
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 89–96
Online, November 20, 2020. c©2020 Association for Computational Linguistics

89

Keyphrase Generation with GANs in Low-Resources Scenarios

Giuseppe Lancioni Saida S.Mohamed Beatrice Portelli
Giuseppe Serra Carlo Tasso

AILAB, UniUd - University of Udine, Italy
{lancioni.giuseppe,mahmoud.saidasaadmohamed,

portelli.beatrice}@spes.uniud.it
{giuseppe.serra, carlo.tasso}@uniud.it

Abstract

Keyphrase Generation is the task of predict-
ing Keyphrases (KPs), short phrases that sum-
marize the semantic meaning of a given doc-
ument. Several past studies provided diverse
approaches to generate Keyphrases for an in-
put document. However, all of these ap-
proaches still need to be trained on very large
datasets. In this paper, we introduce BeGan-
KP, a new conditional GAN model to ad-
dress the problem of Keyphrase Generation in
a low-resource scenario. Our main contribu-
tion relies in the Discriminator’s architecture:
a new BERT-based module which is able to
distinguish between the generated and human-
curated KPs reliably. Its characteristics allow
us to use it in a low-resource scenario, where
only a small amount of training data are avail-
able, obtaining an efficient Generator. The
resulting architecture achieves, on five public
datasets, competitive results with respect to the
state-of-the-art approaches, using less than 1%
of the training data.

1 Introduction

A Keyphrase (KP) is a piece of text that conveys
the main semantic meaning of a document. KPs
can be either present (or extractive) or absent (or
abstractive): present KPs are exact substrings of
the document while absent KPs are not. Their au-
tomatic prediction is an important challenge for
the community research as KPs are a key com-
ponent for a wide range of applications such as
text summarization (Zhang et al., 2004), opinion
mining (Berend, 2011), document clustering (Ham-
mouda et al., 2005), information retrieval (Jones
and Staveley, 1999) and text categorization (Hulth
and Megyesi, 2006).

Historically, the first approaches focused on sim-
ply extracting substrings of the text to be used as
keyphrases candidates (Ye and Wang, 2018; Luan
et al., 2017; Zhang et al., 2016).

Recently, the research community has focused
on the broader task of Keyphrase Generation
(Meng et al., 2017; Chen et al., 2018, 2019a).
Keyphrase Generation aims to produce a set of
phrases that summarize the essential information
in a given text, as opposed to simply look for them
in the text. This allows for greater flexibility.

Several approaches introduced generative mod-
els based on the Encoder-Decoder architecture
(Meng et al., 2017; Chen et al., 2018). This ar-
chitecture works by compressing the contents of
the input (e.g. the text document) into a hidden
representation using an Encoder module. The same
representation is then decompressed using the De-
coder module, which returns the desired output
(e.g. a sequence of KPs). The modules are trained
jointly to learn the best intermediate representation
to perform this mapping.

More recently, an approach based on GAN (Gen-
erative Adversarial Networks (Goodfellow et al.,
2014)) architecture has been proposed to address
the task (Swaminathan et al., 2019). Although all
these solutions achieved interesting results, they
require a very large amount of data in order to be
trained.

Our aim is to improve training efficiency, so that
a model can be trained using only small subsets of
the data. We focus our research in the generation
of present KPs and we propose a new conditional
GAN architecture for Keyphrase Generation that
can be trained with a relatively small set of sam-
ples. The key component of our solution is the
Discriminator: a model based on BERT that is
able to distinguish between human and machine-
generated Keyphrases leveraging on the language
modelling information obtained from finetuning in
a low-resource scenario. A Reinforcement Learn-
ing (RL) strategy is then used to train the Generator,
with rewards evaluated by the Discriminator. This
encourages the model to generate more accurate

90

and relevant KPs.
Thanks to the characteristics of our architecture,

we are able to use only a small subset of the avail-
able data, using less than 1% of them to train our
system. Compared to all the previous approaches
that needed to be fully trained on large set of train-
ing samples, our architecture greatly reduces re-
quired resources, while still providing competitive
results in the generation of present KPs.

2 Related Work

2.1 Keyphrase Extraction

Extractive methods aim at identifying Keyphrases
in the span of the source text. Most of the algo-
rithms in this field adopt a two steps pipeline to
extract KPs. First, given a document, a list of can-
didates phrases is selected using heuristic methods
(Wang et al., 2016; Le et al., 2016). Secondly, all
candidates are scored against the document. The
first step has a considerable impact on the ability
of the whole model to correctly identify all KPs,
so selecting a sufficiently high number of candi-
dates is of utmost importance. The second step
can be done either in a supervised or unsupervised
manner (Mihalcea and Tarau, 2004; Witten et al.,
1999; Nguyen and Kan, 2007). The top-scoring
candidates are returned as KPs. Two interesting
strategies that differ from the common pipeline ap-
proach have been proposed by Tomokiyo and Hurst
(2003) and Zhang et al. (2016). The first method
employs two statistical language-based models to
extract Keyphrases. The latter introduces a model
based on joint layer recurrent neural network to
extract Keyphrases from tweets.

2.2 Keyphrase Generation

Recently, research has focused on the introduction
of methods of text generation to predict Keyphrases.
Most of these approaches rely on Encoder-Decoder
framework in which the source text is first mapped
to an encoded representation, and then decoded to
the target text, that is the Keyphrases to predict.

Meng et al. (2017) proposed CopyRNN, a RNN-
based generative model for KP Generation, which
is an Encoder-Decoder model with copy mecha-
nism. Chen et al. (2018) proposed CorrRNN model
which is a sequence-to-sequence architecture for
Keyphrase Generation that captures the correla-
tions among Keyphrases. TG-Net model was in-
troduced by Chen et al. (2019b) for improving au-
tomatic Keyphrase Generation using the informa-

tion contained in the title of the document. Chen
et al. (2019a) proposed an integrated approach for
Keyphrase Generation which is a multitask learning
framework that jointly learns an extractive model
and a generative model.

Two recurrent generative based models, Cat-
Seq and CatSeqD, were proposed by Yuan et al.
(2018). One of their main characteristics is the
ability to determine the appropriate number of
Keyphrases for each input document. CatSeq is
based on an Encoder-Decoder mechanism, which is
used to identify relevant components of the source
text (abstracts) and generate KPs (sequence-to-
concatenated sequences) (Yuan et al., 2018; Chan
et al., 2019). It employed the sequence-to-sequence
framework combined with an attention mechanism
and pointer softmax mechanisms in the Decoder.
CatSeqD introduces the following techniques: or-
thogonal regularization, which prevents the model
from predicting the same word after generating the
constant KP separator; semantic coverage, which
encodes again the decoded sequences and uses it
as a representation of the target phrases. These rep-
resentations are employed as further input during
a self-supervised training phase with the aim of
improve the semantic content of the predictions.

Chan et al. (2019) subsequently proposed a
Reinforcement Learning approach with adaptive
rewards to improve catSeq, CatSeqD, CorrRNN
and TG-Net generative models, leading to a new
version for each of them. These versions are
called, respectively, catSeq-2RF1, catSeqD-2RF1,
catSeqCorr-2RF1 and catSeqTG-2RF1.

Recently, (Swaminathan et al., 2019) proposed a
GAN model conditioned on scientific articles for
KP Generation. The author uses a catSeq model
to implement the Generator, conditioning it on ab-
stracts of scientific articles. The Discriminator is
based on a hierarchical attention mechanism con-
sisting of two GRU layers. The two layers model
the relationship between the document and each
generated KP to assess whether the KP is synthetic
or human in origin.

To the best of our knowledge, no attempts have
been made of either extracting or generating KPs
in a low-resources scenario, in which only a small
amount of the available data samples is used dur-
ing training. Our proposed architecture, based on
a Discriminator that relies on a language model,
requires less than 1% of the available training data
to achieve good results.

91

3 The proposed Approach

To generate present KPs in a low-resource scenario
we propose an approach based on the GAN Frame-
work that we call BeGan-KP. It mainly consists
of three components: (1) a conditioned Genera-
tor model that produces a set of KPs, (2) a novel
Bert Discriminator model that checks if the KPs
are fake (generated) or real (human-curated), and
(3) the Reinforcement Learning (RL) module that
is involved in the training process of the system as
a whole (see Figure 1).

Discriminator

Generator

yx

…,

yx

…,

yx

…,
^

+1.5
-0.4
-3.6

yx

…,

yx

…,
^

Fa
ke

Tr
u

e

RL

re
gr

es
si

o
n

 s
co

re
s

RL Rewards

Figure 1: Schema of BeGan-KP.

3.1 Notations and Problem Definition

The samples available to train the system are
pairs (x, y), where x is a document and y =
(y1, y2, . . . , yM) is the set of M Keyphrases (True
KPs) associated to x. Note that both x and yi are
sequences of words:

x = x1, x2, . . . , xL

yi = yi1, y
i
2, . . . , y

i
Ki

where L and Ki are the number of words of x
and of its i-th KP respectively.

The Generator takes as input x and outputs ŷ =
(ŷ1, ŷ2, . . . , ŷJ), that is the set of the J predicted
KPs for x (Fake KPs).

The objective is to generate Fake KPs that match
exactly the True KPs: ŷ ≡ y.

3.2 Generator

The GeneratorG takes as input the document x and
generates as output the sequence of ŷ (Fake KPs).

Following the work of Swaminathan et al. (2019)
we use the catSeq model as Generator. It consists in
an Encoder-Decoder model in which the Encoder
is a bidirectional Gated Recurrent Unit (GRU) and
the Decoder is a forward GRU. It is based on Copy-
RNN by Meng et al. (2017).

We choose this component because it embeds
some interesting features. It exploits the copying
mechanism (Gu et al., 2016) to deal with long-tail
words. These are words which are removed from
the vocabulary due to their low frequency but are of-
ten topic-specific and therefore good candidates to
be KPs. It also introduces the capability of predict-
ing a variable number of Keyphrases for different
documents. Furthermore it employs a beam-search
strategy during the decoding step, meaning that at
each time step the model decodes not just one word
(greedy-search) but the top k most probable words.
This allows generating more consistent sequences
of words.

3.3 Discriminator

The Discriminator D receives as input the docu-
ment x and a set of Keyphrases. These might be
either the True KPs y or the Fake KPs ŷ. Its task is
to judge whether the KPs are True or Fake.

We introduce a novel Discriminator based on
the language model BERT (Devlin et al., 2018).
Differently from the previous literature, our idea
is to exploit the strength of the language model
characteristics to classify the quality of the input
pair (x, y). This judgement is given as a regression
score, which is lower for Fake KPs and higher for
True KPs. In this way the regression score can be
easily interpreted as the reward in the Reinforce-
ment Learning module, giving to the system an
inherent clarity. Moreover, different BERT-based
models and reward configurations have been tested
at an early stage, and the choice of a regression
model provided the best results.

The language modelling component is able to
achieve a better comprehension of the relationship
of the two input sequences, while the robust pre-
training allows us to use it efficiently even in a
low-resource scenario.

In particular, the Discriminator model consists
of four subcomponents (see Figure 2) :

• Input preparation. The input pairs (x, y)
are tokenized and the tokens are concatenated
to be compliant with the general pattern
[CLS]<x>[SEP]<y1><;>...<;><yn>[SEP].

92

[CLS] and [SEP] are special tokens which
signal the start of the input and the end of text
sequence respectively, <x> is the sequence
of tokens for the document x, <yi> is the
sequence of tokens for the KP yi. Different
KPs are separated by semicolon <;>. Note
that the [SEP] token in the center is used to
split the input sequence into document and
KPs.

• BERT modelling. The input sequence is pro-
cessed by a pretrained BERT model. It per-
forms a word embedding of all the tokens and
then passes them through 12 Encoder blocks.
As it is basically a positional language model,
it returns the last hidden states for each of the
initial tokens.

• Output aggregation. Each of the outputs of
the preceding step can be seen as an highly
abstract embedding of the corresponding to-
ken. We aggregate the output of all the hid-
den states and evaluate their mean to obtain
an embedding for the whole input sequence
E = E(x, y). Note that in this way E is not
generated using only the output obtained from
the [CLS] token, but making use of the repre-
sentations of all the tokens instead. Based on
our preliminary experiments as well as litera-
ture references (Devlin et al., 2018), this value
is considered to represent a better summary of
the semantic content of the input.

• Regression. E is processed by the regression
layer, a fully connected linear classifier, and a
regression score is calculated. This is trained
to be high for True KPs (human-curated) and
low for Fake KPs (artificially generated), and
is used as the reward in Reinforcement Learn-
ing.

The overall output of the Discriminator is there-
fore a regression score relative to the combination
of input document and the related KPs.

3.4 Reinforcement Learning

To overcome the problem of non differentiability
of the output layer of our architecture we extend
the Reinforcement Learning strategy proposed by
Yu et al. (2016) in the domain of KP Generation. In
particular, we consider the Generator G as an agent
whose action a at time step t is to generate a word
yt, which is part of the set of predicted KPs ŷ for
the document x. In this scenario the Discriminator

Keyphrases

Document

x1 xLix2
…

KP 1

y
1
1 y

1
K1

…

KP M

y
M
1 y

M
KM

……

Input preparation

BERT modelling

[CLS] [SEP] ; ; [SEP]… ………

H[CLS] H[SEP] ; …; H[SEP]………

Output aggregation

Embedding [Document, KP 1, …, KP M]

Regression Layer

regression score

r high = real KPs
low = fake KPs

Figure 2: Schema of the Discriminator and its four pro-
cessing phases.

D plays the role of the environment that evaluates
the actions made by G and gives back a reward.
Agent G acts following a policy

π = π(yt|st, x, θ) (1)

that is a function representing the probability
distribution of yt given the current state st =
(y1, . . . , yt−1), the sequence of words so far gen-
erated. The policy function is differentiable with
respect to the set of parameters θ of G. Once the
agent G generates the predictions, the environment
D gives back a reward

rt = f(y1, . . . , yt|x) (2)

and moves to the state st+1. The reward is a qual-
ity measure of the action made by the agent G, and
depends on the words generated up to the current
time step (subset of ŷ) given the input document x.
The agent G acts to maximize the reward, that is
to maximize a differentiable optimization function
J(θ) that gives a measure of the performance of
G. According to the policy gradient theorem and
the REINFORCE algorithm (Williams, 1992) the
gradient of J(θ) can be expressed as:

∇J(θ) = Eπ

[∑
t

rt∇log(π(yt|st, x, θ))

]
(3)

93

where the sum extends to all the time steps
needed to generate the complete sequence y.

The expectation Eπ in Equation 3 can be approx-
imated using a complete sequence ŷ. In order to
calculate the cumulative rewards of Equation 2 we
use the regression score of a complete sequence of
generated KPs: r = D(ŷ).

Considering that maximizing the optimization
function J(θ) is equivalent to minimizing its addi-
tive inverse, we can define the loss function of G
as L(θ) = −J(θ) and an estimator of its gradient
as:

∇L(θ) ≈ −
∑
t

(r − b)∇log(π(yt|st, x, θ)) (4)

where the regularization term b is introduced to
reduce the variance of the above ∇L(θ) estimator.
It is essentially the cumulative reward r = D(ȳ)
where ȳ is a greedy decoded predicted sequence.
The aim is to promote rewards that show effective
improvements over greedy sequences (Rennie et al.,
2017).

3.5 GAN Training
The first step is to train a first version G0 of the
Generator using the Maximum Likelihood Estima-
tion (MLE). G0 is then used to generate the Fake
KPs ŷ. ŷ and the ground truth y are used to train
the first version of the DiscriminatorD0 with Mean
Squared Error (MSE) loss:

MSE(x, x̂) =
1

N

N∑
i=0

(xi − x̂i)2 (5)

Starting from Generator G1 training is per-
formed using RL, so the loss is given by L(θ) as
shown in Section 3.4. The training of the Discrim-
inator remains the same. After each training iter-
ation (Gj , Dj), predictions are tested to evaluate
the scores F1@M and F1@5.

4 Experiments and Evaluation

4.1 Datasets and Metrics
We compare our solution with state-of-the-art ap-
proaches on five datasets which are commonly used
in literature:

KP20K (Meng et al., 2017) It consists of 567,830
titles and abstracts from computer science
papers. The usual split is performed using
20,000 samples for testing, another 20,000

for validation, while the remaining 527,830
samples are used for training. In our low-
resource scenario we only use 2,000 out of the
>500,000 training samples.

INSPEC (Hulth, 2003) The complete dataset is
composed of 2,000 abstracts from Computers
and Control, and Information Technology dis-
ciplines. A subset of 500 samples is used for
testing.

KRAPIVIN (Krapivin et al., 2009) The original
released dataset is composed by 500 complete
articles belonging to the domain of computer
science. For KP Generation purposes only
titles and abstract are used. The first 400 sam-
ples in alphabetical order are selected for test-
ing.

NUS (Nguyen and Kan, 2007) A set of 211 scien-
tific publications, all used for testing.

SEMEVAL2010 (Kim et al., 2010) 288 confer-
ence and workshop papers from the ACL
Computer Library. 100 used for testing.

A brief report of main statistics of the test sets
used is given in Table 1.

All datasets are preprocessed following Chan
et al. (2019): duplicate papers are removed from
KP20K, and for each document the list of KPs is
sorted in order of appearance in the document. Dig-
its in the input texts are replaced with the special
token <digit>.

Results are evaluated using F1 score. In partic-
ular F1@5 and F1@M are employed: the first is
calculated considering only the top 5 high scoring
KPs, the second is computed taking into account
all the predictions.

All sample documents are annotated with hu-
man curated KPs. Of the above mentioned datasets,
only KP20K is used for training; all the others are
used only for testing and evaluation. Note that the
strength of the language model of our Discrimina-
tor allows us to use only a small subset of the data
samples during training: the whole architecture has
been trained with a subset of 2,000 samples instead
of the >500,000 used by the other state-of-the-art
approaches.

4.2 Implementation Details

The initial MLE model G0 is trained with a batch
size of 12 and Adam optimizer (Kingma and Ba,

94

KP20K INSPEC KRAPIVIN NUS SEMEVAL2010
% # % # % # % # %

Present KPs 66,267 62.91 3,602 73.59 1,297 55.57 1,191 52.26 612 42.41
Absent KPs 39,076 37.09 1,293 26.41 1,037 44.43 1,088 47.74 831 57.59
Total KPs 105,343 100.00 4,895 100.00 2,334 100.00 2,279 100.00 1,443 100.00
Test samples 20,000 500 400 211 100

Table 1: Statistics on test samples for the five datasets.

Model KP20K INSPEC KRAPIVIN NUS SEMEVAL2010
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeqD (Yuan et al., 2018) - 0.348 - 0.276 - 0.325 - 0.374 - 0.327
catSeqCorr-2RF1 (Chan et al., 2019) 0.382 0.308 0.291 0.240 0.369 0.286 0.414 0.349 0.322 0.278
catSeqTG-2RF1 (Chan et al., 2019) 0.386 0.321 0.301 0.253 0.369 0.300 0.433 0.375 0.329 0.287
GAN (Swaminathan et al., 2019) 0.381 0.300 0.297 0.248 0.370 0.286 0.430 0.368 - -
BeGan-KP (our approach) 0.318 0.309 0.383 0.356 0.332 0.317 0.388 0.366 0.329 0.319

Table 2: Results of present keyphrases for five datasets. Our approach is BeGan-KP.

2015); during RL training, batch size is 32. The
Discriminator is trained with a batch size of 3 and
AdamW optimizer (Loshchilov and Hutter, 2017).
The pretrained BERT model is the base uncased
version, with 12 layers, 12 attention heads, and
hidden size of 768. The maximum input length
after tokenization is fixed to 384 tokens. We use
the implementation provided in the python library
transformers by huggingface (Wolf et al., 2019)1.

Training and experiments have been executed on
a PC with a GeForce RTX 2080 GPU, 11GB.

4.3 Experimental Results
Our proposed solution BeGan-KP, trained on 2,000
samples, has then been compared with the follow-
ing state-of-the-art approaches: catSeqD (Yuan
et al., 2018); catSeqCorr-2RF1 and catSeqTG-
2RF1 (Chan et al., 2019), and GAN (Swaminathan
et al., 2019). The results of our tests are shown in
Table 2.

First, we can note that BeGan-KP achieves re-
sults competitive with the best performing tech-
niques, even using a limited set of samples (all
the other approaches were trained on the whole
KP20K).

Looking at the results in detail, we obtain by far
the best performance for INSPEC both in F1@5
and F1@M .

Our approach has other good results in
F1@5 metrics, specifically in KRAPIVIN and
SEMEVAL2010 where our values are only slightly
lower than the best. Since F1@5 is calculated con-
sidering the 5 predictions with the highest score, we

1https://github.com/huggingface/
transformers

can say that our model is capable of producing high
quality Keyphrases reliably, and of outperforming
or at least matching other best-performing models
in this specific task. This confirms the strength and
consistency of our architecture.

In addition, we obtain the best F1@M score
for SEMEVAL2010. Note that SEMEVAL2010 is a
demanding test dataset as it is the smallest of the
five, and the gross amount of KPs to predict is the
lowest (612 present KPs out of a total of 1,443),
leading to a great variance in the output.

Finally, consider that in Equation 3 the expecta-
tion of the policy function is evaluated using only
one complete sequence ŷ, inducing a high variance
in the ∇J . This is a general issue of Reinforce-
ment Learning applied to GANs for text generation
and generally leads to unstable training process
and slow convergence (Yu et al., 2016). Thanks
to the capability of the language model embedded
in our architecture, in our experiments the train-
ing process shows a quick convergence in terms of
number of training iterations. In fact, the reported
results have been achieved at the second iteration
(G2 generator).

5 Conclusion

In this paper we introduced an approach to the task
of present Keyphrase Generation in a low-resources
scenario, BeGan-KP. It is based on the GAN frame-
work with a novel Bert based Discriminator model,
trained by mean of the Reinforcement Learning
paradigm. It has been tested on five public datasets
showing performances competitive with state-of-
the-art approaches while using less than 1% of the

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

95

available training data, achieving a great training
efficiency.

References
Gábor Berend. 2011. Opinion Expression Mining by

Exploiting Keyphrase Extraction. In IJCNLP.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.
2019. Neural Keyphrase Generation via Reinforce-
ment Learning with Adaptive Rewards. In ACL.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and
Zhoujun Li. 2018. Keyphrase Generation with Cor-
relation Constraints. In EMNLP.

Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing,
and Irwin King. 2019a. An Integrated Approach for
Keyphrase Generation via Exploring the Power of
Retrieval and Extraction. In NAACL-HLT.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and
Michael R. Lyu. 2019b. Title-Guided Encoding for
Keyphrase Generation. In AAAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL-HLT.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating Copying Mechanism in
Sequence-to-Sequence Learning. In ACL.

Khaled M. Hammouda, Diego N. Matute, and Mo-
hamed S. Kamel. 2005. CorePhrase: Keyphrase Ex-
traction for Document Clustering. In MLDM.

Anette Hulth. 2003. Improved Automatic Keyword
Extraction Given More Linguistic Knowledge. In
EMNLP.

Anette Hulth and Beáta Megyesi. 2006. A Study on
Automatically Extracted Keywords in Text Catego-
rization. In ACL.

Steve Jones and Mark S. Staveley. 1999. Phrasier: A
System for Interactive Document Retrieval Using
Keyphrases. In SIGIR.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 Task 5 :
Automatic Keyphrase Extraction from Scientific Ar-
ticles. In Workshop on Semantic Evaluation.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In ICLR.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large Dataset for Keyphrases Ex-
traction. Technical Report DISI-09-055, University
of Trento.

Tho Thi Ngoc Le, Minh Le Nguyen, and Akira Shi-
mazu. 2016. Unsupervised Keyphrase Extraction:
Introducing New Kinds of Words to Keyphrases. In
Advances in Artificial Intelligence.

Ilya Loshchilov and Frank Hutter. 2017. Fixing Weight
Decay Regularization in Adam. ICLR.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific Information Extraction with Semi-
supervised Neural Tagging. In EMNLP.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017. Deep
Keyphrase Generation. In ACL.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing Order into Text. In EMNLP.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase Extraction in Scientific Publications. In
ICADL.

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jerret Ross, and Vaibhava Goel. 2017. Self-Critical
Sequence Training for Image Captioning. In CVPR.

Avinash Swaminathan, Raj Kuwar Gupta, Haimin
Zhang, Debanjan Mahata, Rakesh Gosangi, and Ra-
jiv Ratn Shah. 2019. Keyphrase Generation for Sci-
entific Articles using GANs. In AAAI.

Takashi Tomokiyo and Matthew Hurst. 2003. A lan-
guage model approach to keyphrase extraction. In
ACL workshop on Multiword expressions.

Minmei Wang, Bo Zhao, and Yihua Huang. 2016.
PTR: Phrase-Based Topical Ranking for Automatic
Keyphrase Extraction in Scientific Publications. In
ICONIP.

Ronald J. Williams. 1992. Simple Statistical Gradient-
Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl
Gutwin, and Craig G. Nevill-Manning. 1999. KEA:
Practical Automatic Keyphrase Extraction. In ACM.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. ArXiv:abs/1910.03771.

Hai Ye and Lu Wang. 2018. Semi-Supervised Learning
for Neural Keyphrase Generation. In EMNLP.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2016. SeqGAN: Sequence Generative Adversarial
Nets with Policy Gradient. In AAAI.

96

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo
Thaker, Daqing He, and Adam Trischler. 2018. Gen-
erating Diverse Numbers of Diverse Keyphrases.
ArXiv:abs/1810.05241.

Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing
Huang. 2016. Keyphrase Extraction Using Deep Re-
current Neural Networks on Twitter. In EMNLP.

Yongzheng Zhang, A. Nur Zincir-Heywood, and Evan-
gelos E. Milios. 2004. World Wide Web site sum-
marization. Web Intelligence and Agent Systems.

