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Abstract

Deep neural networks have demonstrated their
superior performance in almost every Natural
Language Processing task, however, their in-
creasing complexity raises concerns. A par-
ticular concern is that these networks pose
high requirements for computing hardware
and training budgets. The state-of-the-art
transformer models are a vivid example. Sim-
plifying the computations performed by a net-
work is one way of addressing the issue of
the increasing complexity. In this paper, we
propose an end to end binarized neural net-
work for the task of intent and text classifi-
cation. In order to fully utilize the poten-
tial of end to end binarization, both the in-
put representations (vector embeddings of to-
kens statistics) and the classifier are binarized.
We demonstrate the efficiency of such a net-
work on the intent classification of short texts
over three datasets and text classification with
a larger dataset. On the considered datasets,
the proposed network achieves comparable to
the state-of-the-art results while utilizing ∼
20-40% lesser memory and training time com-
pared to the benchmarks.

1 Introduction

In recent years, deep neural networks have achieved
great success in a variety of domains, but the
networks are becoming more and more computa-
tionally expensive due to their ever-growing size.
This tendency has been noticed in (Strubell et al.,
2019; Schwartz et al., 2019) and it has been rec-
ommended that academia and industry researchers
should draw their attention towards more computa-
tionally efficient methods. At the same time, many
important application areas such as chatbots, IoT
devices, mobile devices, and other types of power-
constrained and resource-constrained platforms re-
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quire solutions that would be highly computation-
ally and memory efficient. Such use-cases limit
the potential use of the state-of-the-art deep net-
works. One viable solution is the transformation
of these high-performance neural networks to a
more computationally efficient architecture. Re-
cently, Binarized Convolutional Neural Networks
(BNN) (Hubara et al., 2016) have been developed
where both weights and activations are restricted
to {+1,−1}. BNN is a highly computationally
efficient network with a much lower memory foot-
print. Tasks like language modeling (Zheng and
Tang, 2016) were performed using binarized neural
networks, but, to the best of our knowledge, in the
area of text classification, no end to end trainable
binarized architectures have been demonstrated yet.

In this paper, we introduce an architecture for
the tasks of intent and text classifications that fully
utilizes the power of binary representations. The in-
put representations are tokenized and embedded in
binary high-dimensional (HD) vectors forming dis-
tributed representations using the paradigm known
as hyperdimensional computing (Kanerva, 2009).
The binary input representations are used for train-
ing an end to end BNN classifier for intent clas-
sification. Classification performance-wise, the
binarized architecture achieves results comparable
to the state-of-the-art on several standard intent
classification datasets. The efficiency of the pro-
posed architecture is shown in terms of its time
and memory complexity relative to non-binarized
architectures.

2 Proposed Method

Figure 1 presents a schematic overview of the ar-
chitecture. Given an input text document D, we
first pre-process the document. The pre-processed
document is then tokenized into the corresponding
tokens < T1, T2, ..., Tn >, which are used as an
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Figure 1: A schematic diagram of the end to end binarized classification architecture for text classification.

input to a count-based vectorizer. The represen-
tation of vectorizers, which is sparse and localist,
is embedded into an HD vector (distributed repre-
sentation) using hyperdimensional computing. HD
vector representing the counter’s content can be
binarized. It is used as an input to a classifier. The
primary classifier studied in this work is BNN, but
other classifiers are also considered for benchmark-
ing.

2.1 High-Dimensional embedding of
vectorized representations

In order to reduce the dimensionality of representa-
tions, we use hyperdimensional computing (Kan-
erva, 2009). First, each unique token Ti is assigned
with a random d-dimensional bipolar HD vector,
where d would be a hyperparameter of the method.
HD vectors are stored in the item memory, which
is a matrix H ∈ [d× n], where n is the number of
tokens. Thus, for a token Ti there is an HD vec-
tor HTi ∈ {−1,+1}[d×1]. To construct composite
representations from the atomic HD vectors stored
in H, hyperdimensional computing defines three
key operations: permutation (ρ), binding (�, im-
plemented via element-wise multiplication), and
bundling (+, implemented via element-wise ad-
dition) (Kanerva, 2009). The bundling operation
allows storing information in HD vectors (Frady
et al., 2018). The three operations above allow
embedding vectorized representations based on
n-gram statistics into an HD vector (Joshi et al.,
2016).

We first generate H, which has an HD vector
for each token. The permutation operation ρ is
applied to HTj j times (ρj(HTj )) to represent a rel-
ative position of token Tj in an n-gram. A single
HD vector corresponding to an n-gram (denoted
as m) is formed using the consecutive binding of
permuted HD vectors ρj(HTj ) representing tokens
in each position j of the n-gram. For example, the
trigram ‘#he’ will be embedded to an HD vector as
follows: ρ1(H#) � ρ2(Hh) � ρ3(He). In general,

the process of forming HD vector of an n-gram
is m =

∏n
j=1 ρ

j(HTj ), where Tj is token in jth
position of the n-gram; the consecutive binding op-
erations applied to n HD vectors are denoted by

∏
.

Once it is known how to form an HD vector for an
individual n-gram, embedding the n-gram statis-
tics into an HD vector h is achieved by bundling
together all n-grams observed in the document:

h = [

k∑
i=1

fimi =

k∑
i=1

fi

n∏
j=1

ρj(HTj )],

where k is the total number of unique n-grams; fi
is the frequency of ith n-gram and mi is the HD
vector of ith n-gram;

∑
denotes the bundling op-

eration when applied to several HD vectors; [∗]
denotes the binarization operation, which is im-
plemented via the sign function. The usage of [∗]
is optional, so we can either obtain binarized or
non-binarized h. If h is non-binarized, its com-
ponents will be integers in the range [−k, k], but
these extreme values are highly unlikely since HD
vectors for different n-grams are quasi-orthogonal,
which means that in the simplest (but not practical)
case when all n-grams have the same probability
the expected value of a component in h is 0. Due
to the use of

∑
for representing n-gram statistics,

two HD vectors embedding two different n-gram
statistics might have very different amplitudes if
the frequencies in these statistics are very differ-
ent. When HD vectors h are binarized, this issue
is addressed. In the case of non-binarized HD vec-
tors, we address it by using the cosine similarity,
which is imposed by normalizing each h by its `2
norm; thus, all h have the same norm, and their dot
product is equivalent to their cosine similarity.

2.2 Binarized Neural Networks

Based on the work of (Hubara et al., 2016), we
construct BNNs capable of working with represen-
tations of texts. To take the full advantage of bi-
narized HD vectors, we constraint the weights and
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(b) Train Time per epoch Comparison

Figure 2: (a) shows the memory comparisons for all 4 datasets using HD Text-LeNet, HD BNN, GloVe Text-LeNet,
GloVe BNN and (b) shows the training time per epoch comparison for all 4 datasets using BNN and Text-LeNet

Chatbot AskUbuntu WebApplication 20NewsGroups
Tokenizers Text-LeNet BNN Text-LeNet BNN Text-LeNet BNN Text-LeNet BNN

Word 0.80 0.73 0.51 0.79 0.56 0.78 0.54 0.56
SemHash 0.94 0.90 0.87 0.84 0.79 0.83 0.78 0.69

BPE 0.80 0.58 0.54 0.67 0.52 0.75 0.38 0.42
Char BPE 0.92 0.81 0.76 0.76 0.55 0.53 0.55 0.48

SentencePiece 0.80 0.99 0.70 0.72 0.50 0.70 0.41 0.43
BERT 0.89 0.88 0.72 0.71 0.70 0.77 0.60 0.60

Table 1: F1 performance comparison of binarized Text-LeNet (BNN) architecture with non-binarized Text-LeNet
for the task of intent classification on various datasets.

activations of the network layers to be {+1,−1}.
This constraint is highly efficient in terms of hard-
ware and memory, as bit-wise operations are used
instead of multiply-accumulate operations. For ex-
ample, a multiplication on binary values can be
performed using an XNOR logical operation.

The vectorized representations of tokens embed-
ded into HD vectors are binarized with all values
{+1,−1}. In the case of HD vectors, we binarize
the result of the bundling operation using the sign
function.

Similarly, the sign function is used in the BNN
for every weight or activation to restrict them into
{+1,−1} as follows:

b(x) = [x] = sign(x) =

{
+1 if x ≥ 0,
−1 otherwise

(1)

where, x can be any weight or activation value.
We further define a convolutional 1D layer that

creates a convolution kernel that is convolved with
the input HD vector over a single spatial dimen-
sion to produce a tensor of outputs. Since gradient
descent methods make small changes to the value
of the weights, which cannot be done with binary
values, we use the straight-through estimator idea,
as mentioned in (Yin et al., 2019). We also define
a value over which we clip the gradients in the

backward pass:

δb(x)

δx
=

{
+1 if |x| < clip value,
0 otherwise

(2)

This ensures that the entire architecture is end to
end trainable using gradient descent optimization.

3 Empirical Analysis

3.1 Datasets

All the experiments are performed on four datasets,
namely: the Chatbot Corpus (Chatbot), the Ask
Ubuntu Corpus (AskUbuntu), the Web Applications
Corpus (WebApplication), and the 20 News Groups
Corpus (20NewsGroups) (Braun et al., 2017).

3.2 Results and Discussions

For CNN-based architecture, 5 hidden layers were
used: 3 convolutional 1D layers followed by 2
dense layers. Due to its resemblance to the orig-
inal LeNet architecture (LeCun et al., 1998), we
refer to this architecture as Text-LeNet. We com-
pare the results of binarized HD vectors with the
binarized Text-LeNet (BNN) architecture as the
classifier against non-binarized HD vectors with
non-binarized Text-LeNet. The F1 scores are com-
pared in Table 1 where BNN performed equally
well to a Text-LeNet architecture while being 20%
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Datasets Binarized GloVe Binarized SemHash Binarized HD vectors
Chatbot 0.74 0.91 0.99

AskUbuntu 0.86 0.87 0.84
WebApplication 0.66 0.80 0.83
20NewsGroups 0.62 0.64 0.69

Table 2: F1 performance comparison of Binarized GloVe vectors, Binarized SemHash vectors and Binarized HD
vectors. All vectorizers use the same binarized Text-LeNet architecture as classifier.
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Figure 3: (a), (b), (c) and (d) show the F1 score comparison of MLP and Linear SVC classifier with HD and
non-HD based tokenizers on Chatbot, AskUbuntu, WebApplication and 20NewsGroups corpus respectively.

to 40% more memory efficient, as shown in Fig-
ure 2 (a). Note that due to the specifics of imple-
mentation, BNNs use 32 bit float values as Text-
LeNet. The memory efficiency of BNNs can be
further improved by 4x when 8-bit representations
are used and up to 32x if a single bit representations
are used. However, the hardware limitations pre-
vented us from going to that extreme. On the per-
formance side, BNNs outperforms the Text-LeNet
for AskUbuntu and WebApplication datasets on
4 out of 6 tokenizers. The results reported in Ta-
ble 1 used 512 dimensional HD vectors for Chatbot,
AskUbuntu, and WebApplication corpus, while
1, 024 dimensional HD vectors were used for the
20NewsGroups dataset.

One thing to note here is that Text-LeNet also
used HD vectors with the mentioned tokenizers,
but the HD vectors were non-binarized. HD vec-
tors in itself are already faster and much more effi-
cient than counter-based representations, as shown
in (Alonso et al., 2020). When experimenting with
other embedding methods like GloVe, the train-
ing was significantly slower; therefore, HD vectors
were used for all the experiments. In addition to
that, using the binarized classifier (BNN) further
improved the training time up to 50% per epoch
when compared to non-binarized classifier on all
four datasets, as shown in Figure 2 (b). Further-
more, when compared to GloVe embeddings with
Text-LeNet, HD BNN used around 20 - 40% lesser
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Platform Chatbot AskUbuntu WebApplication Average

Botfuel 0.98 0.90 0.80 0.89
Luis 0.98 0.90 0.81 0.90

Dialogflow 0.93 0.85 0.80 0.86
Watson 0.97 0.92 0.83 0.91

Rasa 0.98 0.86 0.74 0.86
Snips 0.96 0.83 0.78 0.86
Recast 0.99 0.86 0.75 0.87

TildeCNN 0.99 0.92 0.81 0.91
FastText 0.97 0.91 0.76 0.88

SemHash (Shridhar et al., 2019) 0.96 0.92 0.87 0.92
BPE 0.95 0.93 0.85 0.91

HD vectors (Alonso et al., 2020) 0.97 0.92 0.82 0.90
Binarized HD vectors with the best classifier 0.98 0.93 0.84 0.92

HD Text-LeNet 0.94 0.87 0.79 0.88
HD BNN 0.99 0.84 0.83 0.91

Table 3: F1 score comparison of various platforms on intent classification datasets of short texts with methods used
in the paper. Some results are taken from (Alonso et al., 2020)

memory for all the intent classification datasets.

We also benchmarked the binarized HD vectors
with binarized 300-dimensional GloVe vectors and
the binarized version of counter-based representa-
tion for SemHash tokenizer (Alonso et al., 2020)
for all the datasets. Table 2 summarizes the results
of the comparison. All the binarized representa-
tions were trained with the same BNN classifier.
Binarized HD vectors performed significantly bet-
ter than other binarized methods outperforming bi-
narized GloVe by 4 - 25% and binarized SemHash
by 2 - 8% on 2 out of 3 smaller intent classifi-
cation datasets and achieved comparable results
for AskUbuntu dataset. The trend continued for
20NewsGroups with binarized HD achieving 5 -
7% better F1 scores. Note that for the SemHash
counter-based vectorizer, we put a sign function
sign(x) = +1 for x > 0 and − 1 otherwise.

In Figure 3, MLP and Linear SVC with all the to-
kenizers with HD vectors as representation are com-
pared with MLP and Linear SVC classifiers with
SemHash tokenizers and counter-based vectorizer
as representation from (Alonso et al., 2020). The
F1 score is comparable to the state-of-the-art for
both MLP and SVC. For all small intent classifica-
tion datasets, binarized HD vectors have achieved
better results than non-HD vectors. The proposed
architecture beats the non-HD baselines by +2%
for AskUbuntu and Chatbot Corpus, and +5% for
WebApplication Corpus. However, for 20News-
Groups, the results of binarized HD Vectors are
lower than non-HD Vectors. This is mainly due to
the large size of the dataset, and simple classifiers
like LinearSVC failed to perform with just bina-
rized values. The results for all the other classifiers

are provided in the Appendix.
Table 3 compares the F1 scores of various plat-

forms on the intent classification datasets. We
report the results of binarized HD vectors with
the best classifiers from one of the nine classi-
fiers mentioned (Binarized HD vectors with the
best classifier), non-binarized HD vectors with Text-
LeNet (HD Text-LeNet) and binarized HD vectors
with binarized Text-LeNet (HD BNN). Our end
to end binarized architecture (HD BNN) achieved
the state-of-the-art results for the Chatbot dataset.
The approach where only HD vectors were bina-
rized (binarized HD vectors with the best classi-
fier) achieved the state-of-the-art results for the
AskUbuntu dataset. The results on the WebAppli-
cation dataset are comparable to the state-of-the-
art (0.87 with SemHash): 0.84 for binarized HD
vectors with the best classifier and 0.83 for HD
BNN. The average performance of both binarized
HD vectors with the best classifier (0.92) and HD
BNN (0.91) was also comparable to the best non-
binarized approach (0.92).

4 Conclusion

In this work, we show that it is possible to achieve
comparable to the state-of-the-art results while us-
ing the binarized representations of all the compo-
nents of the text classification architecture. This
allows exploring the effectiveness of binary rep-
resentations both for reducing the memory foot-
print of the architecture and for increasing the
energy-efficiency of the inference phase due to
the effectiveness of binary operations. This work
takes a step towards enabling NLP functionality on
resource-constrained devices.
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