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Abstract 

Social media have been seen as a promising data source for pharmacovigilance. However, meth-

ods for automatic extraction of Adverse Drug Reactions from social media platforms such as 

Twitter still need further development before they can be included reliably in routine pharma-

covigilance practices. As the Bidirectional Encoder Representations from Transformer (BERT) 

models have shown great performance in many major NLP tasks recently, we decided to test its 

performance on the SMM4H Shared Tasks 1 to 3, by submitting results of pretrained and fine-

tuned BERT models without more added knowledge than the one carried in the training datasets 

and additional datasets. Our three submissions all ended up above average over all teams’ sub-

missions: 0.766 F1 for task 1 (15% above the average of 0.665), 0.47 F1 for task 2 (2% above 

the average of 0.46) and 0.380 F1 score for task 3 (30% above the average of 0.292). Used in 

many of the high-ranking submissions in the 2019 edition of the SMM4H Shared Task, BERT 

continues to be state-of-the-art in ADR extraction for Twitter data.  

1 Introduction 

Any medicinal product that has an effect, has the potential of causing harmful effects, in some individ-

uals under some circumstances (Lindquist, 2008). Defined as ‘a response to a drug that is noxious and 

unintended and occurs at doses normally used in man for the prophylaxis, diagnosis or therapy of dis-

ease, or for modification of physiological function’ (WHO Meeting on International Drug Monitoring: 

the Role of National Centres, 1972), Adverse Drug Reactions (ADRs) are a public health concern and 

have been identified as the 5th leading cause of deaths within the European Union, with an estimated 

rate of 197,000 deaths per year and a cost of 79 billion euros within EU per year (Bouvy et al., 2015). 

Monitoring the safety of medicinal products over time, as they enter the market and get used in much 

more heterogenous populations than the clinical trials in which their safety was primarily assessed, is 

therefore essential for public health and is the goal of pharmacovigilance.  

Traditionally, pharmacovigilance has relied on spontaneous reporting systems such as FAERS in the 

US and VigiBase, the WHO database if individual case safety reports, gathering reports of suspected 

ADRs from more than 130 national spontaneous reporting systems, including FAERS (Lindquist, 2003). 

Although these systems are particularly effective for detecting rare and serious ADRs, they suffer from 

limitations, notably under-reporting (Hazell and Shakir, 2006).  

The appearance of social media platforms such as Twitter has provided pharmacovigilance with new 

data sources which could potentially complement spontaneous reports by the breadth of coverage of the 

populations (Sloane et al., 2015). Twitter alone was boasting 321 million active users as of February 

2019 and thus could partially address the under-reporting problem spontaneous report systems suffer 

from. Nevertheless, it is yet unclear how social media could be integrated meaningfully into pharma-

covigilance activities. The 2015-launched research consortium WEB-RADR (Ghosh and Lewis, 2015) 

has concluded that, under the current performance of methods for detection and extractions of ADRs, 

Twitter has limited value for pharmacovigilance (van Stekelenborg et al., 2019; Caster et al., 2018). 

Although, the methods they have employed are not today’s state-of-the-art NLP methods (Gattepaille et 
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al., 2020), it shows there is a need for developing performant algorithms for automatic detection, extrac-

tion and characterization of ADRs and their associated medicinal products.  

To stimulate the development of such methods, the Social Media Mining for Health (SMM4H) has 

launched several Shared tasks over the years, with focus on specific aspects of the ADR extraction prob-

lem. This year, we participated in task 1 (binary classification for tweets containing a drug name or a 

dietary supplement), task 2 (binary classification for tweets containing an ADR mention) and task 3 

(NER for ADR mentions and normalization to MedDRA® the Medical Dictionary for Regulatory Ac-

tivities terminology is the international medical terminology developed under the auspices of the Inter-

national Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 

(ICH)). As the Bidirectional Encoder Representations from Transformer (BERT) (Devlin et al., 2019) 

was proven to be powerful in the 2019 SMM4H Shared Task (Weissenbacher et al., 2019; Miftahutdinov 

et al., 2019), we decided to apply pre-trained BERT models everywhere, with some fine-tuning to the 

tasks data, to see how this simple approach, requiring no domain expertise, would lead us. In this docu-

ment, we report on the results of this experiment.  

2 Methods 

2.1 Preprocessing 

All tweets and text extracts across the different datasets and tasks were preprocessed in the same manner. 

We first lowercased the text, then converted URLs, user tags as well as numbers to the special URL, 

USER and NUMBER tags respectively. We separated but kept the hash from the hashtags, collapsed 

characters appearing at least 3 times in a row into one character. Finally, we separated non-alpha char-

acters from all other characters by a white space and collapsed all multiple white spaces into one, so the 

final token list became white-space-separated. For use in BERT models, all the preprocessed tweets were 

then passed to the BERT-base-uncased tokenizer, and consequently padded or truncated to a single length 

which was task-dependent.  

2.2 Task 1 submission 

For this task, we added the SMM4H 2018 tweets annotated for presence or absence of drug names to 

the training set (Weissenbacher et al., 2018), resulting in a training set of 65,041 tweets. During prepro-

cessing, we padded/truncated all tweets to a length of 88 ‘tokens’ (tokens include words, punctuation 

and non-alpha characters, and the smaller word chunks created by the BERT tokenizer). We fine-tuned 

the pre-trained BERT-base-uncased model found in the Transformers Python library from HuggingFace 

(Wolf et al., 2019) on the extended training set for 4 epochs, using the binary cross-entropy loss, with a 

batch size of 12, 0.1 dropout, the Adam optimizer and a linearly decreasing learning rate starting at 2e-

5. A tweet was classified as a drug tweet if its post-softmax score exceeded 0.99. Very little fine-tuning 

of the hyperparameters was done. We submitted only one system run on the test set. 

2.3 Task 2 submission 

For this task, we also used a simple pre-trained BERT-base-uncased model and fine-tuned it on Task 2 

training data, as well as Task 3’s training and validation data, where the tweet labels were computed 

based on the presence or absence of an ADR mention, leading to a training set of 23,350 tweets. All 

tweets were padded/truncated to a length of 88 BERT tokens. The parameters and settings used for the 

model were the following: batch size of 12, dropout of 0.05, binary cross-entropy loss, Adam optimizer 

with a linearly decreasing learning rate starting at 2e-5 and 4 training epochs. A tweet was classified as 

an ADR tweet if its post-softmax score exceeded 0.99. Very little fine-tuning of the hyperparameters 

was done. We submitted only one system run on the test set. 

2.4 Task 3 submission 

For this task, we also applied BERT, both for the NER part and the normalization part of the task. We 

used the BIO-labelling scheme. BERT representations for all tokens were obtained via a pre-trained 

BERT-base-uncased model and passed to a softmax layer to classify each token as B, I or O. We did not 

include additional training data and only used the tweets with at least one ADR mention. We pad-

ded/truncated the tweets to a length of 50 BERT tokens. We trained the model for 16 epochs, with a 
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batch size of 12, the Adam optimizer with a linearly decreasing learning rate starting at 2e-5, 0.1 dropout, 

unweighted cross-entropy loss. All tokens predicted as I but preceded by a token predicted as O were 

converted to O. Separately, we trained a multi-class classifier based on another pre-trained BERT-base-

uncased for the normalization part of the task. We combined the training ADR extracts with the CADEC 

(Karimi et al., 2015) and the SMM4H 2017 task 3 (Sarker and Gonzalez-Hernandez, 2017) datasets, 

leading to a total of 40,162 ADR-text and MedDRA PT code pairs for training, spanning over 674 unique 

PT codes. Text extracts were preprocessed and padded/truncated to a length of 40 BERT tokens. We 

topped the BERT output layer with a softmax layer on the 674 PT classes, and trained the entire model 

with cross-entropy loss, for 16 epochs, with an Adam optimizer and a fixed learning rate of 2e-5, a batch 

size of 12 and a dropout of 0.1. We submitted only one system run on the test set. 

3 Results 

3.1 Task 1 

Our system performed above average on all metrics (F1, precision and recall), and was particularly 

performant in recalling the tweets with drug names or dietary supplements (Table 1). Although we did 

not apply a full grid search on the different hyperparameters of the model, we can still see some clear 

over-fitting to the validation set, especially regarding precision. As precision is the metric most influ-

enced by prevalence of the positive class, a lower prevalence in the test set could partially explain a drop 

as well, but nothing in the task description indicated a lower prevalence of drug tweets in the test set. 

With only 35 positive examples in the validation set (thus presenting a high degree of imbalance), the 

chase for ‘that extra positive example’ can quickly have a strong effect on the generalization capabilities 

of a given architecture, leading us to believe that, that a particular ‘improvement’ to the model is nothing 

less than additional overfitting to the validation set.  

 

 F1 Precision Recall 

Validation 0.82 0.7895 0.8571 

Test 0.7665 0.7111 0.8312 

Average Test 0.6646 0.7007 0.7039 

 

Table 1: Comparison of performance for Task 1. The average test represents the performance metrics 

for the test dataset averaged across all Task 1 submissions. 

 

3.2 Task 2 

Our system performed above average in terms of F1-score but only slightly so (Table 2). It seemed 

clearly more geared towards precision, most likely owing to the very high threshold applied for ADR 

classification of a given tweet (0.99 on the post-softmax score). The large drop in performance between 

the validation and test performance came as a big surprise, considering that wedid very little hyperpa-

rameter tuning to the validation set, to avoid overfitting, that we kept the BERT approach rather similar 

across tasks and that the class imbalance was lower than in task 1 (at least on the validation set, with 

0.2% drug tweets in task 1 against 9% ADR tweets in task 2). This seems to indicate systematic differ-

ences between the validation and test sets. A big difference in prevalence could explain in part the per-

formance drop, although the biggest effect was observed on the recall metric which should, in theory, be 

more robust to prevalence effects. Without the ability to perform a proper analysis of the different types 

of errors made by the system on the test set, any explanation is pure speculation.  

  

 F1 Precision Recall 

Validation 0.81 0.7412 0.8882 

Test 0.47 0.58 0.40 

Average Test 0.46 0.42 0.59 

 

Table 2: Comparison of performance for Task 2. The average test represents the performance metrics 

for the test dataset averaged across all best submissions made by teams in Task 2. 
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3.3 Task 3 

Our system performed above average on all relaxed metrics (F1, precision and recall), but only margin-

ally so for the precision metric. The recall, on the other hand, exceeded the average by 51% (Table 3). 

The drop in performance between validation results and test results is less extensive than in task 2 but 

clearly more substantial than in task 1, maybe owing to the fact that overfitting happens both for the 

NER subtask and the normalization subtask. Our results on the strict metrics (when a true positive is 

obtained by matching the span of the ADR exactly and normalizing to the appropriate PT) were basically 

0, revealing a likely error in indexing the start and end characters of the extractions. 

 

 Metric type F1 Precision Recall 

Validation Relaxed 0.42 0.359 0.510 

Test Relaxed 0.380 0.335 0.439 

Average Test Relaxed 0.292 0.312 0.29 

 

Table 3: Comparison of performance for Task 3. The average test represents the performance metrics 

for the test dataset averaged across all best submissions made by teams in Task 3. 

 

Results of the NER subtask were also provided separately (Table 4). The simple BERT classifier on 

BIO labels was quite performant. The best performing system in the ADR NER task in the SMM4H 

2019 (task 2) was using BioBERT (Lee et al., 2019) topped with a CRF and obtained and relaxed F1 

score of 0.658 (0.554 precision and 0.81 recall) (Miftahutdinov et al., 2019), which is thus slightly lower 

than the performance of our system on this year’s dataset. Although performance comparisons across 

different datasets should always be made with great caution, as one dataset may not be representative of 

the other, this shows that a simple pre-trained and fine-tuned BERT model can be powerful for this NER 

task, with relatively small amounts of data. 

 

 Metric type F1 Precision Recall 

Test Relaxed 0.730 0.652 0.830 

Average Test Relaxed 0.564 0.607 0.557 

Best system 2019 Relaxed 0.658 0.554 0.81 

 

Table 4: Comparison of performance for the NER subtask of Task 3. The average test represents the 

performance metrics for the test dataset averaged across all best submissions made by teams in the 

NER subtask of Task 3. 

 

4 Conclusion 

“If all you have is a hammer, everything looks like a nail” (Abraham Maslow). As out-of-the-box pre-

trained and fine-tuned BERT models have shown great performance in many kinds of NLP problems, 

we decided to pick up the BERT hammer and apply it to all tasks we registered for, to test its performance 

against the current efforts of the community for automated ADR extraction. Although we do not have 

the final rankings at the time of this writing, unfortunately, we see that our simple approach performed 

either slightly above (task 2) or largely above average (tasks 1 and 3). BERT has already been identified 

in the 2019 edition of the SMM4H Shared task as a contributor to good performance (Weissenbacher et 

al., 2019), as most high-ranking submissions in all tasks were using BERT or BioBERT in one way or 

another. We believe the picture is likely to be similar this year, although it will be interesting to see how 

the community integrated domain knowledge into their approaches and how such approaches fared 

against this submission, for which the domain knowledge is only included in the fine-tuning of the BERT 

algorithms.  
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