
Proceedings of the First Workshop on Scholarly Document Processing, pages 72–80
Online, November 19, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

72

Learning CNF Blocking for Large-scale Author Name Disambiguation

Kunho Kim†∗, Athar Sefid‡, C. Lee Giles‡
†Microsoft Corporation, Redmond, WA, USA

‡ The Pennsylvania State University, University Park, PA, USA
kuki@microsoft.com, azs5955@psu.edu, clg20@psu.edu

Abstract

Author name disambiguation (AND) algo-
rithms identify a unique author entity record
from all similar or same publication records
in scholarly or similar databases. Typically,
a clustering method is used that requires cal-
culation of similarities between each possible
record pair. However, the total number of pairs
grows quadratically with the size of the author
database making such clustering difficult for
millions of records. One remedy is a block-
ing function that reduces the number of pair-
wise similarity calculations. Here, we intro-
duce a new way of learning blocking schemes
by using a conjunctive normal form (CNF) in
contrast to the disjunctive normal form (DNF).
We demonstrate on PubMed author records
that CNF blocking reduces more pairs while
preserving high pairs completeness compared
to the previous methods that use a DNF and
that the computation time is significantly re-
duced. In addition, we also show how to en-
sure that the method produces disjoint blocks
so that much of the AND algorithm can be effi-
ciently paralleled. Our CNF blocking method
is tested on the entire PubMed database of
80 million author mentions and efficiently re-
moves 82.17% of all author record pairs in 10
minutes.

1 Introduction

Author name disambiguation (AND) refers to the
problem of identifying each unique author entity
record from all publication records in scholarly
databases (Ferreira et al., 2012). It is also an impor-
tant preprocessing step for a variety of problems.
One example is processing author-related queries
properly (e.g., identify all of a particular author’s

∗Work done while the author was at Pennsylvania State
University

A shorter preprint version of this paper was published at
arXiv (Kim et al., 2017)

publications) in a digital library search engine. An-
other is to calculate author-related statistics such as
an h-index, and collaboration relationships between
authors.

Typically, a clustering method is used to cal-
culate AND. Such clustering calculates pairwise
similarities between each possible pairs of records
that then determines whether each pair should be
in the same cluster. Since the number of possible
pairs in a database with the number of records n is
n(n− 1)/2, it grows as O(n2). Since n can be mil-
lions of authors in some databases such as PubMed,
AND algorithms need methods that scale, such as
a blocking function (Christen, 2012). The blocking
function produces a reduced list of candidate pairs,
and only the pairs on the list are considered for
clustering.

Blocking usually consists of blocking predicates.
Each predicate is a logical binary function with
a combination of an attribute and a similarity cri-
terion. One example can be exact match of the
last name. A simple but effective way of blocking
involves manually selecting the predicates, with
respect to the data characteristics. Much recent
work on large-scale AND uses a heuristic that is
the initial match of first name and exact match
of last name (Torvik and Smalheiser, 2009; Liu
et al., 2014; Levin et al., 2012; Kim et al., 2016).
Although this gives reasonable completeness, it
can be problematic when the database is extremely
large, such as the author mentions in CiteSeerX
(10M publications, 32M authors), PubMed (24M
publications, 88M authors), and Web of Science
(45M publications, 163M authors)1.

The blocking results on PubMed using this
heuristic are shown in Table 1. Note that most
of the block sizes are less than 100 names, but a
few blocks are extremely large. Since the number

1Numbers were as of 2016.

73

Table 1: Block Size Distribution of PubMed author
mentions using the simple blocking heuristic.

Block Size Frequency Percentage
2 ≤ n < 10 1,586,677 59.91%
10 ≤ n < 100 910,272 34.37%
100 ≤ n < 1000 144,361 5.45%
1000 ≤ n < 10000 6,998 0.26%
10000 ≤ n < 50000 184 0.01%
n ≥ 50000 9 < 0.01%
Total 2,648,501 100.0 %

of pairs grows quadratically, those few blocks can
dominate the computation time. This imbalance of
the block size is due to the popularity of certain sur-
names, especially Asian names (Kim et al., 2016).
To make matters worse, this problem increases in
time, since the growth rates of publication records
are rapidly increasing.

To improve the blocking, there has been work on
learning the blocking (Bilenko et al., 2006; Michel-
son and Knoblock, 2006; Cao et al., 2011; Kejriwal
and Miranker, 2013; Das Sarma et al., 2012; Fisher
et al., 2015). These can be categorized into two dif-
ferent methods. One is a disjoint blocking, where
each block is separated so each record belongs to
a single block. Another is non-disjoint blocking,
where some blocks have shared records. Each has
advantages. Disjoint blocking can make the clus-
tering step easily parallelized, while non-disjoint
blocking often produces smaller blocks. and also
has more degrees of freedom from which to select
the similarity criterion.

Here, we propose to learn a non-disjoint block-
ing with a conjunctive normal form (CNF). Our
main contributions are:

• Propose a CNF blocking, which reduces more
pairs compared to DNF blocking, in order to
achieve a large number of pairs completeness.
This also reduces the processing time, which
benefits various applications such as online
disambiguation, author search, etc.

• Extend the method to produce disjoint blocks,
so that the AND clustering step can be easily
parallelized.

• Compare different gain functions, which are
used to find the best blocking predicates for
each step of learning.

Previous work is discussed in the next session.
This is followed by problem definition. Next, we

describe learning of CNF blocking and how to use
it to ensure the production of disjoint blocks. Next,
we evaluate our methods on the PubMed dataset.
Finally, the last section consists of a summary work
with possible future directions.

2 Related Work

Blocking has been widely studied for record link-
age and entity disambiguation. Standard block-
ing is the simplest but most widely used method
(Fellegi and Sunter, 1969). It is done by con-
sidering only pairs that meet all blocking predi-
cates. Another is the sorted neighborhood approach
(Hernández and Stolfo, 1995) which sorts the data
by a certain blocking predicate, and forms blocks
with pairs of those records within a certain window.
Yan et al. (2007) further improved this method to
adaptively select the size of the window. Aizawa
and Oyama (2005) introduced a suffix array-based
indexing method, which uses an inverted index of
suffixes to generate candidate pairs. Canopy clus-
tering (McCallum et al., 2000) generates blocks
by clustering with a simple similarity measure and
use loose & tight thresholds to generate overlap-
ping clusters. Recent surveys (Christen, 2012; Pa-
padakis et al., 2016, 2020) imply that there are
no clear winners and proper parameter tuning is
required for a specific task.

Much work optimized the blocking function for
standard blocking. The blocking function is typi-
cally presented with a logical formula with block-
ing predicates. Two studies focused on learning a
disjunctive normal form (DNF) blocking (Bilenko
et al., 2006; Michelson and Knoblock, 2006) were
published in the same year. Making use of man-
ually labeled record pairs, they used a sequential
covering algorithm to find the optimal blocking
predicates in a greedy manner. Additional unla-
beled data was used to estimate the reduction ra-
tio of their cost function (Cao et al., 2011) while
an unsupervised algorithm was used to automati-
cally generate labeled pairs with rule-based heuris-
tics used to learn DNF blocking (Kejriwal and Mi-
ranker, 2013).

All the work above proposed to learn non-
disjoint blocking because of the logical OR terms
in the DNF. However, other work learns the block-
ing function with a pure conjunction, to ensure the
generation of disjoint blocks. Das et al. (2012)
learns a conjunctive blocking tree, which has dif-
ferent blocking predicates for each branch of the

74

tree. Fisher et al. (2015) produces blocks with re-
spect to a size restriction, by generating candidate
blocks with a list of predefined blocking predicates
and then performs a merge and split to generate the
block with the desired size.

Our work proposes a method for learning a non-
disjoint blocking function in a conjunctive normal
form (CNF). Our method is based on a previous
CNF learner(Mooney, 1995), which uses the fact
that a CNF can be a logical dual of a DNF.

3 Problem Definition

Our work tackles the same problem with base-
line DNF blocking (Bilenko et al., 2006; Michel-
son and Knoblock, 2006), but in a different way
to get the optimized blocking function. Let
R = {r1, r2, · · · , rn} be the set of records in the
database, where n is the number of records. Each
record r has k attributes, and A be the attribute
set A = {a1.a2, · · · , ak}. A blocking predicate
p is a combination of an attribute a and a simi-
larity function s defined to a. An example of s
is exact string match of a. A blocking predicate
can be seen as a logical binary function applied to
each pair of records, so p(rx, ry) = {0, 1}, where
rx, ry ∈ R. A blocking function f is a boolean
logic formula consisting with blocking predicates
p1, p2, · · · , pn, and each predicate is connected
with either conjunction ∧ or disjunction ∨. An
example is fexample = (p1 ∧ p2) ∨ p3. Since it is
made up of blocking predicates, f(rx, ry) = {0, 1}
for all rx, ry ∈ R.

The goal is to find an optimal blocking function
f∗ that covers a minimum number of record pairs
while missing up to a fraction ε of total number of
matching record pairs. To formalize it,

f∗ = argmin
f

∑
(rx,ry)∈R

f(rx, ry)

such that ≥ (1− ε)× |R+|
(1)

where R+ is set of matching record pairs.

4 Learning the Blocking Function

Here, we first briefly review DNF blocking and
then introduce our CNF blocking function. This
section describes the gain functions that select an
optimal predicate term for each step in the CNF
learner. Finally, we discuss an extension that en-
sures the production of disjunctive blocks.

Algorithm 1 DNF Blocking

1: function LEARNCONJTERMS(L,P, p, k)
2: Let Pos be set of positive samples in L
3: Let Neg be set of negative samples in L
4: Terms← {p}
5: CurTerm← p
6: i← 1
7: while i < k do
8: Find pi ∈ P that maximizes gain func-

tion CALCGAIN(Pos,Neg, CurTerm ∧ pi)
9: CurTerm← CurTerm ∧ pi

10: Add CurTerm to Terms
11: i← i+ 1
12: end while
13: return Terms
14: end function
15:

16: function LEARNDNF(L,P, k)
17: CandTerms← φ
18: for p ∈ P do
19: Terms←LEARNCONJ(L,P, p, k)
20: CandTerms ← CandTerms ∪

Terms
21: end for
22: Let Pos be set of positive samples in L
23: Let Neg be set of negative samples in L
24: DNF ← φ
25: while |Pos| > ε× |Pos| do
26: Find T ∈ CandTerms

that maximizes gain function CAL-
CGAIN(Pos,Neg, T)

27: if CALCGAIN(Pos,Neg, t) > 0 then
28: DNF ← DNF ∨ T
29: Let PosCov be all l ∈ Pos that

satisfies T
30: Let NegCov be all l ∈ Neg that

satisfies T
31: Pos← Pos− PosCov
32: Neg ← Neg −NegCov
33: else
34: break loop
35: end if
36: end while
37: return DNF
38: end function

75

4.1 DNF Blocking

DNF blocking was originally proposed by (Bilenko
et al., 2006; Michelson and Knoblock, 2006).
Given labeled pairs, these methods attempt to learn
the blocking function in the form of a DNF, the
disjunction (logical OR) of conjunction (logical
AND) terms. Learning DNFs is known to be a
NP-hard problem (Bilenko et al., 2006). Thus, an
approximation algorithm was used to learn k-DNF
blocking by using a sequential covering algorithm.
k-DNF means each conjunction term has, at most,
k predicates. Algorithm 1 shows the process of
DNF blocking. Function LEARNDNF in lines 16-
38 is the main part of the algorithm. It has 3 inputs
which are the L labeled sample pairs, P blocking
predicates, and k parameters of maximum predi-
cates considered for each conjunction term.

First, the algorithm selects a set of candidate con-
junction terms with at most k predicates. For each
predicate p, it generates k candidate conjunction
terms with the highest gain function. Using the
candidate terms, the algorithm learns the blocking
function by using a sequential covering algorithm.
It sequentially selects a conjunction term, from
the set of candidates, that has the maximum gain
value on the remaining samples, and attaches it
with logical OR to the DNF term. In each step, all
samples covered by the selected conjunction term
are removed. This process repeats until it covers
the desired minimum amount of positive samples,
or there is no candidate term that can further be
improved.

4.2 CNF Blocking

CNF blocking can be learned with a small modi-
fication to DNF blocking. CNF can be presented
as the entire negation of a corresponding DNF and
vice versa based on De Morgan’s laws. Using this,
Mooney proposed CNF learning (Mooney, 1995),
which is a logical dual of DNF learning. This moti-
vated our CNF blocking method.

Algorithm 2 illustrates the proposed CNF block-
ing and has a similar structure to algorithm 1. In-
stead of running a sequential covering algorithm
to cover all positive samples, CNF blocking tries
to cover all negative samples using negated block-
ing predicates. In other words, a DNF formula is
learned that is consistent with a negated predicate,
which we designate negated DNF (NegDNF).
NegP is the negation of each predicate p in P .
LEARNCNF gets 3 inputs, where L are labeled

Algorithm 2 CNF Blocking

1: function LEARNNEGCON-
JTERMS(L,NegP, p, k)

2: Let Pos be set of positive samples in L
3: Let Neg be set of negative samples in L
4: Terms← {p}
5: CurTerm← p
6: i← 1
7: while i < k do
8: Find pi ∈ NegP that max-

imizes gain function CALCNEG-
GAIN(Pos,Neg, CurTerm ∧ pi)

9: CurTerm← CurTerm ∧ pi
10: Add CurTerm to Terms
11: i← i+ 1
12: end while
13: return Terms
14: end function
15:

16: function LEARNCNF(L,P, k)
17: CandTerms← φ
18: Let NegP is negation of each p ∈ P
19: for p ∈ NegP do
20: Terms←LEARNNEGCONJ(L,NegP, p, k)
21: CandTerms ← CandTerms ∪

Terms
22: end for
23: Let Pos be set of positive samples in L
24: Let Neg be set of negative samples in L
25: NegDNF ← φ
26: while |Pos| > (1− ε)× |Pos| do
27: Find T ∈ CandNegTerms that

maximizes gain function CALCNEG-
GAIN(Pos,Neg, Term)

28: if CALCNEGGAIN(Pos,Neg, T) > 0
then

29: NegDNF ← NegDNF ∨ T
30: Let PosCov be all l in Pos that

satisfies T
31: Let NegCov be all l in Neg that

satisfies T
32: Pos← Pos− PosCov
33: Neg ← Neg −NegCov
34: else
35: break loop
36: end if
37: end while
38: CNF ← ¬(NegDNF)
39: return CNF
40: end function

76

sample pairs, P are blocking predicates, and k is
maximum number of predicates in each term.

The algorithm first generates a set of negated
candidate conjunction term Terms from all p in
NegP (line 19-22). A dual of the original gain
function CALCNEGGAIN selects a predicate for
generating a negated candidate conjunction. Then,
as in DNF blocking, the sequential covering algo-
rithm is used to learn the negated DNF formula
(line 26-37), which iteratively adds a negated con-
junction term until it covers the desired number
of samples. We select a negated conjunction term
with a gain function, CALCNEGGAIN. Also, note
that the termination condition of the loop (line 26)
is when ε of total positive samples are covered with
the learned NegDNF . This ensures that we miss
less than ε of the total number of positive samples
in the final CNF formula. After getting the final
NegDNF , it is negated to get the desired CNF.

4.3 Gain Function
The gain function estimates the benefit of adding a
specific term to the learned formula. It is used in
two different places in the algorithm - when choos-
ing the conjunction candidates (line 8) and when
choosing a term from the candidates for each itera-
tion (line 27-28). Previous methods have proposed
different gain functions. Here we describe each and
compare the results in the experiments. P , N is
the total number of positive and negative samples,
and p, n is the number of remaining positive and
negative samples covered by the term.

4.3.1 Information Gain
Originally from Mooney’s CNF learner (1995), it
is the dual of the information gain of a DNF learner

gainCNF = n×
[
log

(
n

n+ p

)
−log

(
N

N + P

)]
.

(2)

4.3.2 Ratio Between Positive and Negative
Samples Covered

Bilenko et al. (2006) used this for DNF blocking. It
calculates the ratio between the number of positives
and the number of negatives covered. For CNF
learning, we use its dual

gainCNF =
n

p
. (3)

4.3.3 Reduction Ratio
Michaelson and Knoblock (2006) used terms with
the maximum reduction ratio (RR). In addition,

Algorithm 3 Disjoint CNF Blocking

1: function DIS-
JOINTCNF(L,Pdisjoint, Pfull, k)

2: Conj ← LEARNCNF(L,Pdisjoint, 1)
3: Let L′ be set of l ∈ L satisfies Conj
4: CNF ← LEARNCNF(Lremain, Pfull, k)
5: Blocks← Apply Conj to whole data
6: for Block ∈ Blocks do
7: Let L′′ be l ∈ Block that satisfies
CNF

8: Consider pairs inL′′ only for clustering
9: end for

10: end function

they filter out all terms with pairwise completeness
(PC) below threshold t. We use the dual of the
original function used as a CNF, which is now

gainCNF =

{
p+n
P+N if n

N > t

0 otherwise.
(4)

4.4 Learning Disjoint Blocks
Disjoint blocking functions generate blocks for
each record that resides in a single block; thus such
blocks are mutually exclusive. It has the advantage
that parallelization can be performed efficiently
after applying the blocking by running processes
for each blocks separately. A blocking function
is disjoint if and only if it satisfies the following
conditions: 1) it only consists of pure conjunction
(logical AND), 2) all predicates use non-relative
similarity measures. That is, measures that com-
pare the absolute value of blocking key, e.g. exact
match of first n characters.

DNF and CNF blocking are both non-disjoint
blocking due to the condition 1 above. We intro-
duce a simple extension to ensure our CNF block-
ing can produce disjoint blocks. This is done by
first producing two blocking functions. The first
function learns a blocking function with only con-
junctions based on our CNF blocking method using
k = 1 and a limited set of predicates with non-
relative similarity measures. Then, CNF blocking
is learned with our k-CNF method with the whole
set of predicates for pairs remaining after applying
1-CNF (conjunction of single attributes).

We first apply the 1-CNF to the whole database
to produce disjoint blocks. Then for each block, we
apply the second k-CNF blocking function to filter
out pairs not satisfies the k-CNF function. This
is similar to applying a filter as in Gu and Baxter

77

Table 2: Summary of PubMed Benchmark Dataset

Authors # Mentions # Total Pairs # Matched Pairs
214 3,964 7,854,666 51,052

(2004) and Khabsa et al. (2015). While they use
a heuristic, our method automatically learns the
optimal one. Note that this method still produces
a CNF since it combines conjunction terms and
k-CNF with logical AND.

5 Experiments

5.1 Benchmark Dataset

We use the PubMed to evaluate these methods.
PubMed is a public large-scale scholarly database
maintained by the National Center for Biotechnol-
ogy Information (NCBI) at the National Library
of Medicine (NLM). We use NIH principal inves-
tigator (PI) data for evaluation, which include PI
IDs and corresponding publications. We randomly
picked 10 names from the most frequent ones in the
dataset and manually verified that all publications
belong to each PI. The set of names include C*
Lee, J* Chen, J* Smith, M* Johnson, M* Miller,
R* Jones, S* Kim, X* Yang, Y* Li, Y* Wang,
where C* means any name starts with C.

Table 2 shows the statistics of the dataset. Ex-
periments are done with 5-fold cross validation.

5.2 Methodology

5.2.1 Evaluation Metrics

We evaluate our CNF blocking with reduction ra-
tio (RR), pairs completeness (PC), and F-measure.
These metrics are often used to evaluate blocking
methods. Those metrics can be calculated as fol-
lows:

RR = 1− p+ n

P +N
, (5)

PC =
p

P
, (6)

F =
2×RR× PC
RR+ PC

. (7)

where P , N are the numbers of positive and nega-
tive samples, and p, n are the numbers of positive
and negative samples covered with the blocking
function. RR measures the efficiency of the block-
ing function, PC measures the quality of the block-
ing function. F is the harmonic mean of RR and
PC.

Table 3: Blocking Predicates Used for Learning Non-
Disjoint Blocking Function

Blocking Key Similarity Criterion
First Name exact, first(n), last(n), compatible
Last Name exact, first(n), last(n), compatible
Middle Name exact, first(n), last(n), compatible
Title cos
Affiliation exact, cos, compatible
Coauthor cos
Order order
Year exact, digit, diff
Venue exact, cos

5.2.2 Blocking Predicates Used
We first define the similarity criterion used for the
experiments. We observed an important character-
istic of the data: some attributes are empty (e.g.
year: 7.8%, affiliation: 81.1%) or have only partial
information (54.5% has only initials for the first
name). To deal with this, we add compatible to
those blocking keys. Below is brief explanation of
each similarity criterion.

• exact: Exact match.

• first(n), last(n): First/Last n character
match, where n is an integer. We check
{1, 3, 5, 7} for name attributes.

• order: Assigns True if both records are first
authors, last authors, or non-first and non-last
authors.

• digit(n): First n digit match. We check
{1, 2, 3} for year.

• compatible: True if at least one of the
records are empty (Eq. 8). If the key is name,
it also checks if the initial matches if one of
the records has only initial.

compatible(A,B) =

{
True if at least one is empty
exact(A,B) otherwise

(8)

• cos: Cosine distance of TF-IDF bag-of-
words vector. We check with threshold
{0.2, 0.4, 0.6, 0.8}.

• diff : Year difference. We use the threshold
{2, 5, 10}.

Using those similarity measures, We define two
different sets of blocking predicates. Table 3 shows

78

0.90 0.92 0.94 0.96 0.98 1.00
Pairs Completeness

0.70

0.75

0.80

0.85

0.90

0.95
Re

du
ct

io
n

Ra
tio

Information Gain
PosNeg Ratio
Reduction Ratio

Figure 1: Gain Functions for PC–RR where PosNeg
Ratio is the ratio between positive and negative samples
covered.

blocking predicates used for non-disjoint block-
ing. Disjoint blocking requires the use of predi-
cates with non-relative similarity measures to en-
sure blocks are mutually exclusive. For disjoint
blocking, we use the set of blocking predicates
excluding the ones with the relative similarity mea-
sures (exact, compatible, diff) in Table 3.

5.2.3 Parameter Setting
The parameter ε is used to vary the PC. We tested
values in [0, 1] to get the PC–RR curve. k is se-
lected experimentally to calculate the maximum
reachable F-measure. We use k = 3 for further
experiments.

5.3 Experiments

5.3.1 Gain Function
Figure 1 shows the PC–RR curve tested on three
different gain functions. Blocking usually requires
a high PC, so that we do not lose matched pairs
after it is applied. As such, we focused on experi-
ments with high PC values. As we can see from the
results, information gain has highest RR overall.
Thus, we use it as the gain function for the rest of
the experiments.

5.3.2 Non-disjoint CNF Blocking
We compare non-disjoint CNF blocking with the
DNF blocking (Bilenko et al., 2006; Michelson and
Knoblock, 2006) and canopy clustering (McCallum
et al., 2000). We used the set of Jaro–Winkler dis-
tance attributes for canopy clustering. Figure 2
shows the PC–RR curve for each method. Both
CNF and DNF were better than canopy cluster-
ing, as was shown in Bilenko et al. (2006). CNF
and DNF results are comparable for lower PC val-
ues. However, for high PC (>0.9) values, CNF has
a better RR. We also tested another dataset used

0.83 0.85 0.88 0.90 0.93 0.95 0.98 1.00
Pairs Completeness

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Re
du

ct
io

n
Ra

tio

CNF Blocking
DNF Blocking
Canopy Clustering

Figure 2: PC–RR for non-disjoint blocking methods

in (Khabsa et al., 2015). For PC=0.99, RR for
CNF blocking was 0.882 while DNF blocking was
0.745.

We believe this is due to certain characteris-
tics of scholarly databases. As discussed on the
previous section, some attributes are empty for
some records. DNF learns a blocking function by
adding conjunction terms to gradually cover pos-
itive pairs. Although the proposed similarity cri-
terion compatible could catch positive pairs with
empty attributes, it allows many negative pairs to
pass the criterion, which makes the RR low. On
the other hand, CNF learns a blocking function to
cover (and filter out) negative pairs gradually. Neg-
ative pairs are much more obvious to define (pairs
with different values), which makes the CNF more
effective.

Another advantage of using CNF is the process-
ing time. Fast processing time to apply blocking is
important for some applications, one example is
when we do a online disambiguation (Khabsa et al.,
2015), another is to do an author search which
requires to find the relevant cluster quickly (Kim
et al., 2018). We measured the average processing
time of applying each blocking method at high PC
(PC=0.99), CNF blocking, DNF blocking, canopy
clustering took 1.39s, 2.09s, 0.44s respectively.
Canopy clustering was the fastest but generally we
saw from the Figure 2 that its RR is much lower
in high PC. CNF blocking has a faster processing
time compared to DNF blocking. This is because
CNF is composed with conjunctions, so it can
quickly reject pairs that are not consistent with
any terms. On the other hand, DNF consists of
disjunction terms, so each pair should check all
terms to make the decision. Learned CNF is also
simpler than DNF. Learned CNF at this level is
as below (fn, mn, ln is first, middle, last name
respectively):

79

0.88 0.90 0.92 0.94 0.96 0.98 1.00
Pairs Completeness

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Re
du

ct
io

n
Ra

tio

Disjoint CNF
Clustering-based (Fisher et al. 2015)
Conjunction
Nondisjoint CNF

Figure 3: PC–RR for disjoint blocking methods

{(fn,first(5))∨(fn,compatible)∨(coauth,cos(0.8))}
∧{(ln,exact)}
∧{(mn,compatible)}
∧{((fn,first(3))∨(fn,compatible))}

And learned DNF is:
{((coauth,cos(0.8))∧(ln,exact)∧(mn,compatible))}
∨{((venue,cos(0.4))∧(mn,first(1)∧(fn,compatible)}
∨{(fn,compatible)∧(mn,first(1)∧(ln,exact)}
∨{((venue,cos(0.8))∧(fn,exact)}

In addition, we observed that proposed
compatible predicate was frequently used in our
result. This shows the effectiveness of compatible
in dealing with the empty value.

5.3.3 Extension to Disjoint CNF Blocking
We evaluate our extension to disjoint blocks with
CNF blocking. We compare the blocking learned
with a pure conjunction, our proposed method, and
the method of Fisher et al. (2015).

Figure 3 shows the reduction ratio pair comple-
tion (RR–PC) curve for each method. We also
plot the original non-disjoint CNF blocking for
comparison. We see that our proposed disjoint
CNF blocking is the best amongst all disjoint meth-
ods. Fisher’s method produced nearly uniform-
sized blocks, but had limitations in reaching a high
PC and had a generally lower RR compared to
our method. Disjoint CNF didn’t perform as well
when compared to non-disjoint CNF because it is
forced to use a pure conjunction on its first step.
However, this simple extension easily helps paral-
lelize the clustering process, so that the algorithm
scales better. Testing our method to all of PubMed,
82.17% of the pairs are created in 10.5 min with
24 threads. Parallelization is important for dis-
ambiguation algorithms to scale to PubMed size
scholarly databases (Khabsa et al., 2014).

Processing time for disjoint CNF blocking

comparable to the original non-disjoint CNF
blocking. The learned disjoint CNF is:
{(fn,first(1))} ∧ {(ln,exact)} ∧
{(fn,compatible)∨(coauth,cos(0.8))} ∧
{(mn,compatible)}

First two terms are from 1-CNF, and others from
3-CNF learner. We also tested this function to the
whole PubMed.

6 Conclusion

We show how to learn an efficient blocking function
with a conjunctive normal form (CNF) of blocking
predicates. Using CNF as a negation of the corre-
sponding disjunctive normal form (DNF) of predi-
cates (Mooney, 1995), our method is a logical dual
of existing DNF blocking methods (Bilenko et al.,
2006; Michelson and Knoblock, 2006). We find
that our method reduces more pairs for a large num-
ber of target pairs completeness and has a faster run
time. We devise an extension that ensures that our
CNF blocking produces disjoint blocks. Thus, the
clustering process can be efficiently parallelized.

Future work could use multiple levels of block-
ing functions for processing each block (Das Sarma
et al., 2012) and using linear programming to find
an optimal CNF (Su et al., 2016).

7 Acknowledgement

We gratefully acknowledge partial support from the
National Science Foundation and the National Bu-
reau of Economic Research and useful discussions
with Bruce Weinberg.

References

Akiko Aizawa and Keizo Oyama. 2005. A fast linkage
detection scheme for multi-source information inte-
gration. In International Workshop on Challenges
in Web Information Retrieval and Integration, pages
30–39.

Mikhail Bilenko, Beena Kamath, and Raymond J.
Mooney. 2006. Adaptive blocking: Learning to
scale up record linkage. In Proceedings of the
6th IEEE International Conference on Data Min-
ing(ICDM’06), pages 87–96.

Yunbo Cao, Zhiyuan Chen, Jiamin Zhu, Pei Yue, Chin-
Yew Lin, and Yong Yu. 2011. Leveraging unlabeled
data to scale blocking for record linkage. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), volume 22, page 2211.

80

Peter Christen. 2012. A survey of indexing techniques
for scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 24(9):1537–1555.

Anish Das Sarma, Ankur Jain, Ashwin Machanava-
jjhala, and Philip Bohannon. 2012. An automatic
blocking mechanism for large-scale de-duplication
tasks. In Proceedings of the 21st ACM international
conference on Information and knowledge manage-
ment (CIKM), pages 1055–1064.

Ivan P Fellegi and Alan B Sunter. 1969. A theory for
record linkage. Journal of the American Statistical
Association, 64(328):1183–1210.

Anderson A. Ferreira, Marcos André Gonçalves, and
Alberto H.F. Laender. 2012. A brief survey of au-
tomatic methods for author name disambiguation.
Acm Sigmod Record, 41(2):15–26.

Jeffrey Fisher, Peter Christen, Qing Wang, and Erhard
Rahm. 2015. A clustering-based framework to con-
trol block sizes for entity resolution. In Proceedings
of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
279–288.

Lifang Gu and Rohan Baxter. 2004. Adaptive filtering
for efficient record linkage. In Proceedings of the
2004 SIAM International Conference on Data Min-
ing, pages 477–481.

Mauricio A Hernández and Salvatore J Stolfo. 1995.
The merge/purge problem for large databases. In
ACM Sigmod Record, volume 24, pages 127–138.

Mayank Kejriwal and Daniel P Miranker. 2013. An un-
supervised algorithm for learning blocking schemes.
In Proceedings of the IEEE 13th International Con-
ference on Data Mining (ICDM), pages 340–349.

Madian Khabsa, Pucktada Treeratpituk, and C. Lee
Giles. 2014. Large scale author name disambigua-
tion in digital libraries. In IEEE International Con-
ference on Big Data, pages 41–42.

Madian Khabsa, Pucktada Treeratpituk, and C. Lee
Giles. 2015. Online person name disambiguation
with constraints. In Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries(JCDL’15),
pages 37–46.

Kunho Kim, Madian Khabsa, and C. Lee Giles. 2016.
Random forest dbscan clustering for uspto inventor
name disambiguation and conflation. In IJCAI-16
Workshop on Scholarly Big Data: AI Perspectives,
Challenges, and Ideas.

Kunho Kim, Athar Sefid, and C Lee Giles. 2017. Scal-
ing author name disambiguation with cnf blocking.
arXiv preprint arXiv:1709.09657.

Kunho Kim, Athar Sefid, and C. Lee Giles. 2018.
A web service for author name disambiguation in
scholarly databases. In Proceedings of the IEEE

International Conference on Web Services (ICWS),
pages 265–273.

Michael Levin, Stefan Krawczyk, Steven Bethard, and
Dan Jurafsky. 2012. Citation-based bootstrapping
for large-scale author disambiguation. Journal of
the American Society for Information Science and
Technology, 63(5):1030–1047.

Wanli Liu, Rezarta Islamaj Doğan, Sun Kim, Donald C
Comeau, Won Kim, Lana Yeganova, Zhiyong Lu,
and W John Wilbur. 2014. Author name disambigua-
tion for pubmed. Journal of the Association for In-
formation Science and Technology, 65(4):765–781.

Andrew McCallum, Kamal Nigam, and Lyle H Ungar.
2000. Efficient clustering of high-dimensional data
sets with application to reference matching. In Pro-
ceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 169–178.

Matthew Michelson and Craig A Knoblock. 2006.
Learning blocking schemes for record linkage. In
Proceedings of the 21st AAAI Conference on Artifi-
cial Intelligence, pages 440–445.

Raymond J Mooney. 1995. Encouraging experimen-
tal results on learning cnf. Machine Learning,
19(1):79–92.

George Papadakis, Dimitrios Skoutas, Emmanouil
Thanos, and Themis Palpanas. 2020. Blocking and
filtering techniques for entity resolution: A survey.
ACM Computing Surveys (CSUR), 53(2):1–42.

George Papadakis, Jonathan Svirsky, Avigdor Gal, and
Themis Palpanas. 2016. Comparative analysis of ap-
proximate blocking techniques for entity resolution.
Proceedings of the VLDB Endowment, 9(9):684–
695.

Guolong Su, Dennis Wei, Kush R Varshney, and
Dmitry M Malioutov. 2016. Learning sparse two-
level boolean rules. In Proceedings of the IEEE
26th International Workshop on Machine Learning
for Signal Processing (MLSP), pages 1–6.

Vetle I Torvik and Neil R Smalheiser. 2009. Author
name disambiguation in medline. ACM Transac-
tions on Knowledge Discovery from Data (TKDD),
3(3):11.

Su Yan, Dongwon Lee, Min-Yen Kan, and Lee C Giles.
2007. Adaptive sorted neighborhood methods for
efficient record linkage. In Proceedings of the 7th
ACM/IEEE-CS joint conference on Digital libraries,
pages 185–194.

