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Abstract 

In this paper, we described our systems for the first and second subtasks of Social Media Mining 

for Health Applications (SMM4H) shared task in 2020. The two subtasks are automatic classi-

fication of medication mentions and adverse effect in tweets. Our systems for both subtasks are 

based on Robustly optimized BERT approach (RoBERTa) and our previous work at SMM4H’19. 

The best F1-scores achieved by our systems for subtask 1 and 2 were 0.7974 and 0.64 respec-

tively, which outperformed the average F1-scores among all teams’ best runs by at least 0.13. 

1 Introduction 

Nowadays, social media are often being used by general public to create and share public messages 

related to their health. With the global increase in social media usage, there is a trend of posting infor-

mation related to adverse drug reactions (ADR). Mining social media data for this type of information 

is helpful for pharmacological post-marketing surveillance and monitoring. In order to facilitate the use 

of social media for health monitoring and surveillance, we participated in the social media mining for 

health applications (SMM4H) shared task to develop systems that can automatically identify tweets 

conveying medications and adverse effects. 

2 Task and Data Description 

2.1 Task 1: Automatic Classification of Tweets that Mention Medications 

This task is a binary classification task involves distinguishing tweets that determine whether it mentions 

medications or dietary supplements. The organizers provided a training set consisting of 69,272 tweets 

for all participants to develop their system, and a test set consisting of 29,687 tweets. Table 1 shows the 

distribution of the binary labels over the training and test sets. We can find that the training set is highly 

imbalanced. 
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mons.org/licenses/by/4.0/. 

Table 1: Distributions of labels over the training, validation and test datasets of task 1. 

Dataset Positive (1) Negative (0) Total 

Training set 146 (0.26%) 55,273 (99.74%) 55,419 

Validation set 35 (0.25%) 13,818 (99.75%) 13,853 

Test set N/A N/A 29,687 
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2.2 Task 2: Automatic Classification of Multilingual Tweets that Report Adverse Effects 

Task 2 is also a binary classification task, which involves distinguishing tweets mentions ADRs. As 

illustrated in Table 2, the training set of the task is also highly imbalanced. 

Table 2: Distribution of labels over the training, validation and test datasets of task 2. 

3 Methods 

For each task, we developed three systems; the first and the second was based on Robustly Optimized 

BERT Pretraining Approach (RoBERTa) (Y. Liu et al., 2019) and the third was based on the method 

proposed in our previous work Dai and Wang (2019); (Wang et al., 2019). 

3.1 System 1 and 2: RoBERTa and Retrained RoBERTA 

BERT is an unsupervised language representation method to obtain deep bidirectional representations 

of sentences by jointly conditioning on both left and right context in all layers from free text. RoBERTa 

(Y. Liu et al., 2019) is an enhanced version of BERT which was trained with dynamic masking, full 

sentence without next sentence prediction loss, large mini-batches and a larger byte-level byte-pair en-

coding (BPE) (Sennrich et al., 2015). BPE is a hybrid between character- and word-level representations 

allowing handling large vocabularies in natural language corpora. Radford et al. (2019) introduced a 

clever implementation of BPE by using bytes instead of Unicode characters as the base sub-word units, 

which makes it possible to learn a sub-word vocabulary of a modest size that can still encode any input 

text without introducing any unknown tokens. In our implementation, we encoded both datasets released 

by the SMM4H organizers through BPE, and fine-tuned the RoBERTa-large architecture pre-trained 

model on the released training set to develop our first system. 

For the system 2, we retrained the RoBERTa-large architecture on a tweet unlabeled corpus collected by 

our team. The unlabeled corpus consisted of 6,339,457 tweets on Twitter collected from January to April 

2019, according to 183,593 drug names recorded in RxNorm (S. Liu et al., 2005) and 13,699 ADRs 

released by Nikfarjam et al. (2015). 

For both models, we set the same parameters to fine-tuned RoBERTa; each model was trained by using 

the Adam optimizer with a learning rate of 10-5 for 10 epochs with a batch size of 8. 

3.2 System 3: Random Under Sampling with Word Embedding-based Synthetic Minority Over-

sampling Technique 

Because the datasets of both subtasks are highly imbalanced, we applied the word embedding-based 

synthetic minority over-sampling technique (WESMOTE) with Random Under Sampling (RUS) pro-

posed in our previous work (DaiandWang, 2019; Wang et al., 2019) to develop classifiers with reliable 

performance. In our implementation, we first applied WESMOTE to synthesize new positive examples 

by using the sentence representation based on BERT. We then randomly under-sampled the negative 

examples so that the ratio of positive against negative is 1:2. In order to extract features for training our 

classifiers, we pre-processed tweets to replace URLs, dosages and Twitter specific characters with the 

corresponding symbols, and modified the numeral parts in each token to one as proposed in our previous 

work (Dai et al., 2016). The preprocessed tweet was then processed by a tweet tokenizer (Owoputi et al., 

2013) to generate tokens. Follow by the above step, each token was processed by Hunspell (Anonymous, 

2019) to detect spelling errors. If a token is considered to be misspelled, the first recommended correc-

tion is included as an alternative term for the token. Finally, we lowercased all tokens and used the 

Snowball stemmer (Porter, 2001) to perform stemming without removing any stop words. After the 

above steps, we extracted the following features to train our support vector machine (SVM) model: 

⚫ Bag-of-word features: we extracted unigram and bigram with TF-IDF (Term Frequency-Inverse 

Document Frequency) as the weighting scheme.  

Dataset Positive (1) Negative (0) Total 

Training set 1,903 (9.26%) 18,641 (90.74%) 20,544 

Validation set 474 (9.23%) 4,660 (90.77%) 5,134 

Test set N/A N/A 4,759 
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⚫ Domain knowledge features: The presence of adverse drug reaction (ADR) or drug mentions were 

engineered as two binary features with the value of either 0 or 1. The occurrences of ADR and drug 

names were recognized by using the ADR mention recognizer developed in our previous work (Dai 

et al., 2016; Wang et al., 2018). 

⚫ Negation features: The feature set uses three flags to indicate the occurrence of an ADR mention 

is missing, positive or negated. If a tweet contains ADRs, the NegEx algorithm (Chapman et al., 

2001) is employed to determine whether the occurrence is negated. 

⚫ Word embedding features: The features were generated by taking the mean across all tokens’ em-

bedding represented by a 1024-dimensional vector based on the whole word masking variant of 

BERT-Large released by Turc et al. (2019).  

4 Results 

Table 3 and Table 4 show the performance of our systems for task 1 and task 2 on the validation and test 

data, respectively. The pre-trained RoBERTa model achieved the best F1-scores on both tasks. Com-

pared with RUS_WESMOTE and Retrained RoBERTa on the two validation sets, RoBERTa exhibited 

much better performance too. 

Table 3: Performance on validation and test data for task 1. 
 

System 
Validation Test 

P R F P R F 

RoBERTa 0.938 0.857 0.896 0.803 0.792 0.797 

RUS_WESMOTE 0.484 0.534 0.508   0.47 

Retrained RoBERTA 0.558 0.686 0.615   0.48 

Average scores    0.7032 0.6948 0.6628 

Table 4: Performance on validation and test data for task 2. 
 

System 
Validation Test 

P R F P R F 

RoBERTa 0.662 0.711 0.686 0.62 0.65 0.64 

RUS_WESMOTE 0.544 0.527 0.535   0.41 

Retrained RoBERTA 0.481 0.627 0.544   0.45 

Average scores    0.42 0.59 0.46 

5 Discussion 

For both subtasks, the distribution of binary class is highly imbalanced. When we used the traditional 

machine learning methods like SVM, even we have tried to deal with the data imbalance problem by 

RUS_WESMOTE, the performance is still far below that of the system with the pre-trained RoBERTa. 

On the other hand, for the RoBERTa based systems, we didn’t apply any imbalance techniques but they 

still get compatible and even better precision, recall and F-score. It is surprising to see that the system 

based on the tweet-retrained RoBERTa model didn’t outperform the original pre-trained RoBERTa 

model. 

6 Conclusion 

We demonstrated that the system based on the pre-trained RoBERTa model outperformed traditional 

SVM-based method and the re-trained RoBERTa model. We will conduct error analysis to interpret the 

results of the two RoBERTa-based models to figure out the reason why the performance of the re-trained 

RoBERTa model get worse in the future. 
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