
Proceedings of the Third International Workshop on Spatial Language Understanding (SpLU 2020), pages 56–62
November 19, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

56

Retouchdown: Releasing Touchdown on StreetLearn as a
Public Resource for Language Grounding Tasks in Street View

Harsh Mehta
Google Research

harshm@google.com

Yoav Artzi
Cornell University

yoav@cs.cornell.edu

Jason Baldridge
Google Research

jridge@google.com

Eugene Ie
Google Research

eugeneie@google.com

Piotr Mirowski
Deepmind

piotrmirowski@google.com

Abstract

The Touchdown dataset (Chen et al., 2019)
provides instructions by human annotators for
navigation through New York City streets and
for resolving spatial descriptions at a given lo-
cation. To enable the wider research commu-
nity to work effectively with the Touchdown
tasks, we are publicly releasing the 29k raw
Street View panoramas needed for Touchdown.
We follow the process used for the StreetLearn
data release (Mirowski et al., 2019) to check
panoramas for personally identifiable informa-
tion and blur them as necessary. These have
been added to the StreetLearn dataset and can
be obtained via the same process as used pre-
viously for StreetLearn. We also provide a
reference implementation for both Touchdown
tasks: vision and language navigation (VLN)
and spatial description resolution (SDR). We
compare our model results to those given in
Chen et al. (2019) and show that the panora-
mas we have added to StreetLearn support
both Touchdown tasks and can be used effec-
tively for further research and comparison.

1 Introduction

Following natural language navigation instructions
in visual environments requires addressing multi-
ple challenges in dynamic, continuously changing
environments, including language understanding,
object recognition, grounding and spatial reason-
ing. Until recently, the most commonly studied
domains were map-based (Thompson et al., 1993)
or game-like (Macmahon et al., 2006; Misra et al.,
2017, 2018; Hermann et al., 2017; Hill et al., 2017).
These environments enabled substantial progress,
but the complexity and diversity of the visual input
they provide is limited. This greatly simplifies both
the language and vision challenges. To address
this, recent tasks based on simulated environments
include photo-realistic visual input, such as Room-
to-Room (R2R; Anderson et al., 2018), Talk-the-

Walk (de Vries et al., 2018) and Touchdown (Chen
et al., 2019), all of which rely on panorama photos.

A major challenge of creating simulations that
use real-world photographs is they at times capture
bystanders and their property. This raises privacy
concerns and requires additional care to check for
and ensure personally identifiable information (PII)
is removed from research resources that are made
publicly available. Existing resources adopt differ-
ent strategies to address this. The Matterport3D
dataset (Chang et al., 2017), which underlies the
R2R task, is focused on real-estate data that is cu-
rated to exclude PII. This approach is limited to
environments of a specific type: houses that are
for sale. Academic resources that focus on urban
street scenes opted to manually collect panoramas
from scratch and scrub them for PII (de Vries et al.,
2018; Weiss et al., 2019). This is laborious and
costly—especially the first stage of collecting the
panoramas. As a result, such resources cover rela-
tively small areas.

Google Street View has world-wide scale cover-
age of street scenes. Each panorama in Street View
has gone through a process to protect the privacy
of bystanders and their property. Individuals can
also request specific panoramas to be removed. As
such, it is a resource with the potential to transform
the research community’s ability to study prob-
lems such as street scene understanding and nav-
igation. Touchdown relies on 29,641 panoramas
from Street View; however, because raw images
cannot be distributed according to the Street View
terms-of-service,1 these are not provided with the
Touchdown data. Instead, only image feature vec-
tors are available for direct download with the data,
and access to the raw panoramas is subject to avail-
ability through APIs governed by Street View’s
terms of service.

1https://www.google.com/help/terms_
maps/

https://www.google.com/help/terms_maps/
https://www.google.com/help/terms_maps/
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Research can be done within a company and
shared via publication without releasing data; for
example, Cirik et al. (2018) discussed models
for instruction-conditioned navigation in Street
View. However, the full impact of the data and
research about it can be better realized by making
at least some portion of such resources available
to the broader research community. In this context,
StreetLearn (Mirowski et al., 2018, 2019) stands
out as a publicly available resource of Street View
data that has been approved for dissemination and
use for academic research.2 StreetLearn contains
114k panoramas from New York City and Pitts-
burgh that have been manually checked for PII,
ensuring, for example, that faces and license plates
are blurred. The dataset can be easily accessed.
Researchers interested in working with the data
simply fill a form stating their goals and commit to
update the data periodically with newer versions as
they are released. This process balances the ability
of researchers to use the data with preserving the
privacy and rights of individuals impacted by the
data. For example, periodic updates allow Google
to respond to user takedown requests.

To increase the accessibility of Touchdown and
provide an example of how important data can
be responsibly released, we integrate the Touch-
down task and its corresponding Street View data
into a new version of StreetLearn. This paper rec-
onciles Touchdown’s mode of dissemination with
StreetLearn’s, which was designed to adhere to the
rights of Google and individuals while also simpli-
fying access for researchers and improving repro-
ducibility. We also provide open source implemen-
tations3 of both the vision-and-language navigation
and spatial description resolution tasks, which we
show to have a consistent performance with the
results in the original Touchdown paper. We hope
that this release of data and code will enable the en-
tire research community to make further progress
on these problems and to consider new questions
and tasks enabled by this limited but significant
slice of Street View data.

2 Process

Touchdown includes tasks for natural language nav-
igation and spatial reasoning in realistic urban envi-
ronments. Touchdown uses Street View panoramas

2http://streetlearn.cc
3https://github.com/google-research/

valan/tree/master/touchdown

Figure 1: The overlap between the StreetLearn (blue)
and Touchdown (red) panoramas in Manhattan. There
are 710 panoramas (out of 29k) that share the same ID
in both datasets (in black).

of New York City to define a large-scale navigation
environment. It includes 9,326 human-written in-
structions and 27,575 spatial description resolution
tasks. Touchdown’s instructions were written by
people and emphasize attributes of the visual envi-
ronment as navigational cues. This makes Touch-
down a valuable resource for research on follow-
ing natural language instructions in visual environ-
ments. This contrasts with the template-based nav-
igation instructions used by Hermann et al. (2020),
which were generated by Google Maps API and
used with StreetLearn panoramas.

Unfortunately, the development and release of
Touchdown introduced several challenges that com-
plicate working with the data. Even though Touch-
down itself does not contain Street View data, it
references specific Street View panoramas and de-
pends on access to them via the Street View API.
This requires any researcher that wishes to work on
the data to download large amounts of data using
the API, which is inconvenient, error-prone and
not aligned with the current Google Maps terms-
of-service. Also, the panoramas available through
the API periodically change, potentially making
parts of the data unavailable. This means there
is no hope for consistent versioning (which hurts
reproducibility) regarding panorama availability
because the data collected by each researcher is
dependent on the particular time they access it.
Finally, individual researchers or research groups
cannot themselves comply with takedown requests.

http://streetlearn.cc
https://github.com/google-research/valan/tree/master/touchdown
https://github.com/google-research/valan/tree/master/touchdown
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Figure 2: One of the panoramas taken from the dataset which shows transient objects being referenced in the
navigation text. “Stop here, and turn left. You will now be walking down a narrow lane with parked cars on both
sides. There should be a payphone on your right and a fire hydrant (behind silver poles) on your left. Walk down
this lane, and on your left you will soon see a shop with gray columns between the windows and a blue sign with
yellow trim.”

Instead, having the panoramas available as part
of StreetLearn allows for necessary updates and
consistent sharing of the panoramas.

To address these challenges, we collect, check
and release the Touchdown panoramas as part of
an update to the 114k existing StreetLearn panora-
mas, which cover regions of New York City and
Pittsburgh. As shown in Figure 1, StreetLearn en-
compasses the entire region of New York City con-
tained in Touchdown; however, the StreetLearn
panoramas themselves are not sufficient for sup-
porting the Touchdown tasks themselves. This is
for several reasons.

• The granularity of the panorama spacing
is different. Figure 1 shows that most of
the panoramas are different. Touchdown has
roughly 25% of the panos but covers half of
Manhattan compared to StreetLearn.

• The language instructions refer to transient
objects such as cars, bicycles, and couches,
as illustrated in Figures 2 and 3. A panorama
from a different time period will not contain
these objects, so the instructions are not stable
across time periods.

• Spatial description resolution requires cover-
age of multiple points-of-view for those spe-
cific panoramas. Figure 3 shows an example
SDR description and the corresponding views
from which it can be answered.

In all, the Touchdown tasks encompass 29,641
panoramas. All of these went through extensive

manual review by annotators to check for person-
ally identifiable information (PII), such as faces
and license plates. Regions containing PII were
marked as bounding boxes by annotators, and we
blurred all of these regions for the final images.

3 Experiments

We re-implement the best-reported models on the
navigation and spatial description resolution tasks
from Chen et al. (2019) to compare performance
with our data release to the original Touchdown
paper. The key difference between the two settings
is that our released panoramas contain additional
blurred patches (Section 2). Another minor differ-
ence is that we use a word-piece tokenizer (Devlin
et al., 2019) instead of a full-word tokenizer.

Spatial Description Resolution. SDR results
are given in Table 1. Following Chen et al.
(2019), we report mean distance error and accu-
racy with different thresholds (40px, 80px, and
120px), which measures the proportion of evalua-
tion items where the pixel chosen by the model
is within the specified pixel distance. Our Re-
touchdown reimplementation of LINGUNET ob-
tains better performance on the accuracy measures,
but worse performance on mean distance error. To
check whether this is a consequence of the blur-
ring, we ran our model with features retrieved from
original panoramas and obtained similar results as
those listed in Table 1. Given this, the performance
difference between our model and the original pa-
per are likely not due to the additional blurring. As
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Panorama before the main SDR panorama.

Main SDR Panorama.

Panorama after the main SDR panorama.

Figure 3: Actual example taken from the dataset with multiple SDR panorama viewpoints for the same instruction:
Two parked bicycles, and a discarded couch, all on the left. Walk just past this couch, and stop before you pass
another parked bicycle. This bike will be white and red, with a white seat. Touchdown is sitting on top of the bike
seat.
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Method A@40px ↑ A@80px ↑ A@120px ↑ Dist ↓

Development
Chen et al. (2019) 24.81 32.83 36.44 729
Retouch-LINGUNET 29.79 35.28 38.14 800

Test
Chen et al. (2019) 26.11 34.59 37.81 708
Retouch-LINGUNET 30.32 36.73 39.27 793

Table 1: SDR development and test results using the LINGUNET architecture, which Chen et al. (2019) reported
as the best performing system.

Method TC ↑ SPD ↓ SED ↑ NDTW ↑ SDTW ↑

Development
Chen et al. (2019) 9.8 19.1 0.094
Retouch-RCONCAT 13.4 17.1 0.124 4.9 1.3

Test
Chen et al. (2019) 10.7 19.5 0.104
Retouch-RCONCAT 12.8 17.1 0.131 5.0 1.4

Table 2: Navigation development and test results. We use the RCONCAT architecture, which Chen et al. (2019)
reported as the best performing.

such, the Touchdown panoramas available through
StreetLearn can be reliably used as direct replace-
ment for those used in Chen et al. (2019).

Vision-and-Language Navigation. We use the
following metrics to evaluate VLN performance:

• Task Completion (TC): the accuracy of nav-
igating to the correct location. The correct
location is defined as the exact goal panorama
or one of its neighboring panoramas. This is
the equivalent of the success rate metric (SR)
used commonly in VLN for R2R.

• Shortest-path distance (SPD): the mean of the
distances over all executions of the agent’s fi-
nal panorama position and the goal panorama.

• Success weighted by Edit Distance (SED):
normalized graph edit distance between the
agent path and true path, with points only
awarded for successful paths.

• Normalized Dynamic Time Warping
(NDTW): a minimized cumulative distance
between the agent path and true path,
normalized by path length.

• Success weighted Dynamic Time Warping
(SDTW): NDTW, with points awarded only
for successful paths.

TC, SPD, and SED are defined in Chen et al. (2019)
and NDTW and SDTW are defined in Ilharco et al.
(2019).

VLN results are given in Table 2. Our Retouch-
down reimplementation of the RCONCAT model
improves over the results given in Chen et al. (2019)
for all metrics. We also establish benchmark scores
for NDTW and SDTW. As with SDR, the panora-
mas now available via StreetLearn thus do not re-
move information critical for the VLN task. In our
implementation, we use imitation learning on top
of a scalable framework based on the Actor-Learner
architecture (Lansing et al., 2019), instead of super-
vised learning using Hogwild! (Recht et al., 2011).
These differences likely explain the observed dif-
ferences with the original results.

Compared to interior navigation in the Room-
to-Room (R2R) task, the Touchdown task is much
harder: e.g. the current state-of-the-art success rate
(equivalent to TC) for R2R on the validation unseen
dataset is 55% (Zhu et al., 2019). It is even con-
siderably harder than Room-across-Room dataset,
which has longer, more challenging paths than R2R
and success rates of 26% to 30% for three differ-
ent languages (Ku et al., 2020). The same holds
for DTW measures: Ilharco et al. (2019) report a
success rate of 44% and corresponding SDTW of
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38.3% for a fidelity-oriented version of the Rein-
forced Cross-modal Matching agent (Wang et al.,
2019). Ku et al. (2020) reports lower SDTW scores
of 21% to 24%. Given this, the TC of 12.8% and
SDTW of 1.4% obtained by Retouch-RCONCAT

and current best results from Xiang et al. (2020)
(TC: 19.0%; SDTW: 16.3%), amply demonstrates
the challenge of the outdoor navigation problem
defined by Touchdown. The greater diversity of
the visual environments and the far greater degrees-
of-freedom for navigation thus provide plenty of
headroom for future research.

4 Conclusion

The research community is interested in using large-
scale resources such as Street View for work on
computer vision and navigation. In order to com-
ply with Street View’s terms-of-service (which
allow for only limited use of its data and APIs)
and with its data restrictions, we have enriched
StreetLearn with panoramas from the Touchdown
study. Takedown requests that respect individuals’
privacy preferences can be managed through the
StreetLearn package. We encourage the research
community to use only vetted and approved re-
sources like StreetLearn, including our new release
of the Touchdown panoramas, for their Street View
oriented work.

The addition of Touchdown to StreetLearn (a.k.a.
Retouchdown) boosts the total panorama count for
the StreetLearn dataset from 114k to 144k. Fur-
thermore, it contains multiple panoramas from
the same neighborhoods, which supports work on
learning to navigate in a region and testing in that
same region using panoramas from a different time.
Our code for training and evaluating vision-and-
language navigation agents and spatial description
resolution models are publicly available as part of
the VALAN framework (Lansing et al., 2019).4
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