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Abstract

The task of definition detection is important
for scholarly papers, because papers often
make use of technical terminology that may
be unfamiliar to readers. Despite prior work
on definition detection, current approaches are
far from being accurate enough to use in real-
world applications.

In this paper, we first perform in-depth er-
ror analysis of the current best performing
definition detection system and discover ma-
jor causes of errors. Based on this analy-
sis, we develop a new definition detection sys-
tem, HEDDEx, that utilizes syntactic features,
transformer encoders, and heuristic filters, and
evaluate it on a standard sentence-level bench-
mark. Because current benchmarks evaluate
randomly sampled sentences, we propose an
alternative evaluation that assesses every sen-
tence within a document. This allows for eval-
uating recall in addition to precision.

HEDDEx outperforms the leading system on
both the sentence-level and the document-level
tasks, by 12.7 F1 points and 14.4 F1 points, re-
spectively. We note that performance on the
high-recall document-level task is much lower
than in the standard evaluation approach, due
to the necessity of incorporation of document
structure as features. We discuss remaining
challenges in document-level definition detec-
tion, ideas for improvements, and potential is-
sues for the development of reading aid appli-
cations.

1 Introduction

Automatic definition detection is an important task
in natural language processing (NLP). Definitions
can be used for a variety of downstream tasks, such
as ontology matching and construction (Bovi et al.,
2015), paraphrasing (Hashimoto et al., 2011), and
word sense disambiguation (Banerjee and Peder-
sen, 2002; Huang et al., 2019). Prior work in au-

Example

stask are softmax-normalized weights and the scalar [...]

Textual entailment is the task of determining whether
a “hypothesis” is true, given a “premise”.

A biLM combines both a forward and backward LM

[...] a fine grained word sense disambiguation (WSD)
task and a POS tagging task.

Table 1: Examples of terms and definitions from Pe-
ters et al. (2018). Each row shows a term (e.g., stask)
along with its definition (e.g., “softmax-normalized
weights”).

tomated definition detection has addressed the do-
main of scholarly articles (Reiplinger et al., 2012;
Jin et al., 2013; Espinosa-Anke and Schockaert,
2018; Vanetik et al., 2020; Veyseh et al., 2020).
Definition detection is especially important for
scholarly papers because they often use unfamil-
iar technical terms that readers must understand to
properly comprehend the article.

In formal terms, definition detection is com-
prised of two tasks: classifying sentences as con-
taining definitions or not, and identifying which
spans within these sentences contain terms and defi-
nitions. As the performance of definition extractors
continues to improve, these algorithms could pave
the way for new types of intelligent assistance for
readers of dense technical documents. For exam-
ple, one could envision future interfaces that reveal
definitions of jargon like “biLM” or the symbol
“stask” when a reader hovers over the terms in a
reading application (Head et al., 2020). Examples
of sentences containing terms and definitions are
shown in Table 1.

Despite recent advances in definition detection,
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much work remains to be done before models are
capable of extracting definitions with an accuracy
appropriate for real-world applications. The first
challenge is one of recall: existing systems are
typically not trained to identify all definitions in
a document, but rather to classify individual sen-
tences arbitrarily sampled from a large corpus. The
second challenge is one of precision: the state of
the art misclassifies upwards of 30% of sentences
(Veyseh et al., 2020). This begs the questions of
why definition extractors fall short, and how these
shortcomings can be overcome.

In this paper, we contribute the following:

• An in-depth error analysis of the current best-
performing model. This analysis characterizes
the state of the field and illustrates future di-
rections for improvement;

• A new model, Heuristically-Enhanced Deep
Definition Extraction (HEDDEx), that ex-
tends a state-of-the-art model with improve-
ments designed to address the problems found
in the error analysis. An evaluation shows that
this improved model outperforms the state of
the art by a large margin (+12.7 F1);

• An introduction of the challenging task of full-
document definition detection. In this task,
models are evaluated based on their ability
to identify definitions across an entire docu-
ment’s sentences. We believe this framing
of definition detection is critical to preparing
future algorithms for real-world use;

• A preliminary analysis of previous models
and our model on the document-level defini-
tion detection task using a small test set of
scholarly papers where every term and defi-
nition has been labeled. This analysis shows
that HEDDEx outperforms the state of the
art, while revealing opportunities for future
improvements.

In summary, this paper draws attention to the
work yet to be done in addressing the task of
document-level definition detection for scholarly
documents. We draw attention to the fact that a
seemingly straightforward task like definition de-
tection still poses significant challenges to NLP,
and that this is an area that needs more focus in the
scholarly document processing community.

2 Related Work

Definition detection has been tackled in several
ways in prior research. The traditional rule-based
systems (Muresan and Klavans, 2002; Westerhout
and Monachesi, 2008; Westerhout, 2009a) used
hand-written definition patterns (e.g., “is defined
as“) and linguistic features (e.g., pronoun, verb,
punctuation), providing high precision but low re-
call detection. To address the low recall prob-
lem, model-driven approaches (Fahmi and Bouma,
2006; Westerhout, 2009b; Navigli and Velardi,
2010; Reiplinger et al., 2012) were developed us-
ing statistical and syntactic features such as bag-
of-words, sentence position, part-of-speech (POS)
tags, and their combination with hand-written rules.
Notably, Jin et al. (2013) used conditional random
field (CRF) (Lafferty et al., 2001) to predict tags
of each token in a sentence such as TERM for term
tokens, DEF for definition tokens, and O for neither.
Recently, sophisticated neural models such as con-
volutional networks (Espinosa-Anke and Schock-
aert, 2018) and graph convolutional networks (Vey-
seh et al., 2020) have been applied to obtain better
sentence representations in combination with syn-
tactic features. However, our analysis found that
the state-of-the-art is still far from solving the prob-
lem, achieving an F1 score of only 60 points on a
standard test set.

3 Error Analysis of the Leading System

In order to inform our efforts to develop a more
advanced system, we performed an in-depth error
analysis of the results of the current leading ap-
proach to definition and term identification, the
joint model by Veyseh et al. (2020). We analyzed
the models’ predictions on the W00 dataset (Jin
et al., 2013) since it matches our target domain
of scholarly papers and is the dataset that the joint
model was evaluated on. Of the 224 test sentences,1

the Veyseh et al. (2020) system got 111 correct.
The first author annotated the remaining 113 sen-
tences for which the algorithm was partially or fully
incorrect to ascertain the root causes of the errors.

We discovered four (for terms) and five (for defi-
nitions) major causes for the erroneous predictions,
as summarized in Table 3. We illustrate three exam-

1Note that we use the test set of W00 for manual analysis,
which is only 10% of the entire dataset. In our experiment in
§4, we didn’t use the test set used in this error analysis, but did
cross-validation using the train set, following the experimental
setup in Veyseh et al. (2020).
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Sentences Cause Patterns Solutions

[Equal] is open in something of type collection where that
collection is a {partition of something} .

• Overgeneralization:
technical term bias
• description (is)

(none
applicable)

?

A [graph - based operator] defines a transformation on
a multi-document graph (MDG) G which preserves
{some of its properties while reducing the number}. . .

• Complicated sentence
structure

<term> defines <def> parsing fea-
tures

The Inductive Logic Programming learning method that
we have developed enables us to automatically extract from
a corpus N - V pairs whose elements axe linked by one of
the semantic relations defined in the qualia structure ...

• Unfamiliar or unseen
vocabulary
• Unseen patterns

<term> that we have
developed enables us to
automatically <def>

generalize
patterns

Table 2: Sample annotations from our analysis of errors produced by Veyseh et al.’s (2020) joint model when
extracting definitions from the W00 (Jin et al., 2013) dataset. Each row includes a sentence annotated with gold
labels for terms and definitions, and the system’s predictions for [terms] and {definitions} (“Sentences”). Also
shown is a class of error (“Cause”), surface patterns that we anticipate could be used to correct the detection of
the definition (“Patterns”), and classes of improvements to make to the model (“Solutions”). The first row is an
example of a false positive; the second row is a partially-correct prediction; and the third row is a false negative. A
transcription error (‘axe’ instead of ‘are’) is retained from the dataset.

ples in Table 2. For each example, we also labeled
surface patterns between the term and definition
(e.g., “<term> defines <def>”), and potential al-
gorithm improvements to address the underlying
problem.

For instance, in the bottom-most example in Ta-
ble 2, the system did not predict any term or def-
inition, although the sentence includes the term
“Inductive Logic Programming Learning method”
and the definition “extract from a corpus...”. Our
conjecture is that the underlying surface pattern is
unseen in the training set and too complicated to
be generalized; we annotate a potential solution as
pattern generalization.

Top hypothesized causes of error (%)

Overgeneralization: technical term bias 48.6%
Unfamiliar or unseen vocabulary 25.7%

Complicated sentence structure 12.9%
Entity detection 4.3%

Overgeneralization: technical term bias 28.9%
Overgeneralization: surface pattern bias 23.3%

Unseen patterns 14.4%
Complicated sentence structure 12.2%
Overgeneralization: description 3.3%

Table 3: Top causes of errors for terms (top) and defi-
nitions (bottom)

We rank the causes of errors by frequency and
summarize the results in Table 3. For detection of
terms, nearly half of the error cases fall into over-
generalization of technical terms: overly predicting

words like “equal” and “model” as terms (e.g., the
top example in Table 2).

Proposed error correction solution types (%)

Syntactic (POS, parse tree, entity, acronym) 29.2%
Heuristics 23.6%

Better encoder/tokenizer, UNK 18.0%
Rules (surface patterns) 11.3%

Annotations* 9.4%
Pattern generalization 5.7%

Mathematical symbol detection 1.9%
More context 0.9%

Table 4: Proportions of proposed error correction so-
lution types. Annotations* indicates extremely ambigu-
ous cases even for humans, so additional human anno-
tations are required to disambiguate them.

We again rank the error correction solutions by
frequency (Table 4). We predict that 29% of errors
can be fixed by informing the system about syntac-
tic features of the sentence such as part-of-speech
tags, parse tree annotations, entities, or acronyms
for more accurate detection. Surprisingly, simple
heuristics (e.g., stitching up discontiguous token
spans) seem likely to be highly effective to address
the errors in Table 3, such as discarding output
that does not successfully predict both a term and
a definition. In the next section, we implement
the first three solution types on top of the state-of-
the-art system and report the resulting performance
improvements.
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B-T O B-D I-D

Heuristic Rules 
repair tags · filter bad predictions

Encoders

Slot Tags

Tokens

B-T O B-D I-D

B-T O B-D I-D

Sentence 
Classifier

TL is transfer learning

Syntactic 
Features

CRF

Feature Extraction

POS · NP / VP  

entity · acronym · ...

NNP VBZ NN NNP

"TL" "transfer learning"
term definition

0 / 1

Output
decision

Figure 1: The HEDDEx model. The new modules de-
veloped in this work include the incorporation of syn-
tactic features, the addition of pre-trained transformer
encoders, and post-processing with heuristics.

4 Definition Sentence Detection Model

To address the errors identified in §3, we designed
HEDDEx, a new sentence-level definition detec-
tion model. The model incorporates a set of syn-
tactic features, heuristic filters, and encoders. Each
of these was designed to address a common class
of error revealed in the error analysis. The model
achieves superior performance over the state of the
art for the task of sentence-level definition detec-
tion.

4.1 Proposed Model: Heuristically-Enhanced
Deep Definition Extraction (HEDDEx)

HEDDEx extends the joint model proposed by
Veyseh et al. (2020). The joint model is comprised
of two components. The first component is a CRF-
based sequence prediction model for slot tagging.
The model assigns each token in a sentence one
of five tags: term (“B-TERM”, “I-TERM”), defini-
tion (“B-DEF”,“I-DEF”), or other (“O”). The second
component is a binary classifier that labels each
sentence as containing a definition or not.

HEDDEx has three new modules (Figure 1).
First, it encodes input from a transformer encoder

fine-tuned on the task of definition extraction,
whereas the joint model encodes input from a com-
bination of a graph convolutional network and a
BERT encoder without fine-tuning.2 We evaluate
several state-of-the-art encoders for this task, in-
cluding BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), and SciBERT (Beltagy et al., 2019).

Second, HEDDEx is provided with additional
syntactic features as input. These features include
parts of speech, syntactic dependencies, and the
token-level labels provided by entity recognizers
and abbreviation detectors (Schwartz and Hearst,
2003). The features are extracted using off-the-
shelf tools like Spacy3 and SciSpacy (Neumann
et al., 2019).

Third, the output of the CRF and sentence classi-
fier is refined using heuristic rules. The rules clean
up the slot tags produced by the CRF, and override
predictions made by the sentence classifier. The
rules include, among other rules:

• Do not classify a sentence as a definition if it
only contains a term without a definition, or a
definition without a term.

• Stitch up discontiguous token spans for terms
and definitions by assigning all contiguous
tokens between two term or definition labels
the same label.

These three enhancements developed in
HEDDEx were selected specifically to suit the
shortcomings of the models identified in the error
analysis (§3), leading to significant improvements
for definition detection in our experiments.

4.2 Baseline Models

To evaluate the impact of these improvements on
the definition detection task, HEDDEx was com-
pared to four baseline systems: (1) DefMiner (Jin
et al., 2013), a CRF-based sequence prediction
model that makes use of hand-written features; (2)
Li et al.’s (2016) model comprised of a CRF with
an LSTM encoder; (3) GCDT (Liu et al., 2019a), a
global and local context encoder; (4) Veyseh et al.’s
(2020) joint model described above. The experi-
mental setup for the models followed the setup
described by Veyseh et al. (2020).

2However, we note that we were unable to replicate the
accuracy reported by Veyseh et al. (2020) when using the code
provided by the authors.

3
https://spacy.io/

https://spacy.io/
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4.3 Metrics

The models were compared using a set of met-
rics for both slot tagging and sentence classifica-
tion on the W00 test set. To evaluate the slot tag-
ger, macro-averaged precision, recall, and F1 score
were measured (column “Macro P/R/F” in Table 5).
However, the Macro scores do not show perfor-
mance specific to terms or definitions. Also, macro-
averaging over the position tags (B, I) makes it dif-
ficult to interpret general performance. Therefore,
we measured these three metrics only for term tags
(“TERM P/R/F”); B-TERM and I-TERM, and defi-
nition tags (“DEF P/R/F”); B-DEF and I-DEF. To
evaluate the precision of the bounds of term and
definition spans, we also evaluated the degree of
overlap between each detected term or definition
span and the corresponding span in the gold dataset
(“Partial F”). Furthermore, the accuracy of sentence
classification was measured (column “Classifica-
tion”). For each of these metrics, a higher score
indicated superior performance. We averaged each
score across 10-fold cross validation.

4.4 Setup

Due to computing limitations, we chose the best
hyper-parameter set through parameter sweeping
with HEDDEx with the BERT encoder only, and
use the best hyperparameters for all other models.
Here is the ranges of each parameter we tuned:
batch sizes in {8, 16, 32}, number of training
epochs [30, 50, 100] maximum length of sentences
in {80, 256, 512}, learning rates in [{2,5}e-{4,5}].

The other parameters used as defaults in our
experiments were as follows: the dropout ratio was
10%, the layer size for POS embeddings was 50,
and the hidden size for slot prediction was 512.
We follow the default hyper-parameters for each
transformer model of each size (base or large) using
HuggingFace’s transformer libraries.4

4.5 Results

Outcomes of the evaluation for all measurements
are presented in Table 5. The pre-trained lan-
guage model encoders (BERT, RoBERTa, SciB-
ERT) achieve comparable performance to more
complex neural architectures like the graph convo-
lutional networks used in Veyseh et al.’s (2020).
Models that included SciBERT (Beltagy et al.,
2019), rather than BERT or ROBERTa, achieved

4
https://github.com/huggingface/

transformers

higher accuracy on most measurements. We at-
tribute this to the domain similarity between the
scholarly documents that SciBERT was trained on,
and those used in our evaluation.

With SciBERT as the base encoder, the incorpo-
ration of syntactic features led to further accuracy
gains. Of particular note are the improvements in
recall in term spans. During our evaluation, we ob-
served that the gains from syntactic features were
more pronounced for encoders with a small mode
size (i.e., the “-base” models). We conjecture that
this is because the larger encoder models were ca-
pable of learning comparable linguistic patterns to
those captured by the syntactic features.

The addition of heuristic rules led to significant
improvement (+11.8 Macro F1) over the combi-
nation of Joint and SciBERT. Given the modest
improvement in term and definition tagging, we
suspect that much of this improvement can be ac-
counted for by the correction of position markers
in the slot tags (i.e., distinguishing between B and
I in the tag assignments).

In the following experiments, we call HEDDEx
the combination of three components: the encoder
(SciBERT or RoBERTa), syntactic features, and
heuristic filters.

5 Document-Level Definition Detection

Although HEDDEx attains reasonable performance
on individual sentences, it faces new challenges
when applied to the scenario of document-level
analysis. In this section, we evaluate sentence de-
tection for full papers in two novel ways. First, we
assess the precision of the HEDDEx model across
all of the sentences of 50 documents in §5.1. Sec-
ond, we assess both the precision and the recall of
the algorithm across all of the sentences of 2 full
documents (§5.2, S5.3).

5.1 Error Analysis on Predicted Definitions

To assess how well HEDDEx works at the doc-
ument level, we randomly sampled 50 ACL pa-
pers from the S2ORC dataset (Lo et al., 2020), a
large corpus of 81.1M English-language academic
papers spanning many academic disciplines. We
ran the pretrained HEDDEx model on every sen-
tence of every document; if the model detected
a term/definition pair, the corresponding sentence
was output for assessment. (Note that this analy-
sis can estimate precision but not recall, as false
negatives are not detected.)

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Macro P/R/F TERM P/R/F DEF P/R/F Partial F Clsf.

DefMiner (Jin et al., 2013) 52.5 / 49.5 / 50.5 - - - -
LSTM-CRF (Li et al., 2016) 57.1 / 55.9 / 56.2 - - - -
GCDT (Liu et al., 2019a) 57.9 / 56.6 / 57.4 - - - -
Joint (Veyseh et al., 2020) 60.9 / 60.3 / 60.6 - - - -
Joint* (Veyseh et al., 2020) 61.0 / 60.2 / 60.7 - - - 70.5

HEDDEx
Joint* + BERT-base 59.5 / 61.3 / 60.3 66.6 / 70.0 / 68.2 72.1 / 74.0 / 72.8 74.3 83.4
Joint* + BERT-large 60.4 / 61.4 / 60.7 67.5 / 71.0 / 69.0 72.3 / 73.9 / 72.9 74.5 83.2
Joint* + RoBERTa-large 60.3 / 61.6 / 60.7 67.3 / 70.3 / 68.6 72.8 / 74.6 / 73.5 73.2 84.2
Joint* + SciBERT 61.9 / 61.2 / 61.5 71.1 / 69.1 / 69.9 74.0 / 74.6 / 74.2 75.7 85.1
Joint* + SciBERT + Syntactic 61.6 / 61.8 / 61.6 70.7 / 71.3 / 70.9 73.3 / 72.4 / 72.8 74.3 84.3
Joint* + SciBERT + Syntactic + Heuristic 72.9 / 74.3 / 73.4 69.8 / 72.1 / 70.8 75.4 / 71.8 / 73.3 74.3 84.5

Table 5: Comparison of the accuracy of recent models and the HEDDEx model for the definition detection task.
Asterisks (*) indicate that we reimplemented the model from the authors’ specification. Models were evaluated on
the W00 (Jin et al., 2013) test set. Each score is averaged across 10-fold cross validation. Accuracy measurements
include Precision, Recall, and F1-score. Each of these measurements is macro-averaged.

We replace all citations and references to figures,
tables, and sections with corresponding placehold-
ers (e.g., CITATION, FIGURE), but keep raw TEX
format of mathematical symbols in order to retain
the structure of the equations. From the 50 ACL
papers, the model detected 924 definitions out of
13,658 sentences and the average number of defi-
nitions per paper is 18.5.

Term (%) Definition (%)

Textual term 45.2% Textual Def. 58.7%
Incorrect term 27.3% Other: implausible 24.8%

Math symbol term 22.7% Other: plausible 11.8%
Acronym 3.3% Short name / Synonym 3.5%

Acronym and text 1.3% Textual & Formula Def. 0.6%
Formula Def. 0.4%

Table 6: Analysis of HEDDEx output on 50 ACL pa-
pers, ordered by frequency. N = 923.

The third author evaluated the predicted terms
and definitions separately by choosing one among
the labels shown in Table 6. For terms, the
algorithm correctly labeled 72.5%. We subdi-
vide these correctly labeled terms into standard
terms (45.2%), math symbols (22.7%), acronyms,
acronym (3.3%), or acronym and text (1.3%).
Among the correctly labeled definitions (total
63.2% = 58.7%+3.5%+0.6%+0.4%), 92.6% are
textual definitions, 5.6% are short names or syn-
onyms, and 1.7% include mathematical symbols.
We divided non-definitional text into two types:
plausible (24.8%) and implausible (11.8%), which
signals an error. The plausible text refers to expla-
nations or secondary information (similar to DEFT
(Spala et al., 2019)’s secondary definition, but with-
out sentence crossings).

Term Span (%) Definition Span (%)

Correct 83.4% Correct 89.9%
Too Long (to the right) 10.1% Cut Off (to the right) 3.4%

Cut Off (to the right) 3.2% Too Long (to the left) 2.6%
Cut Off (to the left) 1.6% Cut Off (to the left) 2.4%

Too Long (to the left) 1.4% Too Long (to the right) 1.3%

Table 7: Analysis of span length of HEDDEx output
on 50 ACL papers, ordered by frequency. N = 923.

We also measured whether the predicted span
length is correct, too long, or cut off (Table 7).
These scores are quite high; 83.4% correct for
terms and 89.9% for definitions (see Table 10).

5.2 Full Document Definition Annotation
Prior definition annotation collections select unre-
lated sentences from across a document collection.
As mentioned in the introduction, we are interested
in annotating full papers, which requires finding ev-
ery definition within a given paper. Therefore, we
created a new collection in which we annotate every
sentence within a document, allowing assessment
of recall as well as precision. Two annotators anno-
tated two full papers using an annotation scheme
similar to that used in DEFT (Spala et al., 2019)
except for omitting cross-sentence links.

We chose to annotate two award-winning ACL
papers: ELMo (Peters et al., 2018) and LISA
(Strubell et al., 2018) resulting in 485 total sen-
tences from which we identified 98 definitional and
387 non-definitional sentences. Similar to DEFT
(Spala et al., 2019), we measured inter-annotator
agreement using Krippendorff’s alpha (Krippen-
dorff, 2011) with the MASI distance metric (Pas-
sonneau, 2006). We obtained 0.626 for terms and
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0.527 for definitions, where the agreement score
for terms is lower than those in DEFT annotations
(0.80). This may be because our annotations for
terms include various types such as textual terms,
acronyms, and math symbols, while terms in DEFT
are only textual terms. The task was quite difficult:
each annotator takes two and half hours to annotate
a single paper. Future work will include refining
the annotation scheme to ensure more consistency
among annotators and to annotate more documents.

5.3 Evaluation on Document-level Definitions
We evaluated document-level performance using
the same metrics used in §4.3. All metrics were av-
eraged over scores from 10-fold validation models.
The ensemble model aggregates ten system pre-
dictions from the 10-fold validation models and
choose the final label via majority voting. We
use the best single system; HEDDEx but with
RoBERTa,5 for model ensembling.

Macro TERM DEF Partial Clf.

Joint model 36.0 30.1 38.1 34.1 86.8
HEDDEx w/ BERT 45.3 32.4 39.0 34.6 89.1
HEDDEx w/ RoBERTa 47.7 36.4 47.2 37.2 88.1
HEDDEx ensemble 50.4 38.7 49.5 39.0 89.8

Table 8: Document-level evaluation on our annotated
documents. F1 score is measured for every metric ex-
cept for classification (Clf.), which uses accuracy.

Compared to the joint model by Veyseh et al.
(2020), HEDDEx showed significant improve-
ments on every evaluation metric, which is slightly
larger than that of the sentence-level evaluation (Ta-
ble 8). With model ensembling, compared to the
state-of-the-art system, HEDDEx achieved gains
by +14.4 Macro F1 points, +8.7 TERM F1 points,
+11.4 DEF F1 points, +4.9 Partial Matching F1
points, and +3.0 classification accuracy scores.

Precision Recall F1

Macro 55.3 46.7 50.4
TERM 44.8 34.0 38.7
DEF 55.6 44.7 49.5

Table 9: Low recall problem in document-level def-
inition detection. We report precision, recall, and f1
scores on three metrics; Macro, TERM, and DEF, us-
ing our best system; HEDDEx ensemble.

However, document-level definition detection is
5RoBERTa and SciBERT show comparable performance

on the document-level definition detection task.

a much harder task than sentence-level detection.
Compared to the sentence-level task in Table 5, the
document-level task showed relatively lower per-
formance (73.4 Macro F1 in sentence-level versus
50.4 Macro F1 in document-level). In particular,
recall is much lower than precision in the document-
level task (Table 9), whereas in the sentence-level
task, precision and recall are almost the same, indi-
cating the necessity of incorporation of document
structure as additional features (See further discus-
sion in §6).

Table 10 shows the predicted terms and defini-
tions as well as annotated gold labels. Acronym pat-
terns (e.g., “biLM,” “WSD”), definition of newly-
proposed terms (e.g., “LISA”), re-definition of
prior work (e.g., “SQuAD,” “SRL,” Coreference
resolution) and some of mathematical symbols
were detected well. However, as sentences get
more complex, the system made incorrect predic-
tions. Additionally, sub-words or parentheses in ab-
breviations are sometimes partially predicted (e.g.,
the beginning of the word “pretrained” is cut off
in the definition of “semi-supervised learning” in
example 8 of Table 10) .

However, the aforementioned problem of low
recall is severe for this task, particularly since the
model often fails to detect mathematical symbols
or a combination of textual terms and mathematical
symbols (e.g., “L-layer biLM”). Moreover, when a
sentence contains multiple terms and/or multiple
symbols together, the system only ever detects one
of them.

6 Discussion

Detecting definitions is a very challenging task,
and it is far from solved. Here we discuss remain-
ing challenges and ideas for improvements, and
motivate the need for high-precision, high-recall
definition detection in an academic document read-
ing aid application.

Outstanding technical challenges include:

• Poor recognition of mathematical symbols:
As shown in our experiment, our system is
less successful at detecting math symbols than
textual terms. This is mainly because the lack
of coverage of mathematical symbols in our
training dataset (W00).

• Contextual disambiguation of symbols: In
our study, we observe that some symbols are
used with multiple meanings. For example,



203

Predicted definition sentences Type

1 Our word vectors are learned functions of the internal states of a {deep bidirectional language model} ([biLM]),
which is pre-trained on a large text corpus.

term

2 We use vectors derived from a bidirectional LSTM that is trained with a coupled {language model} ([LM])
objective on a large text corpus.

term

3 Using intrinsic evaluations, we show that the higher-level [LSTM states] capture context-dependent aspects of
word meaning (e.g., they can be used without modification to perform well on supervised word sense disambigua-
tion tasks) while lower-level states {model aspects of syntax}.

term

4 We first show that they can be easily added to existing models for six diverse and challenging language
understanding problems , including textual entailment, question answering and sentiment analysis.

term

5 For tasks where direct comparisons are possible, outperforms [CoVe] CITATION, which
{computes contextualized representations using a neural machine translation encoder}.

term

6 context2vec CITATION uses a bidirectional Long Short Term Memory LSTM ; CITATION to encode the context
around a pivot word .

term

7 Unlike most widely used word embeddings CITATION, word representations are functions of the entire input
sentence, as described in this section.

term

8 This setup allows us to do [semi-supervised learning], where the biLM is pretr{ained at a large scale} (Sec.
SECTION) and easily incorporated into a wide range of existing neural NLP architectures (Sec. SECTION).

term

9 Given a sequence of N tokens, (t1, t2, ..., tN), a forward language model computes the probability of the sequence
by modeling the probability of token tk given the history (t1, ..., tk−1):

term

10 A [backward LM] is {similar to a forward LM, except it runs over the sequence in reverse, predicting the
previous token given the future context}:

term

11 A [biLM] {combines both a forward and backward LM}. term

12 where [hLM
k,0hLM
k,0hLM
k,0 ] is {the token layer} and hLM

k, j = [−→h LM
k, j ;

←−
h LM

k, j ], for each biLSTM layer. symbol

13 In (EQUATION), [stask] are {softmax-normalized weights} and the scalar parameter γ
task allows the task model to

scale the entire vector.
symbol

14 For each token tk, a L-layer biLM computes a set of 2L+1 representations EQUATION where hLM
k,0 is the token

layer and hLM
k, j = [−→h LM

k, j ;
←−
h LM

k, j ], for each biLSTM layer.

symbol,
term

15 In (EQUATION), stask are softmax-normalized weights and the [scalar parameter γ
task] {allows the task model

to scale the entire vector}.
symbol

16 The [Stanford Question Answering Dataset (SQuAD) CITATION] {contains 100K+ crowd sourced
question-answer pairs where the answer is a span in a given Wikipedia paragraph}.

term

17 [Textual entailment] is {the task of determining whether a “hypothesis” is true, given a “premise”}. term

18 The [Stanford Natural Language Inference (SNLI) corpus CITATION] {provides approximately 550K hy-
pothesis/premise pairs}.

term

19 A [semantic role labeling (SRL) system] {models the predicate-argument structure of a sentence}, and is often
described as answering.

term

20 CITATION modeled [SRL] {as a BIO tagging problem and used an 8-layer deep biLSTM with forward and
backward directions interleaved}, following CITATION.

term

21 [Coreference resolution] is {the task of clustering mentions in text that refer to the same underlying real world
entities}.

term

22 The [CoNLL] 2003 NER task CITATION {consists of newswire from the Reuters RCV1 corpus tagged with four
different entity types (PER, LOC, ORG, MISC)}.

term

23 The [fine-grained sentiment classification] task in the Stanford Sentiment Treebank SST-5 {involves selecting
one of five labels (from very negative to very positive) to describe a sentence from a movie review}.

term

24 The sentences contain diverse linguistic phenomena such as idioms and complex syntactic constructions such as
negations that are difficult for models to learn.

multi-
term

25 Intuitively, the [biLM] must be {disambiguating the meaning of words using their context}. term

26 a fine grained {word sense disambiguation} ([WSD]) task and a POS tagging task. term

Table 10: All predicted and gold label terms and definitions for the ELMo paper (Peters et al., 2018). Gold
labels for terms are underlined and for definitions are dashed. System-predicted [terms] are placed in [boldfaced
brackets] and {definitions} are placed in {italicized braces}. “CITATION,” “SECTION,” and “EQUATION” are
placeholders inserted for citations, section numbers, and display equations. “Type” means term type.
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symbol T in the LISA paper is used for token
representation as well as matrix transpose.
Disambiguating terms based on context of use
will be an interesting future direction.

• Description vs Definition: In our annotation
and error analysis, the most difficult distinc-
tion was between definitions and descriptions
— they have quite similar surface patterns, al-
though they refer to entirely different mean-
ings. For instance, a definition is the exact
denotation of a word, while a description is
more detailed so it can change from person to
person. Training a model that distinguishes
these types should lead to better and more
useful results.

Potential ideas for improvements of the system
include:

• Annotation of mathematical definitions: A
solution for poor math symbol detection is
to annotate math symbols and use them for
our training. One option is to add span infor-
mation to the binary judgements of the math
definition collection of Vanetik et al. (2020).

• Utilization of document-level features:
Document structure and positional informa-
tion may improve detection. For instance, the
section information of a term would be an im-
portant feature to recognize whether a term is
first introduced or not.

• Data augmentation or domain-specific
fine-tuning for high-recall system: Existing
definition training sets are small (W00 contains
only 731 definitional sentences). To obtain
more data, the data can be augmented via seed
patterns or fine-tuning with existing language
models such as SciBERT.

Lastly, as the performance of definition detection
systems increases, these systems can be applied to
real-world reading or writing aids. We discuss po-
tential issues of our system in the realistic settings:

• Metrics for usefulness: Currently, we mea-
sure precision, recall, and F1 scores with the
document-level annotations. However, we
have not explored the usefulness of the pre-
dicted definitions for readability, when they
are used in real-world applications like Schol-
arPhi (Head et al., 2020). Deciding when and
where to show definitions based on context
and information density still remains an im-
portant future direction.

• Categorization of definitions: We observe
that in fact, terms and definitions can be
grouped into multiple categories: short names,
acronyms, textual definitions, formula defi-
nitions, and more. Automatically categoriz-
ing these and showing structured definitions
might be helpful for organizing and ranking
definitions in a user interface.

• Repeated definitions and terms within doc-
uments: We observed a pattern in which the
same term is referred to multiple times in
slightly different ways. Newly proposed terms
are especially likely to exhibit this pattern.
Grouping and summarizing these in a glos-
sary table would be helpful for an academic
document reader application.

7 Conclusion

This work sets the stage for bridging the gap be-
tween a well-known NLP task; definition detec-
tion, and real-world applications of the technique
that requires both high precision and high recall.
To achieve the goal, we proposed a more realistic
setup for definition detection task called document-
level definition detection that requires high recall,
mathematical symbol recognition, and document-
level feature engineering. Our proposed definition
detection system HEDDEx achieved significant
gains in both sentence-level and document-level
tasks. Yet, the problem is far from being solved.
We suggest that better coverage of variability of
expression, recognition of mathematical symbols
and notation, and other nuances of the task must
still be addressed.
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