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Abstract
Propaganda spreads the ideology and beliefs of like-minded people, brainwashing their audiences,
and sometimes leading to violence. SemEval 2020 Task-11 aims to design automated systems
for news propaganda detection. Task-11 consists of two sub-tasks, namely, Span Identification
- given any news article, the system tags those specific fragments which contain at least one
propaganda technique and Technique Classification - correctly classify a given propagandist
statement amongst 14 propaganda techniques. For sub-task 1, we use contextual embeddings
extracted from pre-trained transformer models to represent the text data at various granularities
and propose a multi-granularity knowledge sharing approach. For sub-task 2, we use an ensemble
of BERT and logistic regression classifiers with linguistic features. Our results reveal that the
linguistic features are the reliable indicators for covering minority classes in a highly imbalanced
dataset.

1 Introduction

Propaganda is biased information that deliberately propagates a particular ideology or political orientation
(Aggarwal and Sadana, 2019). Propaganda aims to influence the public’s mentality and emotions, targeting
their reciprocation due to their personal beliefs (Jowett and O’donnell, 2018). News propaganda is a
sub-type of propaganda that manipulates lies, semi-truths, and rumors in the disguise of credible news
(Bakir et al., 2019). The emphasis on this manipulation differentiates propaganda and its various classes
from each other and free verbalization (Hackett, 1984). News propaganda can lead to the mass circulation
of misleading information, shared agenda, conflicts, religious or ethnic reasons, and can further even lead
to violence and terrorism. Due to massive size, high velocity, rich online user interaction, and diversity, the
manual identification of propaganda techniques is overwhelmingly impractical. Hence, the development
of a generalized system for propaganda detection in news articles is a vital task for security analysts and
society (Barrón-Cedeno et al., 2019).

In SemEval2020-Task11, Da San Martino et al. (2020) propose a corpus of 550 news articles for
propaganda detection. Each article is annotated with propaganda spans belonging to 14 propaganda
techniques. The annotation is performed at the fragment level. The task of propaganda detection is
divided into two sub-tasks; Span identification (sequence labeling) and technique classification (sequence
classification). Span identification sub-task aims to detect the propagandist spans of text in the news
articles. Whereas, the technique classification sub-task aims to classify the propaganda spans into various
propaganda techniques. The work presented in this paper aims to provide independent approaches for
both sub-tasks 1 and 2. Most recent approaches for propaganda detection task use pre-trained transformer
models. This work propose a multi-granularity knowledge sharing model built on top of the embeddings
extracted from these transformer models for the propaganda span detection sub-task. Further, we show the
effectiveness of ensembling linguistic features-based machine learning classifiers with these transformer
models covering the minority-classes for the technique classification sub-task.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Background

Before the ascension of the detection of fake news and propaganda in NLP, Mihalcea and Strapparava
(2009) introduced the automatic detection of lying in text. In this work, the authors proposed three datasets
based on abortion, death penalty, and best friends and approached the multi-class classification problem.
The Amazon Turk Service performed the annotations for these datasets. They used support vector
machine and naive bayes classifiers for conducting their experiments. On the other hand, Ciampaglia et
al. (2015) had employed knowledge graphs for computational fact-checking and utilizing data amassed
from Wikipedia. Detection of propaganda in news articles was advocated by Rashkin et al. (2017)
and Barrón-Cedeno et al. (2019). The former proposed the use of Long Short-term Memory (LSTM)
models and machine learning methods for deception detection and classification to different types of
news, trusted, satire, hoax, and propaganda. The latter presented proppy1 the first publicly available
real-world and real-time propaganda detection system for online news. Fake news and propaganda have
been getting more attention recently (Bourgonje et al., 2017; Helmstetter and Paulheim, 2018; Jain
and Kasbe, 2018). Previous research has leveraged BERT (Devlin et al., 2018) to extract features for
fake news detection (Singhal et al., 2019). The constrained resources and lack of annotated corpora
are considered to be an immense challenge for researchers in this field. Da San Martino et al. (2019)
proposes a new dataset with text articles annotated on the fragment level with one of 18 given propaganda
techniques. To classify them, they also employ BERT models for this high granularity task. Given the
relatively low count of some of these 18 techniques, they merged similar underrepresented techniques
into superclasses like Bandwagon, Reductio ad hitlerum, Exaggeration, Minimisation, Name Calling,
labelling, and Whataboutism, Straw Men, Red Herring and eliminate Obfuscation, Intentional Vagueness,
Confusion to compile 14 classes (Da San Martino et al., 2020).

3 Methodology

In this section, we explain our approach and the road-map to our conclusion. A detailed explanation of
our implementations is provided in Section 4. Inspired by Da San Martino et al. (2019), we consider
three granularities of propaganda detection: Document-level, Sentence/Fragment-level, and Token-level.
The Span Identification sub-task focuses on high-granularity propaganda detection through a token-level
sequence labeling task. Whereas, the Technique Classification sub-task focuses on sentence/fragment
level classification. Even though both the sub-tasks are restricted to a single granularity, the context from
other granularities can be used by defining auxiliary objectives for each granularity.

3.1 Sub-Task 1: Span Identification
We approach the span identification sub-task with token-level binary classification. We label every token
as belongs / does not belong to a propaganda span. A continuous sequence of propaganda tokens in the
text combine to form a propaganda span. We use pre-trained word embeddings to represent the tokens. As
the context from lower granularity is essential during the classification, using only token-level information
for this task is not sufficient. To incorporate the lower granularity context for token-classification, we
propose a multi-granularity knowledge-sharing model. We use two lower granularity contexts for this:
the sentence and the article (document) to which the token belongs. Figure 1 illustrates the high-level
architecture of the proposed model for span identification. We train the proposed model simultaneously for
three different objectives (one for each granularity): article-level regression, sentence-level classification,
and token-level classification.

3.1.1 Article-level Regression
For each article in the dataset, we have the article-title and the article-content split at sentence-level. The
title of an article is a good summarized representation of the article’s content. We take the mean-pooled
embedding of all the word embeddings from the article’s title to get the title embedding (EmbA). We
represent each article by its respective EmbA. Further, EmbA is passed through an article encoder
(Figure 1) to get a lower-dimensional article encoding (EncA). For every article, we calculate the

1Proppy, propaganda detection system. https://proppy.qcri.org/
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Figure 1: Model Architecture for the Span Identification sub-task.

normalized count of sentences with propaganda spans. We refer to this value as the propaganda-ratio
(RatioP ) which is defined according to Equation 1. RatioP is restricted to the range [0, 1]. EncA is
used for regression over the RatioP values of the articles. To minimize the error in predicted RatioP
values, we use Smooth L1 Loss (SL1A) as an objective function for this regression task to avoid exploding
gradients from the outlying predictions.

RatioP =
Number of sentences with propaganda spans

Total number of sentences in the article
(1)

3.1.2 Sentence-level Classification
We label every sentence in the article as contains / does not contain a propaganda span. For every
sentence, we obtain its sentence embedding (EmbS) by taking the mean-pooled embedding of all the
word embeddings from the sentence. EmbS is passed through a sentence encoder (Figure 1) to get a
lower dimensional sentence encoding (EncS). We concatenate EncS with its corresponding EncA to
incorporate the article context. The concatenated encoding is further used for the sentence-level binary
classification task. We use Binary Cross-Entropy Loss (BCES) as an objective function for this task.

3.1.3 Token-level Classification
For token-level binary classification, we pass the token word embedding (EmbT ) through a token
encoder (Figure 1) to get a lower-dimensional token encoding (EncT ). We concatenate EncT with its
corresponding EncS and EncA. This concatenated encoding is finally used for the token-level binary
classification task. We use Binary Cross-Entropy Loss (BCET ) as an objective for this task. The
concatenation of encoding with its corresponding lower granularity encoding incorporates a unidirectional
knowledge transfer from lower to higher granularity level. To implement an implicit bi-directional
knowledge transfer, we perform simultaneous training for tasks across all the granularities. To perform
the training, we define a combined multi-granularity objective function (ObjectiveMG) as shown in
Equation 2. We establish a trade-off between the Smooth L1 Loss (SL1A) and the classification losses
(BCES and BCET ) with α as the trade-off factor. Model parameters across all three granularities are
trained together to optimize ObjectiveMG objective function, resulting in a multi-task learning setting
(Figure 1).

ObjectiveMG = (α ∗ SL1A) + (1− α) ∗ (BCES +BCET ) (2)

3.2 Sub-Task 2: Technique Classification

This sub-task is a multi-class classification of propaganda techniques. Our system classifies each propa-
gandist statement amongst the 14 given techniques. The dataset is highly imbalanced, and there is a lot of
variation in the length of sequences. Therefore, we ensemble our machine learning algorithm and deep
learning transformer architecture to provide a solution with better generalization across the classes.
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3.2.1 Machine Learning
For hand-crafted feature-based machine learning methods, we preprocess the sentences and extract their
pragmatic and lexical features. Machine learning algorithms such as XGBoost and Logistic Regression
use these features and perform better than the given baseline substantially and generalize well. Since news
articles are written in a formal language with very few typographical or linguistic errors, identifying these
features is less technically challenging compared to free-form text.

We perform preprocessing on our text to remove any unwanted content and enrich our text for feature
extraction. The various procedures for the preprocessing include UTF-8 conversion, removal of non-
ASCII characters, lower casing, lemmatizing/stemming, and removal of extra white-spaces, newlines,
and stop-words. We create the feature space for the classification using three metadata types: contextual
(sequence length, count of ’!’ and ’?’), content (word and char n-gram TFIDF, part of speech) and
context-based metadata (polarity of a sentence2, and topic modeling). However, these models do not
effectively capture the sequential nature of the data.

3.2.2 Deep Learning : Stacked LSTMs, Pretrained Embeddings, CNN-LSTMs
We shift our focus to deep learning models that retain the sequential information by training Long-Short-
Term-Memory [LSTM] Networks (Gers et al., 1999). The non-linear decision boundaries of these neural
networks capture the complex features inside text. We convert the sentences to lowercase, non-ASCII
characters are removed and tokenized to words. While validating or testing all obscure words are converted
to a special [UNK] (Unknown) token. Approximately 64% of the words present in the development set’s
vocabulary intersect with the training set’s vocabulary. Also, 85.8% of the words in the training-vocabulary
have a count lesser than five.

Each word is encoded to fixed-size-vector or embedding. These embeddings are randomly initialized
and passed to a stacked LSTM network with a classification layer on top. These networks give us
comparable results. For this approach, we use the stacking of two LSTM layers with 256 hidden-sizes
each. On increasing the number of stacked layers and the hidden-size of each LSTM unit, the models
tend to overfit and neglect the minority classes due to the relatively small feature space and training
samples per class. Therefore to improve the semantic relationship between the words and increase the
training vocabulary, we propose systems that have prior knowledge of the language and a larger vocabulary
set. Such systems show improvement on these linguistically rich corpora over models with randomly
initialized embeddings (Erhan et al., 2010). We can infer this because their language modelling is more
refined and wider.

To increase the vocabulary for our model and to extract the contextual importance of words, we
incorporate pre-trained word embeddings such as ”Global Vectors” [GloVe] (Pennington et al., 2014).
These embeddings map each input token to a fixed-length vector. We set them to be non-trainable to avoid
changing these vectors substantially. Pre-trained embeddings help the model to understand the underlying
relationships.

Since GloVe is trained on a large corpus to obtain vector representation of words, 98.8% of the
vocabulary in the development set and 97.9% of the training vocabulary intersects with its own. Therefore,
in total less than 2% of these words are out of vocabulary and address the issue of vocabulary coverage
in above models. On inspection, we find that most of the out-of-vocab words in the GloVe are conjunct
words commonly used in the text, such as jawboned, antichrists, trumpists, cyberspies, atleast. Therefore
we use sub-word tokenization and break each of these absent words into two in-vocab words where
the smaller word is at least two characters long like jaw boned, anti christs, trump ists, cyber spies, at
least. The sub-word tokenization increases our coverage to 99.1% with the remaining words either being
proper-nouns or non-alphabetic patterns. Since these words convey a little meaning, and are removed
during training and testing.

We employ CNNs (Convolutional Neural Networks) and CNN-LSTM models as well by adding
convolution filters before extracting and pooling information from the embeddings. CNN-LSTM models
help to extract a sequence of higher-level phrase representations (Zhou et al., 2015). As a result of reduced

2TextBlob API. https://textblob.readthedocs.io/en/dev/
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inputs for the LSTM layers, these models converge faster (in less number of epochs) and quicker (in terms
of training time per epoch), but the performance does not improve.

We pad all the sequences which have less than 100 tokens and truncate the others to the maximum
length of 100. The tokens are encoded to word embeddings. The obtained embeddings are fed to the
stacked LSTM layers, with dropout regularization to prevent over-fitting. We pass the LSTM layers’
outputs to the linear classification layers with sigmoid activation to obtain the categorical cross-entropy
loss. We use Adam optimizer with a small learning rate to update the parameters for 50 epochs (Kingma
and Ba, 2014).

3.2.3 Deep Learning : Transformer Architectures

Consequently, we transit to deep pre-trained transformer architectures with attention mechanism (Vaswani
et al., 2017). We employ BERT-base (Devlin et al., 2019) model which has 12 Layers. BERT tokenizer
implements word-piece tokenization, which eliminates out-of-vocabulary words by splitting the words into
sub-words. For example the word ”judgmental” is broken to [”judgement”, ”##al”]. This model has been
pre-trained on large corpus for masked language modelling and hence can be used for many downstream
NLP tasks such as classification, question answering systems, and named-entity-recognition. We freeze
most of the layers of the model and train the remaining (layer 10, 11, 12) with a very small learning-rate:
1e-4 for four epochs with a classification layer on top of the extracted pooled output embeddings.

BERT

Dropout
FC Layer

Output Logits

INPUT SPANS

Linguistic Features

Output Logits

Logistic RegressionLogistic Regression

Output

Mean
Pooling

Scaling
and 

Concatenating

Figure 2: Ensemble Model Architecture for Technique Classification sub-task.

3.2.4 Ensemble Learning

The majority of the deep learning models perform better than the machine learning models on the
validation split. On closer inspection, we observed that deep learning models tended to neglect the
minority classes and had some unpromising class-wise F1 scores (discussed in Section 5.2). On the other
hand, machine learning models had no zero-scores for any technique but proved to be less decisive for
the majority-classes. We infer that training an ensemble of these models; the proposed architecture can
improve in terms of generalization across all the classes. In this manner, we account for the gain in overall
performance and also avoid zero-scores for the minority classes. Therefore we concatenate the scaled
outputs from both the models and pass this to a logistic regression classifier. We penalize this classifier by
the L2-norm (euclidean distance) and keep class wise weights for the objective in inverse proportion to
their count in training set to obtain the final predictions. Our F1 scores for minority classes show massive
improvements while only a minor change (+0.006) in the overall micro-F1 score.
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4 Experimental Setup

4.1 Sub-Task 1: Span Identification

For the span-identification sub-task, we use word embeddings from pre-trained transformer models
(Vaswani et al., 2017), extracted using flairNLP3 (Akbik et al., 2018). We test our model with various
embeddings such as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019)
and GPT-2 (Radford et al., 2019), which differ in their model architectures and pre-training methods. These
embeddings and their respective transformer-models are kept non-trainable throughout our experiments
so that the standalone performance of our proposed system can be monitored effectively. We split the
given training dataset at token-level with a 95-5 split for training and validation purposes, respectively.
We compute the accuracy, F1 score, precision, and recall metrics for the token-level binary-classification.
Since there is a high class-imbalance for token-level classification, we consider the token-level F1 score
for validation purposes. The official evaluation metrics (span-level F1, precision, and recall) used for
this task are calculated with respect to the overlaps between the predicted and the ground-truth spans
(Da San Martino et al., 2019).

4.2 Sub-Task 2: Technique Classification

For this sub-task, we use BERT (base-uncased variant), a pre-trained transformer model based on the work
done by Devlin et al. (2018) with a classification layer on top. We extract the contextual pooled output
embedding from the BERT model using transformers 4, a python package by Hugging Face. All layers
except for the last two and classification layers are kept non-trainable. To avoid updating the saved state
of the parameters substantially, we train it with a small learning rate for four epochs, it increases in 1000
steps to 1e− 4 and then decays linearly. The gradients are also clipped as discussed by You et al. (2019)
and the AdamW optimizer is used to optimize the model (Loshchilov and Hutter, 2017). For machine
learning models, we examine the feature importance scores from the XGBoost model for feature selection
(Zheng et al., 2017). We only consider features that have relative feature importance scores more than
0.30, i.e. word n-grams tf-idf scores for n = {1, 2, 3} and character k-gram tf-idf scores for k = 1 to 6, and
the character count of the spans. We use the logistic regression model with L2 penalty and class weights
inversely proportional to their count in the training set to get the technique classification probabilities.
The output logits from BERT’s classification layer are scaled (min-max scaling) and concatenated with
the scaled probabilities obtained from the logistic regression model. We pass this concatenated vector to
another logistic regression classifier with the same hyper-parameters to get the final predictions.

5 Results

Embedding Span-level Metrics Token-level Metrics

Precision Recall F1 Precision Recall F1 Accuracy

BERT-Token 0.319 0.374 0.344 0.601 0.333 0.428 0.885

RoBERTa-Token 0.358 0.375 0.366 0.62 0.233 0.339 0.883

BERT-MG 0.304 0.409 0.349 0.846 0.786 0.815 0.952

RoBERTa-MG* 0.347 0.391 0.368 0.852 0.779 0.814 0.952

XLNet-MG 0.304 0.413 0.35 0.82 0.794 0.807 0.949

GPT-2-MG 0.289 0.406 0.337 0.805 0.752 0.778 0.942

Table 1: Results for the Span Identification sub-task on the development set (*Final submission)

3Flair. A state-of-the-art NLP framework. https://github.com/flairNLP/flair
4Transformers. https://github.com/huggingface/transformers
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5.1 Sub-Task 1: Span Identification

For the span-identification sub-task, we consider token-only baselines with BERT-Token and RoBERTa-
Token models. These models only perform token-level binary-classification task and do not consider
the sentence-level and article-level granularities. We compare these baselines to our proposed multi-
granularity model (BERT-MG, RoBERTa-MG, XLNet-MG and GPT-2-MG). Table 1 shows the Span-level
metrics for the official development set and the token-level metrics on our token-level validation split.
Our multi-granularity model consistently achieves more than 94% token-level accuracy across all the four
types of embeddings as compared to the 88% token-level accuracy shown by the token-only baselines.
The multi-granularity model also shows some improvement on the span-level F1 score as compared to the
token-only baselines. We get the best token-level F1 scores (0.815) with BERT and RoBERTa embeddings.
RoBERTa embeddings outperforms all the other embeddings for the span-level metrics. Therefore, we
use RoBERTa embeddings for the final submission to the task leaderboard. The performance for this
sub-task can possibly be improved further by using trainable embeddings by fine-tuning their respective
transformer-models. Our system ranks 21st on the final test-set leaderboard with a span-level F1 score of
0.387.

Model Validation Split Development Set

Micro F1 Macro F1 Micro F1 Macro F1

Logistic Regression 0.54 0.42 0.51 0.32

LSTM 0.55 0.32 0.49 0.29

LSTM (Glove) 0.59 0.36 0.55 0.36

CNN-LSTM (Glove) 0.56 0.28 0.48 0.26

BERT 0.66 0.42 0.58 0.38

BERT + Logistic Regression* 0.65 0.45 0.58 0.43

RoBERTa 0.63 0.38 0.54 0.32

Table 2: Results for the Technique Classification sub-task on the development set and validation split
(*Final submission)

5.2 Sub-Task 2: Technique Classification

For the technique-classification sub-task, our system ranks 18th with a micro-F1 score of 0.54 on the final
test-set. We have shown the performances of our models on the development set in Table 2. Since this
is an imbalanced multi-class classification task, we also report our models’ macro F1 scores to test our
proposed systems’ generalization across all the propaganda techniques. Macro averaging gives equal
importance to all classes. Table 2 unveils that in both validation and development splits, the combined
BERT and logistic regression outperforms all models with a macro-f1 score of 0.45 and 0.43, respectively.

To further inspect the performance of our models across particular techniques, we also calculate the
class-wise F1 scores as shown in Table 3. Machine learning models (logistic regression) achieve a
relatively lower micro averaged F1 score of 0.514 on the development set, but give non-zero scores
for all the classes. Stacked LSTM networks with randomly initialized embeddings do not achieve any
improvement (0.490) on the development-set and conceive near-zero scores for multiple classes as well.
This is due to the vast vocabulary of this relatively smaller dataset. Consequently, on using pre-trained
GloVe embeddings with the stacked LSTM networks, we achieve a significant improvement (0.52).

Similarly, while CNN-LSTM models are relatively faster, they lower the overall performance (0.485)
and conceive zero f1 scores for multiple classes. Transformer based models, namely BERT (0.578) and
RoBERTa (0.550) outperform the above models significantly; however, they do not perform well for the
minority classes. In fact, BERT gives zero or near zeros scores for some labels like Appeal to Authority;
Whataboutism, Straw Men, Red Herring.

The ensemble of BERT with the logistic regression model does not improve the micro F1 score
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LR LSTM LSTM
(Glove)

CNN-LSTM
(Glove) BERT BERT-LR* RoBERTa

Appeal to Authority 0.063 0.077 0.000 0.000 0.000 0.400 0.118

Appeal to fear-prejudice 0.160 0.205 0.292 0.321 0.376 0.372 0.317

Bandwagon, Reductio ad hitlerum 0.286 0.000 0.431 0.000 0.500 0.484 0.000

Black-and-White Fallacy 0.167 0.051 0.154 0.000 0.154 0.145 0.000

Causal Oversimplification 0.341 0.341 0.358 0.143 0.250 0.258 0.320

Doubt 0.444 0.431 0.493 0.497 0.517 0.479 0.503

Exaggeration, Minimisation 0.371 0.313 0.443 0.417 0.418 0.377 0.447

Flag-Waving 0.679 0.671 0.714 0.663 0.728 0.735 0.745

Loaded Language 0.712 0.662 0.703 0.691 0.725 0.720 0.699

Name Calling, labelling 0.591 0.539 0.645 0.682 0.693 0.700 0.691

Repetition 0.350 0.198 0.251 0.099 0.264 0.412 0.0546

Slogans 0.190 0.400 0.485 0.070 0.523 0.501 0.419

Thought-terminating Cliches 0.061 0.121 0.000 0.000 0.167 0.240 0.111

Whataboutism, Straw Men, Red Herring 0.100 0.053 0.059 0.067 0.049 0.292 0.0588

micro F1 0.514 0.490 0.554 0.485 0.578 0.584 0.550

macro F1 0.322 0.290 0.359 0.260 0.383 0.436 0.320

Table 3: Class-wise F1 scores on the development set (*Final submission)

significantly (0.584)(1% gain) but unlike other models it gives non-zero F1 score for all the classes,
improving the macro F1 score from 0.38 to 0.43 (13.16% gain). The F1 scores increase from 0.0 to 0.4 for
Appeal to Authority and from 0.049 to 0.292 for Whataboutism, Straw Men, Red Herring. We use this
ensemble model as our final submission due to its better generalization across all the propaganda technique
classes. Our results reveal that minority classes such as Appeal to authority, Bandwagon, Reductio ad
Hitlerum, Black and white fallacy and Thought terminating cliches are relatively difficult to predict.

6 Reproducibility

We make our code publicly available as GitHub repositories. The source code for the proposed multi-
granularity knowledge sharing model for sub-task 1 can be accessed at (https://github.com/
rajaswa/semeval2020-task11). The source code for the proposed BERT ensemble with lin-
guistic features based logistic regression model for sub-task 2 can be accessed at (https://github.
com/someshsingh22/News-Propaganda-Detection). Our models and acquired results are
available for benchmarking, comparison, and reproducibility. We do not share the experimental dataset as
per the task guidelines.

7 Conclusion

In this paper, we proposed systems for the task of span identification and multi-class imbalanced technique
classification of propaganda spans in news articles. We analyzed the performance of various machine
learning and deep learning-based architectures for these high granularity tasks. On the span-identification
sub-task test set, our multi-granularity knowledge sharing model gives a span-level F1 score of 0.387. For
the technique classification task, our ensemble of pre-trained transformer model with logistic regression
gives a micro F1 score of 0.54. We further infer the effectiveness of incorporating linguistic features and
achieve non-zero F1 scores for all techniques and 13.6% gain in the macro-F1 score. Our results also
unveil the limitations/ineffectiveness of deep learning models to capture the minority-class techniques.

We plan to extend our work by using trainable transformer-model embeddings and improve the
performance of the span-identification sub-task. The work can further be enhanced by adding more
granularities for knowledge-sharing. The proposed knowledge-sharing model may also be used for various
closely-related tasks such as fake news and hate speech detection, given application-specific appropriate
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objective functions are defined across multiple granularities for these tasks.
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