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Abstract

In recent years, large pre-trained models have
demonstrated state-of-the-art performance in
many NLP tasks. However, the deployment of
these models on devices with limited resources
is challenging due to the models’ large com-
putational consumption and memory require-
ments. Moreover, the need for a considerable
amount of labeled training data also hinders
real-world deployment scenarios. Model dis-
tillation has shown promising results for reduc-
ing model size, computational load and data
efficiency. In this paper we test the bound-
aries of BERT model distillation in terms of
model compression, inference efficiency and
data scarcity. We show that classification tasks
that require the capturing of general lexical se-
mantics can be successfully distilled by very
simple and efficient models and require rela-
tively small amount of labeled training data.
We also show that the distillation of large pre-
trained models is more effective in real-life
scenarios where limited amounts of labeled
training are available.

1 Introduction

In recent years, large pre-trained models such as
BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2018) and XLNET (Yang et al., 2019) have demon-
strated state-of-the-art performance in many NLP
tasks and have become standard. However, the de-
ployment of these models on devices with limited
resources is challenging due to the models’ large
computational consumption and memory require-
ments. For example, the two variants of BERT,
named BERTBASE and BERTLARGE consist of ap-
proximately 110M and 340M parameters, respec-
tively. Another deployment hurdle in real-world
scenarios is the scarcity of labeled data resources.

Model distillation (Ba and Caruana, 2014; Hin-
ton et al., 2015) has shown promising results for
reducing model size and computational load while

preserving much of the original model’s perfor-
mance. A typical model distillation setup includes
two stages; in the first stage, a large, cumbersome
and accurate teacher neural network is trained for
a specific downstream task. In the second stage
a smaller and simpler student model, that is more
practical for deployment in environments with lim-
ited resources, is trained to mimic the behavior of
the teacher model.

Prior work related to transformer-based model
distillation, focused on reducing the number of
layers of the original model, obtaining shallower
and more efficient student models (Sun et al., 2019;
Sanh, 2019; Turc et al., 2019). Tang et al. (2019)
proposed a BERT distillation method for single
sentence classification tasks and sentence matching
tasks using a BiLSTM (Graves, 2012; İrsoy and
Cardie, 2014) student model. Our work is closely
related to the work of Tang et al. (2019), however,
in our work we push the boundaries of BERT model
distillation in terms of model size and complexity
reduction, computational load and data scarcity for
single-sentence classification tasks.

The contribution of this paper is twofold; first,
we show that classification tasks that require the
capturing of general lexical semantics can be suc-
cessfully distilled by simple and efficient mod-
els while preserving results comparable to those
achieved by BERT. Second, building on previous
work (Izsak et al., 2019; Mukherjee and Awadal-
lah, 2020), we show that the distillation of large
pre-trained models is more effective in real-life sce-
narios, where a limited amount of labeled training
is available. Moreover, we show that in low data
resource scenarios, the distillation model size and
complexity can be substantially reduced. Specif-
ically, we show that results produced by using a
very simple and efficient model such as Continu-
ous Bag of Words (CBoW) with a Feed Forward
Network(FFN) are comparable to results produced
by using a more complex model such as BiLSTM.
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2 Approach

The aim of a model distillation process is to use
a large pre-trained teacher model to train a small
and computationally efficient student model so it
achieves accuracy comparable to that of the teacher
model. In this section we describe the teacher and
student model architectures (Sections 2.1) and the
distillation process (Section 2.2).

2.1 Models Architecture

For the teacher model we chose the popular pre-
trained BERT model (Devlin et al., 2019). Specif-
ically, we used BERTBASE, consisting of 110M
parameters, and added a sentence-level softmax
classification layer on top of BERT’s CLS token
output. The first step of the distillation process
is to fine-tune BERT for a specific task using la-
beled data. In this step, we jointly fine-tune the
parameters of BERT and the sentence-level classi-
fier by maximizing the probability of the correct
label, using the cross-entropy loss.

For student models we chose two non-
transformer-based models whose neural architec-
tures are shallower than BERT, and which contain
considerably fewer parameters. The two student
models are:

CBoW-FFN This simple student model is often
used for very efficient text classification tasks based
on sentence representation (Agibetov et al., 2018;
Chen et al., 2018). The network consists of an
internal embedding layer with embedding vectors
of dimension demb = 16, followed by an average
pooling layer and a Feed-Forward Network (FFN).
The model contains approximately 80K parame-
ters, meaning it is approximately 1375 times more
compact than BERTBASE.

BiLSTM The BiLSTM network (Graves, 2012;
İrsoy and Cardie, 2014) consists of a pre-trained
embedding1 layer followed by two identical BiL-
STM layers stacked one on top of another, and
where the last hidden state of the second layer is
followed by a FFN. The model contains approx-
imately 685K parameters, meaning it is approxi-
mately 160 times more compact than BERTBASE.

Additional Models We also experimented with
Convolutional Neural Networks (CNNs) (Kalch-
brenner et al., 2014). However, BiLSTM per-
formed better for the same model size.

1 We used Stanford GloVe embeddings https://nlp.
stanford.edu/projects/glove/

Dataset Task T-train S-train Test

AGNews topic 400 20K 7.6K
Emotion emotion 1000 50K 2K
IMDB sentiment 1000 25K 25K
SST-2 sentiment 200 1M∗ 1.9K
CoLA acceptability 1000 1M∗ 516

Table 1: Dataset descriptions and statistics. T-train rep-
resents the number of labeled samples used for train-
ing the teacher model (step 1) and S-train represent the
number of unlabeled samples used for training the stu-
dent model (step 2). ∗Obtained using the data augmen-
tation method described by Jiao et al. (2020).

2.2 The Distillation Process

The first step of the training process consists of
fine-tuning the teacher model using the available
labeled data. The second step of the distillation
process is depicted in Figure 1. In this step the
student model is trained using the unlabeled data.
The unlabeled data is fed in parallel into both the
fine-tuned teacher model and to the student model.
Following (Tang et al., 2019), we only use the dis-
tillation loss which is calculated for each training
batch by performing Mean Square Error (MSE) be-
tween the soft targets (logits) that are produced by
the student and teacher models:

Ldistill =
1

N

N∑
n=0

(ys − yt)
2

where ys and yt are the logits produced by the
student and teacher models, respectively.

3 Experimental Setup

3.1 Datasets and Tasks

The goal of our work is to test the distillation
boundaries in terms of model size compression,
inference computation load and training data size of
single-sentence classification tasks. We conducted
experiments on five widely-used single-sentence
classification datasets, as detailed below.

AGNews A topic classification dataset (Zhang
et al., 2015) that consists of internet news titles
labeled with four categories: World, Entertainment,
Sports and Business.

Emotion An emotion classification dataset (Sar-
avia et al., 2018) that consists of Twitter posts la-
beled with any of six basic emotion categories:
sadness, disgust, anger, joy, surprise, and fear.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Figure 1: Student model training process. The student and teacher models process the unlabeled samples and
generate logits for each example. Distillation loss is produced by calculating the Mean Square Error(MSE) between
the logits of both models.

Model AGnews Emotion IMDB SST-2 CoLA Comp. ratio Speedup

BERTBASE 87.3 82 88.3 83.5 56 x1 x1

CBoW-FFN 86.3 82 87.6 79.1 10 x1375 x574
BiLSTM 86.4 81.8 85.6 80.7 10 x160 x40

Table 2: Low-data-resource distillation models comparison. For all datasets we report the F1 score except for
CoLA, for which we report the Matthews Correlation Coefficient (MCC). Comp. ratio and Speedup2 represent the
model size reduction ratio and inference speedup, respectively, in relation to BERTBASE .

IMDB The Internet Movie Database (IMDB;
Maas et al. 2011) comprises single sentences ex-
tracted from informal movie reviews for binary
(positive/negative) sentiment classification.

SST-2 The Stanford Sentiment Treebank 2 (SST-
2; Socher et al. 2013) comprises single sentences
extracted from movie reviews for binary (posi-
tive/negative) sentiment classification. This dataset
is part of the widely used General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
et al., 2018).

CoLA The Corpus of Linguistic Acceptability
(CoLA; Warstadt et al. 2018) consists of English ac-
ceptability judgments drawn from books and jour-
nal articles on linguistic theory. Each sentence is
annotated with whether it is a grammatical English
sentence or not. This dataset is also part of the
GLUE benchmark.

Table 1 shows the dataset descriptions and statis-
tics. In order to simulate a real-life data-scarce
environment, we limited the labeled teacher model
training set (T-train) size to no more than a thou-
sand samples. It was shown that large amounts
of data are needed for the teacher model to fully
express its knowledge (Ba and Caruana, 2014). For
AGNews, Emotion and IMDB datasets, we used the
available training data which is part of the datasets
as unlabeled student training data (S-train). How-

ever, both SST-2 and CoLA datasets, do not contain
sufficient amounts of training data, therefore, we
use the data augmentation method described by
Jiao et al. (2020) for generating unlabeled student
training data (S-train).

3.2 Setup

We adopt the HuggingFace (Wolf et al., 2019)
implementation of BERT-base (uncased)3 model
for the teacher model. We fine-tune the model for
3 epochs with learning rate of 5e−5 and batch size
of 16. The CBoW-FFN student model was imple-
mented based on the model described by Agibetov
et al. (2018) with embedding size of 16 and word
vocabulary size of 5000. The BiLSTM student
model was implemented in a fashion similar to the
model described by Chollet4 with embedding size
of 100 and with vocabulary size of 5000.

4 Results and Discussion

4.1 The Low Resource Scenario

Table 2 shows low-data-resource scenario com-
parison between the accuracy of the two student

2Runnig on Intel(R) Xeon(R) CPU @ 2.30GHz, OS:
Ubunto 18.04.3 LTS and Tensorflow 2.2

3https://github.com/huggingface/
transformers

4https://keras.io/examples/nlp/
bidirectional_lstm_imdb/

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://keras.io/examples/nlp/bidirectional_lstm_imdb/
https://keras.io/examples/nlp/bidirectional_lstm_imdb/
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Model SST2-low
resource∗

SST2-high
resource∗∗

BERTBASE 83.5 91

CBoW-FFN 79.1 82
BiLSTM 80.7 86.1

CBoW-FFN-NoDs† 62.8 81.2
BiLSTM-NoDs† 63.1 78.8

Table 3: F1 score comparison between low and high
data resource scenarios for the SST-2 dataset. ∗Teacher
model training size = 200 samples. ∗∗Teacher model
training size = 6920 samples. †No distillation.

models and the teacher model across the different
datasets and tasks. Overall, the distilled models pro-
duced results that are competitive with the teacher
model’s results across all datasets and tasks except
for the CoLA task. An interesting observation is
that the relatively lightweight CBoW-FFN model’s
results are on-par with the BiLSTM results. A pos-
sible explanation for these results is that all of the
tasks, with the exception of CoLA, require the de-
tection of general lexical semantic features with
relatively less emphasis on linguistic structure and
contextual relations, therefore BERT’s contextual-
oriented architecture has no advantage over the
student models’ architecture. The CoLA task, on
the other hand, requires the detection of linguistic
structure and contextual relations and this is where
BERT’s architecture excels and the student models’
architectures are lacking.

4.2 Low Resource Vs. High Resource

Table 3 shows an F1 score comparison between
the two student models and the teacher model for
low and high labeled data resource scenarios for
the SST-2 dataset. The table also shows results for
the student models when trained directly on the
labeled data (non-distilled version).

Distilled Vs. Non-Distilled Models The results
demonstrate that the student models trained using
the distillation method (described in Section 2.2),
consistently outperform the baseline student mod-
els trained directly on the labeled data, proving
the effectiveness of the distillation approach. How-
ever, and in accordance with the findings of Izsak
et al. (2019); Mukherjee and Awadallah (2020),
it is also evident that the F1 score enhancement
achieved by the distilled student models over the
non-distilled models is higher in the low resource
scenario than in the high resource scenario. Specifi-
cally, the F1 improvement between the distilled and
non-distilled versions of the two student models in

the low resource scenario are 16.3% and 17.6%, vs.
0.8% and 7.3% in the high resource scenario.

Distilled Models Vs. BERT The results also
show that in the high resource scenario case, where
an abundance of labeled training data is available,
BERT’s accuracy advantage over the distilled mod-
els grows larger compared to the low-resource sce-
nario. Specifically, the F1 score gaps between
BERT and the student models in the high resource
scenario are 9%, and 4.9%, respectively, whereas
in the low resource scenario those gaps are only
4.4% and 2.8% respectively.

BiLSTM Vs. CBoW-FFN Another observation
is that in the high resource case, the practical trade-
off between model complexity and accuracy be-
comes more salient. For example, the F1 score
gap between CBoW-FFN and BiLSTM is merely
1.6% in the low resource scenario but reaches 4.1%
in the high resource scenario. This observation
aligns with the basic neural-networks phenomena
that larger and deeper neural networks are able
to represent the distribution of the data more ac-
curately compared to smaller models when large
amounts of data are available (Ng, 2018).

Practical Implications The practical implica-
tions of these results is that distillation is more ef-
fective in real-life scenarios where limited amounts
of labeled training data are available. In high-
resource scenarios, however, where an abundance
of labeled training data is available, using deeper
and more complex student models such as BiL-
STM, or shallower transformer-based models,
yields higher accuracies.

5 Conclusion

We showed that in low resource scenarios, it is
feasible to distil BERT using very efficient models
while preserving comparable results. However, the
success of the distillation depends on the dataset
and task at hand. Classification tasks that require
capturing of general lexical semantics can be suc-
cessfully distilled by very simple and efficient mod-
els; however, classification tasks that require the
detection of linguistic structure and contextual re-
lations are more challenging for distillation using
simple student models. For future work, we aim
to explore the impact of the datasets’ linguistic
structures on the distillation success and to develop
dataset-related measurements (Arora et al., 2020)
for predicting the success of the distillation in rela-
tion to different student models.
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Ré. 2020. Contextual embeddings: When are they
worth it? In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2650–2663, Online. Association for Computa-
tional Linguistics.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, pages 2654–2662. Curran Associates,
Inc.

Qingyu Chen, Yifan Peng, and Zhiyong lu. 2018.
Biosentvec: creating sentence embeddings for
biomedical texts.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks. Studies in Com-
putational Intelligence. Springer, Berlin.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. Cite
arxiv:1503.02531 Comment: NIPS 2014 Deep
Learning Workshop.
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