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Abstract

Automatically generating question an-
swer (QA) pairs from the rapidly growing
coronavirus-related literature is of great value
to the medical community. Creating high
quality QA pairs would allow researchers to
build models to address scientific queries for
answers which are not readily available in sup-
port of the ongoing fight against the pandemic.
QA pair generation is, however, a very tedious
and time consuming task requiring domain
expertise for annotation and evaluation. In
this paper we present our contribution in
addressing some of the challenges of building
a QA system without gold data. We first
present a method to create QA pairs from
a large semi-structured dataset through the
use of transformer and rule-based models.
Next, we propose a means of engaging subject
matter experts (SMEs) for annotating the QA
pairs through the usage of a web application.
Finally, we demonstrate some experiments
showcasing the effectiveness of leveraging
active learning in designing a high performing
model with a substantially lower annotation
effort from the domain experts.

1 Introduction

Building a QA system is a complex process requir-
ing advanced text mining approaches (Jothi et al.,
2015) and domain expertise for model evaluation.
Accordingly, automatically generating question-
answer pairs using recent advances in natural lan-
guage processing (NLP) models has gained much
attention from researchers and has achieved impres-
sive results on various publicly available datasets.
(Yang et al., 2018; Rajpurkar et al., 2016). In this
work, we explore the COVID-19 Open Research
Dataset (CORD-19) (Wang et al., 2020) first in-

∗Equal contributions, listed alphabetically

Figure 1: User Engagement App: SMEs are provided
with information including the question, the title of the
article, and some context from the article to grade the
answer, highlight the exact answer, and rate the credi-
bility of the source.

troduced in a Kaggle Competition1. The competi-
tion has been launched as a call to action for ma-
chine learning researchers to assist the medical
community in developing answers to high-priority
scientific questions related to COVID-19. A major
challenge in dealing with a large semi-structured
dataset (i.e., scholarly articles) is the lack of gold
data which we aim to address in this work.

1https://www.kaggle.com/
allen-institute-for-ai/
CORD-19-research-challenge

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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Existing methods developed by different groups
in the Kaggle competition have mainly used clus-
tering approaches (Kanungo et al., 2002) coupled
with statistical methods (Blei et al., 2003) in order
to group articles together and discover keywords
from the resulting representation of the scholarly
articles, respectively. Other researchers made use
of transformer-based QA models and BERTserini
(Yang et al., 2019) to retrieve relevant answers to
keywords extracted from a question, after which
resulting solutions were ranked by unsupervised
embedding methods (Cer et al., 2018). Finally,
top-ranking results were combined and summa-
rized (Chipman et al., 2010). Other QA models
made use of BERT (Devlin and Toutanova, 2019),
adapted variations of BERT models (Huang et al.,
2019; Beltagy et al., 2019), and BERT-like models
(Lan et al., 2020) to produce semantically mean-
ingful sentence embeddings from abstracts to an-
swer important questions raised by the healthcare
community. Developing QA systems for COVID-
19 was not limited to the Kaggle competition; in
(Oniani and Wang, 2020), a hybrid approach based
on GPT-2 (Radford et al., 2019) was proposed to
generate responses for different COVID-19 related
questions. In general, developing QA generation
has achieved promising progress recently. How-
ever, answering a question in specific domains such
as health domain is still challenging, due to the
requirement of expert knowledge and lack of high-
quality training data. For example, Walonoski et al.
(Walonoski et al., 2018) focused on generation of
dataset from the state transition of patient records.
Recently, Shen at al. (Shen et al., 2020) introduced
structure information of QA pairs generation in
medical domain. They proposed an unsupervised
detector to automatically explore external materials
for the validity of generated QA pairs. Despite all
these attempts and solutions by various researchers,
lack of annotated data for the CORD-19 dataset
presents a challenge to automatically verify the cor-
rectness of the created QA pairs and also prevents
us from leveraging supervised techniques.

To help address the shortcomings of previous
approaches, we aim to create gold data related to
COVID-19 which in turn can serve the purpose of
training and evaluating supervised models. We em-
ploy transformer and rule-based methods to auto-
matically generate a set of QA pairs, which we call
Silver QA, and then leverage various active learn-
ing selection strategies to present samples to SMEs

for annotation. To the best of our knowledge, this
is the first work which explores the potential use
of generative models to create QA pairs for quality
verification by SMEs. Our proposed approach can
serve as a practical foundation for the creation of a
QA system for any complex semi-structured dataset
requiring the employment of domain knowledge
experts to maintain the standard of the generated
QA pairs.

To provide a better user experience during the
annotation process, we build a web application,
which we call the User Engagement App (UEA),
shown in Figure 1. The UEA presents a batch of
QA pairs once the SMEs select their expertise of
a specific domain and topics of interest (e.g., vac-
cines and therapeutics, virus genetics, origin, and
evolution). It also allows the SMEs to grade the QA
pairs, select exact answers, and rank the credibility
of the source. While developing the web applica-
tion, we engaged two medical students to obtain
their feedback. We summarize their feedback into
two major issues when annotating the QA pairs,
details of which are outlined in Section 2. From
these sets of feedback, we may firstly conclude that
the SMEs require several hours to review a small
batch of QA pairs due to the scientific complexity
of the questions, and secondly, a high degree of
domain-specific knowledge (e.g., virology, molec-
ular genetics) is required to answer these scientific
questions. We address the first feedback from the
SMEs by introducing an active learning strategy
which provides a method on how to select a limited
number of samples. This in turn reduces the an-
notation efforts required to develop a practical QA
system. In the future work section, we also provide
some directions for the second feedback based on
the results obtained from the QA pairs that we have
generated.

Figure 2 illustrates the overview of how we in-
tegrate these different strategies to create the QA
pairs and obtain gold data provided by the SMEs
via the web application. We explain these steps in
more details in Sections 2 and 3 and also provide
the experimental results in Section 4.

2 Datasets

In this section, we introduce the publicly available
biomedical datasets that we use for our experiments.
We also describe various methods conducted in this
work to generate QAs specifically but not limited
to COVID-19.
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Figure 2: Generation of the Silver QA Data and the Process of Obtaining Gold Data using Active Learning

2.1 Existing Biomedical Datasets

We use three existing biomedical datasets:

• PubMedQA (Jin et al., 2019): a biomedical
QA dataset collected from the abstracts of
PubMed articles. PubMedQA has 1k expert-
annotated, 61.2k unlabeled and 211.3k artifi-
cially generated QA instances.

• BioASQ (Tsatsaronis et al., 2015): a biomedi-
cal QA dataset consisting of 2,747 questions
in the ”Training 7b” dataset and 500 ques-
tions in the ”7b golden enriched” test dataset.
The questions are provided with their relevant
articles, snippets, concepts and Resource De-
scription Framework (RDF) triples, ”exact”
and ”ideal” answers.

• CORD-19 (Wang et al., 2020): a resource
of over 158K scholarly articles (released on
April 16th, 2020), including over 75K with
full text, about COVID-19, SARS-CoV-2, and
related coronaviruses collected by the White
House and a coalition of leading research
groups and it was released along the Kaggle
Competition.

2.2 Generating the Silver QA Dataset

We limit our question generation procedure to trans-
former and rule-based methods, refraining from
the usage of other neural question generation meth-
ods such as (Du et al., 2017; Krishna and Iyyer,
2019) in order to create simple baselines for the
comparison and evaluation of subsequent sections.

We recognize the importance of exploring neu-
ral methods to further assess the quality of the
generated QA pairs and leave this exploration to
the future work. The details of the steps taken
to create the Silver QA are explained in this sec-
tion and are also illustrated at the top part of Fig-
ure 2. In order to engage the SMEs effectively,
we use two approaches. In our first approach, we
create “QA-pre” by considering only the titles of
the CORD-19 dataset starting with “Do/Does” and
“Is/Are”, i.e., titles with these prepended keywords,
in order to be consistent with the schema of Pub-
MedQA in which questions can be answered by
“yes/no/maybe”. However, this would result in a
very small dataset. We therefore also include ques-
tions prefixed with “Wh”. Including all the three
question types our dataset contained only 553 titles
with these prefixes which can serve as questions.
To further generate a larger dataset, we consider
all titles with verbs and incorporate the usage of
a POS-tagger to formulate questions from titles.
The resulting titles are grammatically incorrect in
several instances and a potential direction would
be to solely prepend “Do/Does” and “Is/Are” to
titles containing verbs to formulate questions. This
would require the SMEs to correct questions if they
do not match the potential answer based on the
choices available to them. Due to the limited size
of “QA-pre”, we introduce our second approach
using a siamese BERT structure (SBERT) (Reimers
and Gurevych, 2019).

To create a structured dataset which is practical
for the SMEs to provide annotations, we follow a
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procedure of creating valid QA pairs using:

1. Titles of CORD-19 scholarly articles which
we consider, for n articles in the CORD-19
dataset as the set {t1, t2, ...tn} ∈ T where T
contains all titles obtained from the scholarly
articles, {d1, d2, ...dn} ∈ D where di repre-
sents a single article from which a correspond-
ing title, ti is obtained.

2. Sentences with high cosine similarity to the ti-
tles of CORD-19 scholarly articles taken from
the abstracts and conclusions from CORD-19
represented by {t1

′, t2
′, ..., tn

′} ∈ T ′, ob-
tained using SBERT as the encoder.

Sentences from T and T ′ are used as inputs for gen-
erating a set of questions {q1, q2, ...qn} ∈ Q and
answers {a1, a1

′, a2, a2
′, ..., an

′, an} ∈ A. The set
of questions, Q, is generated from these sentences
solely using rule-based methods which make use of
a syntactic parser to refactor them into questions by
prepending “Wh” interrogative words to T and T ′

(Heilman and Smith, 2009). Similarly, the answers,
ai ∈ A, are generated based on rule-based methods,
also making use of a syntactic parser for match-
ing or refactoring sentences to a specific structure,
maintaining an answer-like format. The subset of
answers, ai

′ ∈ A are generated from the recently
released Text-to-Text Transfer Transformer model,
T5 (Raffel et al., 2019). This becomes possible as
T and T ′ contains sufficient context for any given
scholarly article in D. At the time of writing this
paper, T5 is the highest ranking encoder-decoder
structured model on a wide variety of NLP tasks, in-
cluding the GLUE benchmark (Wang et al., 2018),
and the extractive, context-based question answer-
ing task (Rajpurkar et al., 2016). Moreover, T5 also
shows good performance on closed-book question
answering, a question answering task that involves
generating answers to questions when no context
is supplied (Roberts et al., 2020).

The generation of ai
′ ∈ A involves finetuning

of a pre-trained ”large” configuration of the T5
model (770M parameters) on a mixture of three
datasets: the TriviaQA dataset (Joshi et al., 2017),
the Natural Questions dataset (ignoring the avail-
able context) (Kwiatkowski et al., 2019), and fi-
nally a domain specific COVID-19 dataset2 with
human-annotated answers. The model is finetuned
for 25,000 steps and greedy decoding is performed.

2https://github.com/xhlulu/covid-qa

Figure 3: T5 answers are generally composed of fewer
tokens than those generated via the rule-based ap-
proach.

As titles may not be written in the form of natural
sentences, we add an additional layer of validation
by asking four individuals without domain-specific
expertise to provide manual annotations. The pur-
pose of this validation step is to filter out gram-
matically incorrect questions generated by the rule-
based methods. We measure the inter-annotator
agreement of these annotations using the Cohen’s
kappa coefficient (McHugh, 2012) on 100 unique
questions from T ′ and summarize these statistics in
Table 1. In general higher values of this coefficient
confirms a higher level of agreement between the
annotators (Landis and Koch, 1977). We observe
that the inter-annotator agreement scores for these
annotations are low and we suspect this is due to
the lack of detailed instructions for the annotation
process. We would like to address this issue by
setting up comprehensive instructions in the future
work. As T ′ contains a natural sentence structure in
contrast to T , QA pairs formulated from these sen-
tences are directly taken into consideration without
the extra validation step for filtering.

Annotator ID 1 2 3 4
1 1 0.21 0.35 0.16
2 0.21 1 0.53 0.52
3 0.35 0.53 1 0.4
4 0.16 0.52 0.4 1

Table 1: Inter-annotator agreement scores calculated
based on Cohen’s kappa coefficient

The resulting dataset, which we denote as
Silver QA, contains all questions from Q and ran-
domly sampled answers from A. The reason for
random sampling of answers which are generated
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by transformer and rule-based methods is to avoid
bias which may be introduced by either method
on producing answers. A subset of the samples in
the Silver QA dataset are shown in Table 2. We
find that the two approaches generally do not pro-
duce similar answers: neither method produces the
exact same answer for any given input question.
The rule-based method, which extracts chunks of
text, produces longer answers, while the T5 model,
which generates answers token by token via greedy
decoding, produces more terse responses as seen
in Figure 3. When looking at fuzzy matches (as
computed by the fuzzywuzzy3 Python package),
the answers have a fuzzy match score (Levenshtein
distance similarity ratio) (Levenshtein, 1966) of
0.196, indicating on average that a large number
of edits are required to transform one answer to
another. Finally, they also share a low average co-
sine similarity of 0.07 on a simple bag-of-words
encoding.

3 An Active Learning Strategy for Data
Selection

Active learning (AL) strategies are shown to be
effective in reducing the number of samples a ma-
chine learning model requires to achieve compara-
ble performance to the case where a large amount
of data is annotated (Aggarwal et al., 2014). Here,
the main idea is to ask the SMEs to annotate strate-
gically picked samples in small batches to mini-
mize their efforts while encouraging the creation
of a successful QA system.

At a high level, we start by randomly choosing
a small subset of the samples from the unlabeled
pool, details are in the next section, as the seed data
to be annotated by the SMEs. Using the annotated
seed data, we train a binary classifier to differenti-
ate between different samples. The next step is to
choose which unlabeled data points should be sent
to the SMEs in the next iteration. After obtaining
the annotations, the labeled samples are added to
the pool of labeled data and further used to retrain
the classifier. This iterative process, as illustrated at
the bottom part of Figure 2, is repeated until either
the annotation budget runs out or all the samples
in the unlabeled pool have been annotated. In the
following subsections, we explain how we formu-
late this problem as a binary classification task and
introduce the different sampling strategies we have
implemented.

3https://github.com/seatgeek/fuzzywuzzy

3.1 Problem Formulation

To show the effectiveness of the AL strategies,
we consider the following human-annotated QA
pairs from the datasets introduced in Section 2:
1) the questions and long answers from the
PubMedQA expert-annotated dataset considering
only the yes/no answers; and 2) the questions and
ideal answers from the BioASQ dataset. We la-
bel these QA pairs as “valid” since the answers
are the expected results for the questions. We also
consider the QA pairs created in the Silver QA as
valid. However, to differentiate between the valid
QA pairs already annotated by the SMEs and the
ones for which we would like to get the SMEs feed-
back using the UEA, we assign different weights
to these samples in the AL strategy. We explain
the details of these strategies in Section 3.2. It is
noteworthy that we consider the PubMedQA and
BioASQ datasets in our experiments since our mod-
els can benefit from these larger publicly available
structured datasets in the biomedical domain which
is similar to the domain of the COVID-19.

Furthermore, to create the set of QA pairs la-
beled as “invalid”, for each question in the valid
QA pairs, we randomly select a text snippet from
the articles in the CORD-19 dataset and use it as
the answer assuming that there is a small chance
that the text snippet actually answers the question.
Following this procedure, we build a dataset with
23,208 valid and invalid QA pairs with a 50% split
between the two classes. We keep nearly 5% of
the samples which results in 1,000 samples in each
of the validation and test datasets with an equal
split between the two classes and use the rest for
training.

At this point, we can utilize a binary classifier to
distinguish between the valid and invalid QA pairs
to pick which samples should be sent to the SMEs.
This trained binary classifier can be further used in
our QA system to retrieve answers that are more
likely to be labeled as correct by the SMEs, thus,
reducing the cost of the annotation process even
further. We choose XGBoost (Chen and Guestrin,
2016) as the classifier due to its efficiency in speed
and performance in the AL experiments. Further-
more, we use sentence embeddings produced by
transformer-based models (Vaswani et al., 2017)
such as BERT (Devlin and Toutanova, 2019), and
BioBERT (Lee et al., 2019) as the features for each
QA pair. Specifically, we concatenate each ques-
tion and answer separated by a blank space and
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Question Answer (Rule-Based) Answer (Transformer-Based)
What has played a signif-
icant role in controlling
measles in China?

The live-attenuated measles virus
vaccine based on the Hu191 strain
has played a significant role in con-
trolling measles in China

the chinese government has taken
proactive steps to reduce the
spread of the disease

What are respiratory and
enteric bovine coronavirus
strains distinctive in?

It is unclear whether respiratory and
enteric bovine coronavirus strains
are distinctive in biological, anti-
genic and genetic characteristics

they are not conspecific

What is Pneumonia an in-
flammatory disease of?

Pneumonia is an inflammatory dis-
ease of the lung, responsible for high
morbidity and mortality worldwide

lungs

what causes lower respira-
tory tract infections?

Background: Human metapneu-
movirus causes lower respiratory
tract infections, particularly in
young children and the elderly

bacteria, viruses, and protozoa

What mediates viral entry
into host cells?

The filovirus surface glycoprotein
mediates viral entry into host cells

a complex interaction between
the virus and host cell mem-
branes

Table 2: Qualitative Assessment of QA Pairs. The first column contains Questions from the set Q, the second and
third columns contain generated rule-based and transformer-based answers from the set A respectively.

then obtain its embedding. More details of these
experiments are reported in Section 4.

3.2 Design of the Sampling Strategies
We propose leveraging different AL strategies to
sample unlabeled QA pairs from the pool of valid
and invalid QA pairs to be annotated by the SMEs.
A baseline strategy in comparison with any AL
approach is choosing the samples randomly accord-
ing to a uniform probability distribution and we
also use this baseline to compare the performance
of our proposed methods.

The first AL strategy that we implement, denoted
by AL-Uncertainty, is based on the uncertainty of
the classifier. In this case, the probability of the la-
bels predicted by the classifier is used as a measure
of uncertainty and the samples for which the bi-
nary classifier is the least certain about their labels
are selected for annotation. Despite its simplic-
ity, this technique has been successfully used in
many different applications and has been one of
the ubiquitous AL strategies to select the most in-
formative samples for a model to be annotated by
the SMEs (Fu et al., 2013; Aggarwal et al., 2014;
Konyushkova et al., 2017). One can formulate this
strategy as follows

x∗ = argminxi∈UP (yi = y | xi) (1)

where P (yi = y | xi) is the probability of the

predicted class y for sample xi, U is the pool of
unlabeled samples, and x∗ is the sample picked for
annotation. In our simulations, in order to differ-
entiate between the already human-annotated QA
pairs and the samples in the Silver QA dataset, we
consider different weights for different data sources.
Indeed, we rank the samples after considering their
class predicted probability based on the weight of
their data source. Thus, we can write the following

R(xi) = wi rP(xi) (2)

where R(xi) is the final rank of sample xi, wi is
the weight assigned to the source of xi, and rP(xi)
is the rank of xi using the probability P over all
samples in U . The AL-Uncertainty strategy picks
a number of samples equal to the batch size which
have the lowest final rank R, thus, samples with a
lower source weight have a higher chance of being
selected for annotation.

As our second AL strategy, we propose promot-
ing sample diversity to the uncertainty approach
in order to improve the performance of the AL-
Uncertainty as explained in (Fu et al., 2013). In-
spired by (Shuyang et al., 2018) and denoted by
AL-Clustering, this strategy is based on clustering
the samples. This method clusters the samples,
represented by the features obtained from the em-
beddings of the QA pair, and then picks one sample
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within each cluster for which the classifier is the
least confident about its predicted label. We can
formulate this strategy as follows

x∗ = argminxi∈Uci
P (yi = y | xi) (3)

where Uci is the cluster that xi belongs to in the
pool of unlabeled samples, and x∗ is the sample
picked for annotation in cluster ci. We would like to
emphasize that unlike the method in (Shuyang et al.,
2018), we perform the clustering in each iteration
to rearrange the samples in different clusters as we
get more annotated samples. We set the number of
clusters in each iteration equal to the batch size and
also employ the same weighting scheme described
for the AL-Uncertainty strategy which results in

Rci(xi) = wi r
ci
P (xi) (4)

where Rci(xi) is the final rank of sample xi in its
cluster ci, wi is the weight assigned to the source
of xi, and rciP (xi) is the rank of xi using the prob-
ability P over all samples in U which belong to
cluster ci. The AL-Clustering strategy picks one
sample in each cluster which has the lowest final
rank R, thus, similar to the AL-Uncertainty strat-
egy, samples with a lower source weight have a
higher chance of being selected for annotation.

4 Experiments and Results

We evaluate the performance of the different AL
strategies by reporting both the accuracy and
F1 score on the test dataset. To have a fair as-
sessment of the performance of each method, we
run the experiments 5 times using different random
seeds and average the results as illustrated in Fig-
ure 4. We discuss the details of the implementation
and setup for all of these experiments in Section 4.1
and discuss the details of the results in Section 4.2

4.1 Experimental Setup

We randomly choose 20 QA pairs from the unla-
beled pool of the training set as the initial seed data.
The batch size of the samples to be selected per it-
eration is 5 and the total number of iterations is set
to 50 which amounts to 1.2% of the entire training
dataset. As aforementioned, we use the XGBoost
classifier to predict whether a QA pair is valid or
not. The sentence embedding of each QA pair
is employed as its input features. We experiment
with two settings of embeddings that are produced

by the pre-trained “bert-base-cased”4 and “biobert-
base v1.1”5 transformer-based models. For both
of these models, the output of the network for the
[CLS] token is used to represent the input sentence.

For the weights of data sources utilized in the
AL-Uncertainty and AL-Clustering strategies, we
follow this scheme: X weights to the samples
from PubMedQA and BioASQ, 3X weights to
the samples from Silver QA, and 2X weights to
the samples from CORD-19. The intuition behind
this setting is that, at this point, the samples in
Silver QA and CORD-19 have not been validated
by the SMEs yet. However, in the real world sce-
nario when we use the UEA, reversing the setting
of the weights (i.e., lower values given to QA pairs
from Silver QA and CORD-19) would result in a
higher probability for selection of the QA pairs for
which the model is unable to make a clear judg-
ment about their labels. Also, due to the fact that
the QA pairs from PubMedQA and BioASQ have
already been annotated, we can filter them out in
the UEA if they are selected by the active learner.

4.2 Results and Discussion

We empirically compare the performance of the
three selection strategies described in Section 3.2.
We also compare the achievable performance of
the two XGBoost-based models with “DistilBERT-
base-cased”4, a BERT-based classifier, when
trained on the entire dataset, as reported in Table 3.
We observe that the DistilBERT model (Sanh et al.,

Model F1 Score
BERT + XGBoost 0.85

BioBERT + XGBoost 0.87
DistilBERT 0.98

Table 3: F1 Score for three models trained on the entire
dataset

2019) outperforms the XGBoost-based models sub-
stantially due to its more advanced architecture in
which the embedding layers of the network are also
updated during the training whereas the sentence
embeddings used in the XGBoost-based models
are static. However, incorporating the DistilBERT
model in our experiments is both time and resource
intensive since DistilBERT runs 36 times slower
than XGBoost per AL iteration on a K80 GPU.
Therefore, in this work, we only experiment with

4https://huggingface.co/
5https://github.com/dmis-lab/biobert
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(a) XGBoost model with sentence embeddings from pre-trained bert-base-cased model 	
	
	

	
	 (b) XGBoost model with sentence embeddings from pre-trained biobert-base v1.1 model

Figure 4: Evaluation of the different AL strategies using accuracy and F1 score measures

the two XGBoost-based models, yet we would like
to include the BERT-based classifiers in the exper-
iments for our future work to compare the perfor-
mance. Also, the XGBoost model with sentence
embeddings produced by BioBERT improves the
F1 score by 2% compared with the one using BERT
since BioBERT is pre-trained on biomedical arti-
cles which aligns with the domain of our experi-
ment dataset.

The curves in Figures 4(a)-(b) clearly show that
the AL selection strategies outperform the random
baseline for both sentence embedding settings. In-
deed, we observe that the random strategy using

1.2% of the data achieves a similar performance
compared to the AL strategies using less than 0.2%
of the data which is a significant improvement since
the AL strategies use much less annotated data. We
also observe that both of the AL strategies achieve
99% of the achievable performance of the model
using only 1.2% of the training dataset. Thus, one
can clearly deduce that compared with the random
strategy, AL-Uncertainty and AL-Clustering can
achieve better performance with much less labeling
effort, therefore, justifying our proposed method
to obtain the gold data for the CORD-19 dataset
using the UEA.
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5 Conclusions and Future Work

In this work, we propose a novel strategy consisting
of transformer and rule-based methods to generate
QA pairs from scientific literature gathered in the
CORD-19, while making use of a validation pro-
cedure to maintain the quality. We engage SMEs
from the medical community and develop a web
application to serve the purpose of providing an
efficient user interface for annotating the QA pairs
generated by our designed system. We also lever-
age active learning strategies to significantly reduce
the required annotation effort from the SMEs.

This work paves the way for several interesting
areas which can be explored further in the future.
We believe that the engagement app, which will
be released to the public soon, would enable the
medical community to use it to its full extent as it
can incorporate several subjective opinions from
different SMEs and researchers. With the founda-
tion laid by this work, we can also investigate better
ways to explore the generation process of accurate
questions by diving deeper into the task of question
generation which is gaining attention in the field
of NLP. In order to further benefit from our pro-
posed method to improve the generalizability of the
model using only a small annotated dataset, we can
provide higher quality QA pairs by removing re-
dundant questions using methods which are proven
to work for graphical structures. These methods
treat each scholarly article as a node which results
in reducing the number of highly interlinked ques-
tions. Another plausible direction to explore is the
incorporation of tasks such as extreme multi-label
classification which would allow us to categorize
scholarly articles under areas which may be better
suited for annotations and align with the expertise
of SMEs. Lastly, as explained earlier, generation
of QA pairs in this work was limited to transformer
and rule-based methods. We would like to explore
the integration of successful neural based methods
in our proposed approach.
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