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Abstract

Transfer learning is a popular technique to
learn a task using less training data and fewer
compute resources. However, selecting the
correct source model for transfer learning is a
challenging task. We demonstrate a novel pre-
dictive method that determines which existing
source model would minimize error for trans-
fer learning to a given target. This technique
does not require learning for prediction, and
avoids computational costs of trial-and-error.

We have evaluated this technique on nine
datasets across diverse domains, including
newswire, user forums, air flight booking, cy-
bersecurity news, etc. We show that it per-
forms better than existing techniques such as
fine-tuning over vanilla BERT, or curriculum
learning over the largest dataset on top of
BERT, resulting in average F1 score gains in
excess of 3%. Moreover, our technique consis-
tently selects the best model using fewer tries.

1 Introduction

When deploying deep learning in real-life scenar-
ios, training data is often sparse. Transfer learning
improves learning of such target tasks by leverag-
ing knowledge from a source task, as shown in
Figure 1. The improvement in learning could be
measured by either improvement in accuracy (for
example, F1 score), or reduction in the time taken
to learn the task.

With the increased popularity of the large
transformer-based models Devlin et al. (2019),
transfer learning in the form of fine-tuning a base
model is ubiquitous in NLP. However, the perfor-
mance of the learned target model depends criti-
cally on the chosen source model. Simply selecting
the largest dataset can lead to sub-optimal perfor-
mance, and trying all sources is computationally
expensive.

We demonstrate a prediction technique for the
sequence labelling task, which given a target model,

Figure 1: Transfer Learning Methodology. The right-
most column of the figure shows the architecture of a
Sequence Labelling Model. Transfer learning reuses
the context representation layer of Model 1 to fine-tune
a new representation layer for Model 2.

selects the “best” source model from among a set
of available source models, according to a novel
and inexpensive metric. Then, only that single
selected (trained) source model is further fine-tuned
on the target dataset. We show that our selection
technique is effective at selecting the source model
that most improves F1 score, over nine different
tasks, with no additional training. Further, our
technique results in an average gain of over 3% in
F1 over selecting a base model randomly, and over
4% in F1 over training a model without transfer
learning from any source model.

In the rest of the paper, we chronicle prior work
in the area of transfer learning, describe the se-
quence labeling task, and follow with the descrip-
tion of our predictive model selection methodology.

2 Prior Work

The transfer learning literature spans different top-
ics and strategies such as few-shot learning (Socher
et al., 2013), domain adaptation (Patricia and Ca-
puto, 2014), weight synthesis (Sussillo and Abbott,
2017), and multitask learning (Jiang, 2009; Nguyen
et al., 2016; Torrey and Shavlik, 2009). Some
works propose novel combinations of these ap-
proaches, in order to improve transfer performance
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Figure 2: Example of Span Similarity (SS) and Weighted Span Similarity (WSS). Top line: input sentence. Next
line: ground truth labeling. Last two lines: labelings due to two different transfer learning sources. Rightmost
columns: metric values * 100, showing the “goodness” of each source as SrcF1. Note that SrcF1 * SS = WSS.

under conditions of domain transfer with limited
or incomplete annotations (Luo et al., 2017).

Some prior research on optimizing source selec-
tion has focused on instance transfer techniques,
like Zhou et al. (2016) and Lin et al. (2013), which
select a subset of examples from a source for trans-
fer learning. Other approaches, like Schultz et al.
(2018), propose methods to select the right set of
source domain datasets for a task such as sentiment
classification. Yet another approach, Afridi et al.
(2018), which is more popular in computer vision
research, selects sub-models of the source model
and re-trains only on those.

Alternatively, Bhattacharjee et al. (2020) focuses
on predicting the best source model, in the domains
of computer vision and of semantic relations, by
measuring the similarity between the source and
target datasets, using a mix of metrics like KL di-
vergence and source dataset size. In NLP, this ap-
proach works for sentence-level classification tasks
such as sentiment classification. But it does not
adapt well for sequence labelling tasks, where la-
bels span across tokens rather than sentences, and
where the similarity of the label spaces need to
be accounted for. Additionally, their approach re-
quires either the entire source dataset or its feature
vector representation to be available. In contrast,
the method we demonstrate here only needs the
source model itself.

3 Task Definition

A sequence labelling task assigns a label to each
member of a sequence of observed values. An ex-
ample is Named Entity Recognition (NER), which
identifies in unstructured text all contiguous typed
references to task-specific real-world entities, such
as persons, organizations, facilities, locations, etc.
An example is shown in Figure 2.

We formally define the Transfer Learning task
for this paper as follows: given a set M of N
source models trained for sequence labelling,M =
{M1,M2, . . . ,MN}, and one target set t, the task

is to find the best source model Mk, which when
used as a base model for transfer learning, would
result in a model with highest performance.

We use F1 as the metric to measure performance,
and compute relative gain in F1 to measure the
improvement in performance.

4 Predictive Model Selection

To select the best transfer learning base model, our
method compares the target and source using a
novel similarity metric. Instead of comparing the
source and target datasets, our method compares
the target test-set with the output of the source
model on the target test-set. This comparison takes
label weights into account.

To compare a target with each of the source mod-
els, we decode the target test-set through the source
model. We call this output ŷ, and the original tar-
get annotation y. We next compare y and ŷ using
the metrics described. The source model with the
highest metric score is chosen as the best source
model.

4.1 Metrics
For predicting which model would be the best for a
target dataset, we have experimented with two mea-
sures, called Span Similarity and Weighted Span
Similarity, described here.

For Named Entity Recognition, an extracted
span is customarily considered correct if the offset
of the span matches that of the reference span, and
the type of the span matches that of the reference
span. In this work, however, we ignore the types of
the spans. We therefore define Span Similarity (SS)
based on the score computed between gold (y) and
system output (ŷ) using only the offsets.

SS =
2 ∗ TP

2 ∗ TP + FP + FN
(1)

where TP = number of true positives, FP = number
of false positives, and FN = number of false neg-
atives, as decided by the above selection criteria.
This is basically the Sorensen-Dice coefficient.
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Dataset Description Label-Set
Size

Source
Size

Source
F1

Target
Size

Target
F1

7 Categories (Coucke et al., 2017) 7 similar workspaces 71 2802 96.46 468 86.49
Alchemy1 News 47 2100 86.68 431 62.93
Alchemy2 News 54 7994 87.19 799 64.83
ATIS (Dahl et al., 1994) Airline Travel 121 5873 96.91 647 92.84
CoNLL (Sang and De Meulder, 2003) News 9 18467 96.81 1847 91.49
Klue Forum (Florian et al., 2004) User Forum part of Klue 1050 19323 84.14 1933 75.28
Klue News (Florian et al., 2004) Large News part of Klue 1050 14586 87.31 1514 82.95
TAC (LDC, 2019) News 13 9639 79.76 1082 75.5
Cybersecurity Cybersecurity articles 85 55386 83.14 2405 73.7

Table 1: Details of all datasets. Dataset size is in number of sentences. F1 values are scores * 100. Each target
dataset is down-sampled from its source dataset, allowing a full comparison matrix of sources versus targets.

To account for the “goodness” of the source
model, we weight Span Similarity by the F1 score
of the source model on the source test-set, F1(s).
This we call the Weighted Span Similarity (WSS).

WSS = F1(s) ∗ SS (2)

We select the source model with the highest
WSS score to be the best base model for transfer
learning.

4.2 Transfer Learning
The architecture of a typical transformer-based
Named Entity Recognition model is shown in Fig-
ure 1. The model can be divided into two parts,
the context representation encoding layer (e.g., a
BERT model), and the classifier layer (e.g, a linear
classifier).

Once the source model with the highest WSS is
selected, we use it as the base for transfer learning.
To capture the knowledge of the source model, we
use the context representation layer of the source
model, but replace its classifier layer with a new
classifier mapped to the target model space. We
then fine-tune this new model on the target dataset.

5 Experimental Evaluation

5.1 Datasets and Source Models
We test our method on the various datasets shown in
Table 1, all comprising of named entity annotated
data, with different number of types as described
in the lined citations. Alchemy1 and Alchemy2
are newswire datasets labeled internally with 47
and 54 types (person, organization, company, etc),
respectively. Cybersecurity, the other dataset that
is not cited, is a dataset of cybersecurity related
articles (descriptions of virus attacks, etc.), labeled
internally.

For each of the datasets, we sample a small per-
centage (5–20%) of examples in order to create

our target sets. We use the full dataset as a source,
and the small sampled sets as target sets. We train
NER models using the method described in Devlin
et al. (2019) on full source datasets, using the setup
described in Section 5.4.

5.2 Generating Ground Truth
To test our method, we need to determine which
source is truly the best for a given target. We pro-
ceed as follows.

We formally denote the N source datasets as
S = {s1, s2, . . . , sN}, and the N target datasets as
T = {t1, t2, . . . , tN}.

To set up the evaluation of our method, we first
train NER models on all source datasets, to get a
set of source models M = {M1,M2, . . . ,MN}.
Each one of these is comprised of a context layer
and a classifier layer.

Next, to get the absolute ground truth model for
a given target dataset tk, we train a model Gk for
tk without any transfer learning.

Lastly, we train a suite of ground truth transfer
models for each dataset tk. We fine-tune each of the
source models Mi, i 6= k, by retaining its context
layer but adapting its classifier layer. This gives
for each tk a suite of ground truth transfer models,
Gk = {Gk,i, i 6= k}, where Gk,i is the ground truth
transfer model for tk using source Mi.

For each of the models in Mk we then compute
the relative gain in F1 in the usual way:

RGF1(k, i) = (F1(k, i)− F1(k))/F1(k) (3)

where F1(k, i) returns the F1 score of the model
Gk,i, and where F1(k) does the same for Gk.
Therefore, the best ground truth transfer model
for tk is defined to be: G∗k = argmax

i
RGF1(k, i)

5.3 Baselines
We compare our method to the following baselines:
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Target
SS

Predict
Correct

WSS
Predict
Correct

Largest
Source

(F1 − B1)/B1

Random
Selection

(F1 − B2)/B2

Cosine
Similarity

(F1 − B3)/B3

KL
Divergence
(F1 − B4)/B4

Target
Only

(F1 − B5)/B5

Alchemy1 Yes Yes 25.66 15.95 0 5.45 23.17
Alchemy2 Yes Yes 4.08 4.09 4.42 4.09 11.23
Atis Yes Yes 1.12 0.93 0.43 1.12 0.4
Klue Forum Yes Yes 0 2.24 3.26 2.33 3.13
Klue News Yes Yes 0 1.99 3.32 2.08 2.78
CoNLL No Yes 1.57 1.33 0 1.85 1.05
Cyber No Yes 0.48 0.93 0 0.48 1.75
7 Categories No No -2.48 1.15 -0.93 -2.48 -0.68
TAC No No -3.11 2.25 0 -2.68 0.83
RGF1 3.04 3.43 1.17 1.36 4.85

Table 2: Results, showing values * 100. RGF1 = Average Relative Gain using our method. B1 = F1 when source
is largest training set. B2 = F1, average of randomly picked source models. B3 = F1 when source is model with
max cosine. B4 = F1 when source is model with lowest DKL. B5 = F1 when model learnt only on target data.

1. Largest Source: This method picks the source
with the largest dataset size as the best base model.

2. Random Selection: This method picks a
source at random as the best base model.

3. Cosine Similarity: Cosine similarity has
been frequently used in distributional semantics
(Mikolov et al., 2013; Peterson, 2009; Wagstaff
et al., 2001). We compute the cosine similarity
between a target model Gk and each of the source
models Mi (see Section 5.2), by decoding the tk
test-set with both target and source models, and
using the outputs of their respective context repre-
sentation layers, called A and B, to compute:

CosSim(A,B) =
ΣiAi ×Bi√

ΣiA2
i ×

√
ΣiB2

i

(4)

We do this for all Mi, i 6= k, and choose the Mi

with highest cosine similarity with the test-set tk.
4. KL Divergence: Bhattacharjee et al. (2020)

use KL divergence as selection metric in their
method. To compute the KL Divergence between
the source dataset si and the target dataset tk, we
decode both datasets with Mi, and compare their
context representation layers, called P and Q, to
compute:

DKL(P,Q) =
∑
i

P (i) log
P (i)

Q(i)
(5)

5. Target-only Model: We also compare our
method with models trained directly with vanilla
BERT over the target test-set, i.e., over tk as de-
scribed in Section 5.2.

5.4 Experimental Setup Details
The models are built using the HuggingFace Py-
Torch implementation of Transformers Wolf et al.

(2019). Our model uses bert-base-cased with the
standard hyperparameters. We train the source and
target models for 20 epochs, with a learning rate of
5e-5 and a batch of 32. We use K80 gpus to train
our models.

6 Results and Discussion

6.1 Accuracy and Time Cost
Table 2 shows a summary of the F1 gains by using
our method to predict the best source model, com-
pared to other baseline selection methods. Our SS
method is able to predict the correct source model
5 out of 9 times, and our WSS method can predict
the correct source model 7 out of 9 times. This is
significantly better than any other baseline.

In terms of accuracy, our WSS method outper-
forms the baselines, as follows: largest source, 6
out of 9 times, with average gain of 3.04%; random
selection, 9 out of 9 times, with average gain of
3.43%; cosine similarity, 4 out of 9 times, with
average gain of 1.17%; KL divergence, 7 out of 9
times, with average gain of 1.36%; and no NER
transfer learning, 8 out of 9 times, with average
gain of 4.85%.

We note that some of our performance improve-
ments can be attributed to a fundamental differ-
ence between our method and other baseline meth-
ods like Cosine Similarity, KL divergence, etc.
Whereas other methods compare similarity of the
input text space, our method computes similarity
within the label space, taking advantage of learned
contextual relationships.

Our method consistently works across diverse
domains, and is able to correctly predict models
particularly for news, forum, airline travel, and
cybersecurity domains. None of the baselines work
as well across these domains.
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Figure 3: Number of correctly selected best models ver-
sus number of attempts. Our method in one try does as
well as the largest source baseline does after four.

Our method also saves substantially on computa-
tional time and resources, as it finds the best source
model with fewer tries, as shown in Figure 3. In
most cases, our method is able to predict the best
model on the first try, whereas the largest source
baseline needs four tries. With the experimental
setup described in section 5.4 it takes on average
1.5 hours to train a target model, as compared to
the 6 hours it takes the largest source baseline to
produce the best model. This is a compute cost
saving of 75%.

6.2 Potential Application to Computer Vision

The problem of finding both a span boundary and
a label is not limited to sequence labelling in NLP.
Object Detection (Szegedy et al., 2013) in vision
research, has similar requirements: one is expected
to label objects in an image and to mark the bound-
ing box of the objects individually. Figure 4 shows
an example where the task is to detect cookies and
mark the bounding boxes around them. Moreover,
both Object Detection and Sequence Labelling
have similar measures of accuracy.

Figure 4: Similarity between Mention Detection in
NLP and Object Detection in Vision.

It would be interesting to expand the method
proposed in this paper to determine which source
object detection base model would be a good fit for
a given target data set from a collection of source
object detection models. We plan to explore this in
future.

7 Conclusion

In this paper we present a simple and effective
method to predict the best source model for transfer
learning in a sequence labelling task, NER. We
show our method outperforms popular baselines
such as the selection of the largest source, by an
average relative 3 F1 points. And, it is more than
average relative 4 F1 points better than a method
that does not use NER transfer learning. Moreover,
our method consistently selects the best model with
fewer tries, saving computational cycles by roughly
75%.
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