collection Questions in BREAK were

randomly sampled from ten QA datasets over the

following tasks (Table 3):

• Semantic Parsing: Mapping natural lan-

guage utterances into formal queries, to be

executed on a target KB (Price, 1990; Zelle

and Mooney, 1996; Li and Jagadish, 2014;

Yu et al., 2018).

• Reading Comprehension (RC): Questions

that require understanding of a text passage

by reasoning over multiple sentences (Talmor

and Berant, 2018; Yang et al., 2018; Dua

et al., 2019; Abujabal et al., 2019).

• Visual Question Answering (VQA): Ques-

tions over images that require both visual and

numerical reasoning skills (Johnson et al.,

2017; Suhr et al., 2019).

All questions collected were composed by hu-

man annotators.3 HOTPOTQA questions were all

sampled from the hard split of the dataset.

QDMR Annotation A key question is whether

it is possible to train non-expert annotators to pro-

duce high-quality QDMRs. We designed an anno-

tation interface (Figure 4), where workers are first

given explanations and examples on how to iden-

tify and phrase each of the operators in Table 1.

Then, workers decompose questions into a list of

3Except for COMPLEXWEBQUESTIONS (CWQ), where anno-

tators paraphrased automatically generated questions.

Figure 4: User interface for decomposing a complex

question that uses a closed lexicon of tokens.

steps, where they are only allowed to use words

from a lexicon Lx, which contains: (a) words

appearing in the question (or their automatically

computed inflections), (b) words from a small

pre-defined list of 66 function word such as, ‘if’,

‘on’, ‘for each’, or (c) reference tokens that refer

to the results of a previous step. This ensures that

the language used by workers is consistent across

examples, while being expressive enough for the

decomposition. Our annotation interface presents

workers with the question only, so they are ag-

nostic to the original modality of the question.

The efficacy of this process is explored in §4.2.

We used Amazon Mechanical Turk to crowd-

source QDMR annotation. In each task, workers

decomposed questions, paying them $0.40 per

question, which amounts to an average pay

of $12 per hour. Overall, we collected 83,978

examples using 64 distinct workers. The dataset

was partitioned into train/development/test sets

following the partitions in the original datasets.

During partition, we made sure that development

and test samples do not share the same context.

Worker Validation To ensure worker quality,

we initially published qualification tasks, open to

all workers in the United States. The task required

workers to carefully review the annotation instruc-

tions and decompose 10 example questions. The

examples were selected so that each QDMR oper-

ation should appear in at least one of their decom-

positions (Table 1). In total, 64 workers were able

to correctly decompose at least 8 examples and

were qualified as annotators. To validate worker

performance over time, we conducted random val-

idations of annotations. Over 9K annotations were
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Operator QDMR QDMRhigh

SELECT 100% 100%

PROJECT 69.0% 35.6%

FILTER 53.2% 15.3%

AGGREGATE 38.1% 22.3%

BOOLEAN 30.0% 4.6%

COMPARATIVE 17.0% 1.0%
GROUP 9.7% 0.7%

SUPERLATIVE 6.3% 13.0%

UNION 5.5% 0.5%

ARITHMETIC 5.4% 11.2%

DISCARD 3.2% 1.2%

INTERSECTION 2.7% 2.8%

SORT 0.9% 0.0%

Total 60,150 23,828

Table 4: Operator prevalence in BREAK. Lists

the percentage of QDMRs where the operator

appears.

reviewed by experts throughout the annotation

process. Only workers who consistently produced

correct QDMRs for at least 90% of their tasks

were allowed to continue as annotators.

4 Dataset Analysis

This section examines the properties of collected

QDMRs in BREAK and analyzes their quality.

4.1 Quantitative Analysis

Overall, BREAK contains 83,978 decompositions,

including 60,150 QDMRs and 23,828 examples

with high-level QDMRs, which are exclusive to

text modalities. Table 3 shows that data is pro-

portionately distributed between questions over

structured (DB) and unstructured modalities (text,

images).

The distribution of QDMR operators is

presented in Table 4, detailing the prevalence of

each query operator4 (we automatically compute

this distribution, as explained in §4.3). SELECT

and PROJECT are the most common operators.

Additionally, at least 10% of QDMRs contain

operators such as GROUP and COMPARATIVE,

which entail complex reasoning, in contrast to

high-level QDMRs, where such operations are

rare. This distinction sheds light on the reasoning

types required for answering RC datasets (high-

level QDMR) compared with more structured

tasks (QDMR).

Table 5 details the distribution of QDMR

sequence length. Most decompositions in QDMR

4Regarding the three merged operators of high-level

QDMRs (§2), the first two operators are treated as SELECT,

while the third is considered a FILTER.

Steps QDMR QDMRhigh

1–2 10.7% 59.8%

3–4 44.9% 31.6%

5–6 27.0% 7.9%

7–8 10.1% 0.6%

9+ 7.4% 0.2%

Table 5: The distribution over QDMR sequence

length.

include 3–6 steps, whereas high-level QDMRs are

much shorter, as a single SELECT often finds an

entity described by a long noun phrase (see §2).

4.2 Quality Analysis

We describe the process of estimating the correct-

ness of collected QDMR annotations. Similar to

previous works (Yu et al., 2018; Kwiatkowski

et al., 2019) we use expert judgments, where the

experts had prepared the guidelines for the anno-

tation task. Given a question and its annotated

QDMR, (q, s) the expert determines the cor-

rectness of s using one of the following categories:

• Correct (C): If s constitutes a list of QDMR

operations that lead to correctly answering q.

• Granular (CG): If s is correct and none of its

operators can be further decomposed.5

• Incorrect (I): If s is in neither C nor CG .

Examples of these expert judgments are shown

in Figure 5. To estimate expert judgment of cor-

rectness, we manually reviewed a random sample

of 500 QDMRs from BREAK. We classified 93.8%

of the samples in CG and another 3.6% in C. Thus,

97.4% of the samples constitute a correct decom-

position of the original question. Workers have

somewhat struggled with decomposing superla-

tives (e.g., ‘‘biggest sphere’’), as evident from the

first question in Figure 5. Collected QDMRs dis-

played similar estimates of C, CG , and I , regardless

of their modality (DB, text, or image).

4.3 Annotation Consistency

As QDMR is expressed using natural language, it

introduces variability into its annotations. We wish

to validate the consistency of collected QDMRs,

that is, whether we can correctly infer the formal

5For high-level QDMRs, the merged operators (§2) are

considered to be fully decomposed.
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Figure 5: Examples and justifications of expert

judgment on collected QDMRs in BREAK.

QDMR operator (f i) and its arguments from each

step (si). To infer these formal representations, we

developed an algorithm that goes over the QDMR

structure step-by-step, and for each step si, uses a

set of predefined templates to identify f i and its

arguments, expressed in si. This results in an ex-

ecution graph (Figure 2), where the execution

result of a parent node serves as input to its child.

Figure 1 presents three QDMR decompositions

along with the formal graphs output by our algo-

rithm (lower box). Each node lists its operator

(e.g., GROUP), its constant input listed in brackets

(e.g., count) and its dynamic input, which are

the execution results of its parent nodes.

Overall, 99.5% of QDMRs had all their steps

mapped into pseudo-logical forms by our algo-

rithm. To evaluate the correctness of the mapping

algorithm, we randomly sampled 350 logical forms,

and examined the structure of the formulas,

assuming that words copied from the question

correspond to entities and relations in an idealized

KB (see §2). Of this sample, 99.4% of its exam-

ples had all of their steps, si, correctly mapped to

the corresponding f i. Overall, 93.1% of the ex-

amples were of fully accurate logical forms, with

errors being due to QDMRs that were either incor-

rect or not fully decomposed (I , C in §4.2). Thus,

a rule-based algorithm can map more than 93%

of the annotations into a correct formal repre-

sentation. This shows that our annotators produced

consistent and high-quality QDMRs. Moreover, it

suggests that non-experts can annotate questions

with pseudo-logical forms, which can be used as

Algorithm 1 BREAKRC
1: procedure BREAKRC(s: QDMR)
2: ansrs← []
3: for si in s = 〈s1, . . . , sn〉 do

4: op← OPTYPE(si)
5: refs← REFERENCEDSTEPS(si)
6: if op is SELECT then

7: ans← ANSWER(si)
8: else if op is FILTER then

9: ŝi ← EXTRACTQUESTION(si)
10: anstmp ← ANSWER(ŝi)
11: ans← INTERSECT(anstmp, ansrs[refs[0]])
12: else if op is COMPARISON then

13: ans← COMPARESTEPS(refs,s)
14: else ⊲ op is PROJECT

15: ŝi ← SUBSTITUTEREF(si, ansrs[refs[0]])
16: ans← ANSWER(ŝi)
17: ansrs[i]← ans

18: return ansrs[n]

a cheap intermediate representation for semantic

parsers (Yih et al., 2016), further discussed in §6.

5 QDMR for Open-domain QA

A natural setup for QDMR is in answering

complex questions that require multiple reasoning

steps. We compare models that exploit question

decompositions to baselines that do not. We use

the open-domain QA (‘‘full-wiki") setting of the

HOTPOTQA dataset (Yang et al., 2018): Given a

question, the QA model retrieves the relevant

Wikipedia paragraphs and answers the question

using these paragraphs.

5.1 Experimental Setup

We compare BREAKRC, a model that utilizes

question decomposition to BERTQA, a standard

QA model, based on BERT (Devlin et al., 2019),

and present COMBINED, an approach that enjoys the

benefits of both models.

BREAKRC Algorithm 1 describes the BREAKRC

model, which uses high-level QDMR structures

for answering open-domain multi-hop questions.

We assume access to an Information Retrieval (IR)

model and an RC model, and denote by ANSWER(·)
a function that takes a question as input, runs the

IR model to obtain paragraphs, and then feeds

those paragraphs as context for an RC model that

returns a distribution over answers.

Given an input QDMR, s = 〈s1, ..., sn〉, iterate

over s step-by-step and perform the following.

First, we extract the operation (line 4) and the

previous steps referenced by si (line 5). Then,

we compute the answer to si conditioned on the

190



extracted operator. For SELECT steps, we simply

run the ANSWER(·) function. For PROJECT steps,

we substitute the reference to the previous step in

si with its already computed answer, and then run

ANSWER(·). For FILTER steps,6 we use a simple

rule to extract a ‘‘normalized question’’, ŝi from

si and get an intermediate answer anstmp with

ANSWER(ŝi). We then ‘‘intersect’’ anstmp with the

referenced answer by multiplying the probabilities

provided by the RC model and normalizing. For

COMPARISON steps, we compare, with a discrete

operation, the numbers returned by the referenced

steps. The final answer is the highest probability

answer of step sn.

As our IR model we use bigram TF-IDF, pro-

posed by Chen et al. (2017). Because the RC model

is run on single-hop questions, we use the BERT-

based RC model from Min et al. (2019b), trained

solely on SQuAD (Rajpurkar et al., 2016).

BERTQA Baseline As BREAKRC exploits

question decompositions, we compare it with

a model that does not. BERTQA receives as

input the original natural language question, x.

It uses the same IR model as BREAKRC to retrieve

paragraphs for x. For a fair comparison, we set

its number of retrieved paragraphs such that it

is identical to BREAKRC (namely, 10 paragraphs

for each QDMR step that involves IR). Similar

to BREAKRC, retrieved paragraphs are fed to a

pretrained BERT-based RC model (Min et al.,

2019b) to answer x. In contrast to BREAKRC, that

is trained on SQUAD, BERTQA is trained on the

target dataset (HOTPOTQA), giving it an advantage

over BREAKRC.

A COMBINED Approach Last, we present an

approach that combines the strengths of BREAKRC

and BERTQA. In this approach, we use the QDMR

decomposition to improve retrieval only. Given

a question x and its QDMR s, we run BREAKRC

on s, but in addition to storing answers, we also

store all the paragraphs retrieved by the IR model.

We then run BERTQA on the question x and the

top-10 paragraphs retrieved by BREAKRC, sorted

by their IR ranking. This approach resembles that

of Qi et al. (2019).

The advantage of COMBINED is that we do not

need to develop an answering procedure for each

QDMR operator separately, which involves dif-

6INTERSECTION steps are handled in a manner similar

to FILTER, but we omit the exact description for brevity.

Model
HOTPOTQA

EM F1 IR

BERTQA 33.6 43.3 46.3

BREAKRCP 28.8 37.7 52.5

BREAKRCG 34.6 44.6 59.2

COMBINED
P 38.3 49.3 52.5

COMBINED
G 41.2 52.4 59.2

IR-NP 31.7 41.2 40.8

BREAKRCR 18.9 26.5 40.3

COMBINED
R 32.7 42.6 40.3

Table 6: Open-domain QA results on HOTPOTQA.

ferent discrete operations such as comparison and

intersection. Instead, we use BREAKRC to retrieve

contexts, and an end-to-end approach to learn how

to answer the question directly. This can often

handle operators not implemented in BREAKRC,

like BOOLEAN and UNION.

DATASET To evaluate our models, we use all 2,765

QDMR annotated examples of the HOTPOTQA de-

velopment set found in BREAK. PROJECT and

COMPARISON type questions account for 48%

and 7% of examples respectively.

5.2 Results

Table 6 shows model performance on HOTPOTQA.

We report EM and F1 using the official HOTPOTQA

evaluation script. IR measures the percentage of

examples in which the IR model successfully

retrieved both of the ‘‘gold paragraphs’’ necessary

for answering the multi-hop question. To assess

the potential utility of QDMR, we report results

for BREAKRCG, which uses gold QDMRs, and

BREAKRCP, which uses QDMRs predicted by a

COPYNET parser (§7.2).

Retrieving paragraphs with decomposed ques-

tions substantially improves the IR metric from

46.3 to 59.2 (BREAKRCG), or 52.5 (BREAKRCP).

This leads to substantial gains in EM and F1 for

COMBINED
G (43.3 to 52.4) and COMBINED

P (43.3 to

49.3). The EM and F1 of BREAKRCG are only

slightly higher than BERTQA because BREAKRC

does not handle certain operators, such asBOOLEAN

steps (9.4% of the examples).

The majority of questions in HOTPOTQA com-

bine SELECT operations with either PROJECT

(also called ‘‘bridge’’ questions),COMPARISON, or

FILTER. PROJECT and COMPARISON ques-

tions (Figure 6) were shown to be less susceptible
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Figure 6: Examples of PROJECT and COMPARISON

questions in HOTPOTQA (high-level QDMR).

Model
PROJECT COMPARISON

EM F1 IR EM F1 IR

BERTQA 22.8 31.0 31.6 42.9 51.7 75.8

BREAKRCP 25.4 33.7 52.9 34.7 50.4 68.9

BREAKRCG 32.2 41.9 59.8 44.5 57.6 78.0

Table 7: Results on PROJECT and COMPARI-

SON questions from HOTPOTQA development set.

to reasoning shortcuts, i.e. they necessitate multi-

step reasoning (Chen and Durrett, 2019; Jiang and

Bansal, 2019; Min et al., 2019a). In Table 7 we

report BREAKRC results on these question types,

where it notably outperforms BERTQA.

Ablations In BREAKRC, multiple IR queries are

issued, one at each step. To examine whether these

multiple queries were the cause for performance

gains, we built IR-NP, a model that issues multi-

ple IR queries, one for each noun phrase in the

question. Similar to COMBINED, the question and

union of retrieved paragraphs are given as input to

BERTQA. We observe that COMBINED substan-

tially outperforms IR-NP, indicating that the struc-

ture of QDMR, rather than multiple IR queries,

has led to improved performance.7

To test whether QDMR is better than a simple

rule-based decomposition algorithm, we devel-

oped a model that decomposes a question by

applying a set of predefined rules over the depen-

dency tree of the question (full details in §7.2).

COMBINED and BREAKRC were compared to

COMBINED
R and BREAKRCR, which use the rule-

based decompositions. We observe that QDMR

lead to substantially higher performance when

compared to the rule-based decompositions.

7Issuing an IR query over each ‘‘content word’’ in the

question, instead of each noun phrase, led to poor results.

6 QDMR for Semantic Parsing

As QDMR structures can be easily annotated at

scale, a natural question is how far are they from

fully executable queries (known to be expensive

to annotate). As shown in §4.3, QDMRs can be

mapped to pseudo-logical forms with high preci-

sion (93.1%) by extracting formal operators and

arguments from their steps. The pseudo-logical

form differs from an executable query in the lack

of grounding of its arguments (entities and rela-

tions) in KB constants. This stems from the design

of QDMR as a domain-agnostic meaning represen-

tation (§2). QDMR abstracts away from a concrete

KB schema by assuming an underlying ‘‘ideal-

ized’’ KB, which contains all of its arguments.

Thus, QDMR can be viewed as an interme-

diate representation between a natural language

question and an executable query. Such interme-

diate representations have already been discussed

in prior work on semantic parsing. Kwiatkowski

et al. (2013) and Choi et al. (2015) used underspec-

ified logical forms as an intermediate represen-

tation. Guo et al. (2019) proposed a two-stage

approach, separating between learning an interme-

diate text-to-SQL representation and the actual

mapping to schema items. Works in the database

community have particularly targeted the mapping

of intermediate query representations into DB

grounded queries, using schema mapping and

join path inference (Androutsopoulos et al., 1995;

Li et al., 2014; Baik et al., 2019). We argue

that QDMR can be used as an easy-to-annotate

representation in such semantic parsers, bridging

between natural language and full logical forms.

7 QDMR Parsing

We now present evaluation metrics and models

for mapping questions into QDMR structures.

Task Definition Given a question x we wish to

map it to its QDMR steps, s = 〈s1, ... , sn〉. One

can frame this as a sequence-to-sequence prob-

lem where x is mapped to a string representing

its decomposition. We add a special separating

token 〈SEP〉, and define the target string to be

s11, ... , s
1
m1

, 〈SEP〉, s21, ... , s
2
m2

, 〈SEP〉, ... , snmn
,

where m1, ... , mn are the number of tokens in

each decomposition step.
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Figure 7: Differences in granularity, step order, and

wording between two decompositions.

7.1 Evaluation Metrics

We wish to assess the quality of a predicted

QDMR, ŝ to a gold standard, s. Figure 7 lists

various properties by which question decomposi-

tions may differ, such as granularity (e.g., steps

1–3 of decomposition 1 are merged into the first

step of decomposition 2), ordering (e.g., the last

two steps are swapped) and wording (e.g., using

‘‘from’’ instead of ‘‘on’’). While such differences

do not affect the overall semantics, the second de-

composition can be further decomposed. To mea-

sure such variations, we introduce two types of

evaluation metrics. Sequence-based metrics treat

the decomposition as a sequence of tokens, apply-

ing standard text generation metrics. As such met-

rics ignore the QDMR graph structure, we also use

graph-based metrics that compare the predicted

graph Gŝ to the gold QDMR graph Gs (see §2).

Sequence-based scores, where higher values

are better, are denoted by ⇑. Graph-based scores,

where lower values are better, are denoted by ⇓.

• Exact Match ⇑: Measures exact match

between s and ŝ, either 0 or 1.

• SARI ⇑ (Xu et al., 2016): SARI is commonly

used in tasks such as text simplification.

Given s, we consider the sets of added,

deleted, and kept n-grams when mapping

the question x to s. We compute these three

sets for both s and ŝ using the standard of

up to 4-grams, then average (a) the F1 for

added n-grams between s and ŝ, (b) the F1 for

kept n-grams, and (c) the precision for the

deleted n-grams.

• Graph Edit Distance (GED) ⇓: A graph edit

path is a sequence of node and edge edit

operations (addition, deletion, and substitu-

tion), where each operation has a predefined

Figure 8: Graph edit operations between the graphs of

the two QDMRs in Figure 7.

cost. GED computes the minimal-cost graph

edit path required for transitioning from

Gs to Gŝ (and vice versa), normalized by

max(|Gs|, |Gŝ|). Operation costs are 1 for

insertion and deletion of nodes and edges.

The substitution cost of two nodes u, v is set

to be 1−Align(u, v), where Align(u, v) is the

ratio of aligned tokens between these steps.

• GED+ ⇓: Comparing the QDMR graphs in

Figure 8, we consider the splitting and merg-

ing of graph nodes. We implement GED+, a

variant of GED with additional operations to

merge (split) a set of nodes (node), based on

the A* algorithm (Hart et al., 1968).8

7.2 QDMR Parsing Models

We present models for QDMR parsing, built over

AllenNLP (Gardner et al., 2017).

• COPY: A model that copies the input question

x, without introducing any modifications.

• RULEBASED: We defined 12 decomposition

rules, to be applied over the dependency tree

of the question, augmented with coreference

relations. A rule is a regular expression over

the question dependency tree, which invokes

a decomposition operation when matched

(Table 8). For example, the rule for relative

clauses (relcl) breaks the question at the

relative pronoun ‘‘that’’, while adding a ref-

erence to the preceding part of the sentence. A

full decomposition is obtained by recursively

applying the rules until no rule is matched.

• SEQ2SEQ: A sequence-to-sequence neural

model with a 5-layer LSTM encoder and

attention at decoding time.

8Because of its exponential worst-case complexity, we

compute GED+ only for graphs with up to 5 nodes, covering

75.2% of the examples in the development set of BREAK.
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Structure Example

be-root How many objects smaller than the matte object are silver
[objects smaller than the matte object, How many #1 silver]

be-auxpass Find the average rating star for each movie that are not reviewed

by Brittany Harris.
[Brittany Harris, the average rating star for each movie that not
reviewed by #1]

do-subj Year did the team with Baltimore Fight Song win the Superbowl?
[team with Baltimore Fight Song, year did #1 win the Superbowl]

subj-do-have Which team owned by Malcolm Glazer has Tim Howard playing?
[team Tim Howard playing, #1 owned by Malcolm Glazer]

conjunction Who trades with China and has a capital city called Khartoum?
[Who has a capital city called Khartoum, #1 trades with China]

how-many How many metallic objects appear in this image?
[metallic objects appear in this image, the number of #1]

single-prep Find the ids of the problems reported after 1978.

[the problems reported after 1978, ids of #1]

multi-prep what flights from Tacoma to Orlando on Saturday
[flights, #1 from Tacoma, #2 to Orlando, #3 on Saturday]

relcl Find all the songs that do not have a back vocal.
[all the songs, #1 that do not have a back vocal]

superlative What is the smallest state bordering ohio
[state bordering ohio, the smallest #1]

acl-verb Find the first names of students studying in 108.
[students, #1 studying in 108, first names of #2]

sent-coref Find the claim that has the largest total settlement amount. Return
the effective date of the claim.
[the claim that has the largest total settlement amount, the effective

date of #1]

Table 8: The decomposition rules of RULEBASED.

Rules are based on dependency labels, part-of-

speech tags and coreference edges. Text frag-

ments used for decomposition are in boldface.

• S2SDYNAMIC: SEQ2SEQ with a dynamic output

vocabulary restricted to the closed set of to-

kens Lx available to crowd-workers (see §3).

• COPYNET: SEQ2SEQ with an added copy

mechanism that allows copying tokens from

the input sequence (Gu et al., 2016).

7.3 Results

Table 9 presents model performance on BREAK.

Neural models outperform the RULEBASED baseline

and perform reasonably well, with COPYNET ob-

taining the best scores across all metrics. This can

be attributed to most of the tokens in a QDMR

parse being copied from the original question.

Error Analysis To judge the quality of pre-

dicted QDMRs we sampled 100 predictions of

COPYNET (Table 10) half of them being high-level

QDMRs. For standard QDMR, 24% of the sam-

pled predictions were an exact match, with an

additional 30% being fully decomposed and

semantically equivalent to the gold decomposi-

tions. For example, in the first row of Table 10,

the gold decomposition first discards the number

of cylinders, then counts the remaining objects.

Instead, COPYNET opted to count both groups, then

subtract the number of cylinders from the number

of objects. This illustrates how different QDMRs

may be equivalent.

For high-level examples (from RC datasets), as

questions are often less structured, they require a

deeper semantic understating from the decompo-

sition model. Only 8% of the predictions were an

exact match, with an additional 46% being seman-

tically equivalent to the gold. The remaining 46%

were of erroneous predictions (see Table 10).

8 Related Work

Question Decomposition Recent work on QA

through question decomposition has focused

mostly on single modalities (Gupta and Lewis,

2018; Guo et al., 2019; Min et al., 2019b). QA

using neural modular networks has been suggested

for both KBs and images by Andreas et al. (2016)

and Hu et al. (2017). Question decomposition

over text was proposed by Talmor and Berant

(2018), however over a much more limited set

of questions than in BREAK. Iyyer et al. (2017)

have also decomposed questions to create a

‘‘sequential question answering’’ task. Their

annotators viewed a web table and performed

actions over it to retrieve the cells that constituted

the answer. Conversely, we provided annotators

only with the question, as QDMR is agnostic to

the original context.

An opposite annotation cycle to ours was pre-

sented in Cheng et al. (2018). The authors generate

sequences of simple questions which crowd-

workers paraphrase into a compositional question.

Questions in BREAK are composed by humans, and

are then decomposed to QDMR.

Semantic Formalism Annotation Labeling

corpora with a semantic formalism has often been

reserved for expert annotators (Dahl et al., 1994;

Zelle and Mooney, 1996; Abend and Rappoport,

2013; Yu et al., 2018). Recent work has focused

on cheaply eliciting quality annotations from non-

experts through crowdsourcing (He et al., 2016;

Iyer et al., 2017; Michael et al., 2018). FitzGerald

et al. (2018) facilitated non-expert annotation

by introducing a formalism expressed in natural

language for semantic-role-labeling. This mirrors

QDMR, as both are expressed in natural language.

Relation to Other Formalisms QDMRis related

to Dependency-based Compositional Semantics

(Liang et al., 2013), as both focus on question

representations. However, QDMR is designed
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Data Metric COPY RULEBASED SEQ2SEQ S2SDYNAMIC COPYNET COPYNET (test)

QDMR

Exact Match ⇑ 0.001 0.002 0.081 0.116 0.154 0.157

SARI ⇑ 0.431 0.508 0.665 0.705 0.748 0.746

GED ⇓ 0.937 0.799 0.398 0.363 0.318 0.322

GED+ ⇓ 1.813 1.722 1.424 1.137 0.941 0.984

QDMRhigh

Exact Match ⇑ 0.001 0.010 0.001 0.015 0.081 0.083

SARI ⇑ 0.501 0.554 0.379 0.504 0.722 0.722

GED ⇓ 0.793 0.659 0.585 0.468 0.319 0.316

GED+ ⇓ 1.102 1.395 1.655 1.238 0.716 0.709

Table 9: Performance of QDMR parsing models on the development and test set. GED+ is

computed only for the subset of QDMR graphs with up to 5 nodes, covering 66.1% of QDMRs

and 97.6% of high-level data.

Question Gold Prediction (COPYNET) Analysis

‘‘How many objects other than cylinders are

there?’’

(1) objects; (2) cylinders; (3) #1 besides #2; (4)
number of #3.

(1) objects; (2) cylinders; (3) number of #1; (4)
number of #2; (5) difference of #3 and #4.

sem. equiv.
(30%)

‘‘Where is the youngest teacher from?’’ (1) teachers; (2) the youngest of #1; (3) where is
#2 from.

(1) youngest teacher; (2) where is #1. incorrect
(46%)

‘‘Kyle York is the Chief Strategy Officer of

a company acquired by what corporation in

2016?’’

(1) company that Kyle York is the Chief Strategy
Officer of; (2) corporation that acquired #1 in
2016.

(1) company that Kyle York is the Chief Strategy
Officer of; (2) corporation in 2016 that #1 was
acquired by.

sem. equiv.
(46%)

‘‘Dayton’s Devils had a cameo from the ‘MASH’

star who played what role on the show?’’

(1) MASH star that Dayton ’s Devils had a cameo

from; (2) role that #1 played on the show.

(1) the MASH that Dayton ’s Devils had a cameo;

(2) what role on the show star of #1 played.

incorrect

(46%)

Table 10: Manual error analysis of the COPYNET model predictions. Lower examples are of high-level

QDMRs.

to facilitate annotations, while Dependency-

based Compositional Semantics is centered

on paralleling syntax. Domain-independent

intermediate representations for semantic parsers

were proposed by Kwiatkowski et al. (2013)

and Reddy et al. (2016). As there is no

consensus on the ideal meaning representation

for semantic parsing, representations are often

chosen based on the particular execution setup:

SQL is used for relational databases (Yu et al.,

2018), SPARQL for graph KBs (Yih et al., 2016),

while other ad-hoc languages are used based

on the task at hand. We frame QDMR as an

easy-to-annotate formalism that can be potentially

converted to other representations, depending on

the task. Last, AMR (Banarescu et al., 2013) is a

meaning representation for sentences. Instead of

representing general language, QDMR represents

questions, which are important for QA systems,

and for probing models for reasoning.

9 Conclusion

In this paper, we presented a formalism for

question understanding. We have shown it is

possible to train crowd-workers to produce

such representations with high quality at scale,

and created BREAK, a benchmark for question

decomposition with over 83K decompositions of

questions from 10 datasets and 3 modalities (DB,

images, text). We presented the utility of QDMR

for both open-domain question answering and

semantic parsing, and constructed a QDMR parser

with reasonable performance. QDMR proposes

a promising direction for modeling question

understanding, which we believe will be useful

for multiple tasks in which reasoning is probed

through questions.
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