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Abstract

Neural language representation models such
as BERT (Devlin et al., 2019) have re-
cently shown state of the art performance in
downstream NLP tasks and bio-medical do-
main adaptation of BERT (Bio-BERT (Lee
et al., 2019)) has shown same behavior on
biomedical text mining tasks. However, due
to their large model size and resulting in-
creased computational need, practical appli-
cation of models such as BERT is challeng-
ing making smaller models with compara-
ble performance desirable for real word ap-
plications. Recently, a new language trans-
formers based language representation model
named ELECTRA (Clark et al., 2020) is in-
troduced, that makes efficient usage of train-
ing data in a generative-discriminative neural
model setting that shows performance gains
over BERT. These gains are especially impres-
sive for smaller models. Here, we introduce
two small ELECTRA based model named Bio-
ELECTRA and Bio-ELECTRA++ that are
eight times smaller than BERT Base and Bio-
BERT and achieves comparable or better per-
formance on biomedical question answering,
yes/no question answer classification, ques-
tion answer candidate ranking and relation ex-
traction tasks. Bio-ELECTRA is pre-trained
from scratch on PubMed abstracts using a con-
sumer grade GPU with only 8GB memory.
Bio-ELECTRA++ is the further pre-trained
version of Bio-ELECTRA trained on a cor-
pus of open access full papers from PubMed
Central. While, for biomedical named en-
tity recognition, large BERT Base model out-
performs Bio-ELECTRA++, Bio-ELECTRA
and ELECTRA-Small++, with hyperparame-
ter tuning Bio-ELECTRA++ achieves results
comparable to BERT.

1 Introduction

Transformers based language representation learn-
ing methods such as Bidirectional Encoder Rep-

resentations from Transformers (BERT) (Devlin
et al., 2019) are becoming increasingly popular
for downstream biomedical NLP tasks due to their
performance advantages (Lee et al., 2019). The per-
formance of these models comes at a steep increase
in computation cost both at training and inference
time. For example, we use a BERT based re-ranker
as the final step in our biomedical question answer-
ing system (Ozyurt et al., 2020), where 60% of
the question answering time latency is due to the
BERT classifier with 110 million parameters. The
increased size of the transformer models is corre-
lated with the increased performance (Devlin et al.,
2019). Since the computational cost involved at in-
ference time for large models is a bottleneck in their
practical applications in the real world especially
for real time applications such as semantic search
and question answering, new approaches to achieve
similar performance on smaller models are getting
increasingly popular. A popular approach on this
end is distilling BERT to a smaller classifier such as
DistillBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2019) and MobileBERT (Sun et al., 2020).
However, a small and efficient model without going
through the trouble of training a large model and
mimicking it in a smaller model is more preferable.

BERT uses a masked language modeling (MLM)
approach by masking 15% of the training sentences
and learning to guess the masked tokens in a gener-
ative manner. This results BERT using only 15% of
the training data. A recent approach called ELEC-
TRA (Clark et al., 2020), introduced a new lan-
guage modeling approach where a discriminative
model is trained to detect whether each token in
the corrupted input was replaced by a co-trained
generator model sample or not. ELECTRA is com-
putationally more efficient than BERT and outper-
forms BERT given the same model size, data and
computation resources (Clark et al., 2020). The
improvements over BERT is most impressive at
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small model sizes, which makes it an excellent can-
didate in pursuit of small and efficient language
representation models for biomedical text mining.

In this paper, we introduce two small and effi-
cient ELECTRA based domain-specific language
representation models trained on PubMed abstracts
and on PubMed Central (PMC) open-access full
papers, respectively, with a domain specific vocab-
ulary achieving comparable or (in some cases) bet-
ter results on several biomedical text mining tasks
to BERT Base model that have 8 times more pa-
rameters resulting in 8 times decrease in inference
time. The models are trained on a modest con-
sumer grade GPU with only 8GB RAM which is
much lower bar for pre-training of domain-specific
language representation models than for BERT and
variants. The performance on biomedical named
entity recognition (NER) of small ELECTRA mod-
els are not as impressive as in the question an-
swering related tasks compared to BERT. However,
Bio-ELECTRA++ NER performance can be sig-
nificantly improved by hyperparameter tuning to
achieve comparable performance to BERT.

2 Methods

2.1 Pre-training
Bio-ELECTRA/Bio-ELECTRA++

Both ELECTRA and BERT are pre-trained on
English Wikipedia and BooksCorpus as general
purpose language models. They both also use
WordPiece tokenization (Wu et al., 2016) which
represents words as constructed from character n-
grams of highest co-occurrence to allow out-of-
vocabulary (OOV) words to be represented. Given
a vocabulary size, the character n-grams (subwords)
making up the vocabulary are determined from the
corpus by using an objective similar to the compres-
sion algorithms to find the subwords that would
generate each unique word in the corpus. OOV
words are then generated by combination of sub-
words from the subwords vocabulary. Since the
vocabulary of BERT and ELECTRA (Clark et al.,
2020) are generated from general purpose corpora,
a lot of biomedical domain specific words need
to be composed from subwords that does not con-
vey enough information by themselves. For ex-
ample the gene BRCA1 in BERT/ELECTRA vo-
cabulary represented as B##R##CA##1, mostly
formed from single letter embedded representa-
tions. For Bio-ELECTRA, the vocabulary is gener-
ated using SentencePiece byte-pair-encoding (BPE)

model (Sennrich et al., 2016) from PubMed ab-
stract texts from 2017. Using this domain-specific
vocabulary BRCA1 is represented as BRCA##1. In
this case, the composition from parts conveys more
information since the learned vector embedding
of BRCA subword is more likely to capture, for
example, its breast cancer relatedness.

19.2 million most recent PubMed abstracts (hav-
ing PMID greater than 10 million) as of March
2020 are used for Bio-ELECTRA pre-training. Sen-
tences extracted from the paper title and abstract
text are used to build the pre-training corpus of
about 2.5 billion words. Using the PubMed ab-
stract corpus and 2017 PubMed abstracts gener-
ated SentencePiece vocabulary a ELECTRA-Small
model (14M trainable parameters) with a maxi-
mum sequence size of 256 and batch size of 64 is
pre-trained from scratch on a RTX 2070 8GB GPU
in four stages for 1.8 million steps lasting 24 days.
Original ELECTRA Small was trained on a V100
32GB GPU in 4 days with a batch size of 128 for
one million steps. However, the distributed ELEC-
TRA Small++(Clark et al., 2020), which was used
for our comparison experiments, was trained on the
XLNet (Yang et al., 2019) corpus (about 33 billion
subword corpus) with maximum sequence size of
512 for 4 million steps. Since the batch size of Bio-
ELECTRA is half the size of the ELECTRA Small
due to our GPUs memory size, two million steps
are equivalent to one million ELECTRA training
steps. ELECTRA Small++ is trained four times
more than Bio-ELECTRA and trained on much
larger corpus.

For the second stage of pre-training, full-text pa-
pers from open access subset of PubMed Central
(PMC-OAI) as of May 2020 are used. Sentences
extracted from all sections except the references
section of the full-length papers are used to build a
12.3 billion words corpus. Bio-ELECTRA is fur-
ther pre-trained for additional 1.8 million steps us-
ing this 12.3 billion words corpus on the same RTX
2070 8GB GPU for additional 24 days. The result-
ing pre-trained model is called Bio-ELECTRA++
analogous to ELECTRA Small++.

2.2 Fine-tuning for Biomedical Text Mining
Tasks

The syntactic and semantic language modeling
information latently captured in the pre-trained
weights of transformer models combined with a
classification layer were found to provide state-
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of-the-art results in many NLP tasks (Devlin
et al., 2019; Clark et al., 2020). We fine-tune
Bio-ELECTRA, Bio-ELECTRA++, ELECTRA
Small++ and BERT Base for biomedical question
answering, yes/no question answer classification,
named entity recognition (NER), biomedical ques-
tion answer candidate ranking and relation extrac-
tion tasks.

For biomedical question answering, we
used BERT and ELECTRA architectures for
SQuAD (Rajpurkar et al., 2016) for SQuAD v1.1.
Similar to Wiese et al. and Lee et al. (Wiese et al.,
2017; Lee et al., 2019), we have combined our
BioASQ (Tsatsaronis et al., 2015) 8b training data
generated factoid and list questions based training
set with out-of-domain SQuAD v1.1 data set to
increase performance over the smaller BioASQ
data.

The biomedical yes/no question answer classi-
fication task is similar to sentiment (hedging for
biomedical literature) detection where the polarity
(positive/negative) of a candidate sentence needs
to be detected in the context of a question. For
ELECTRA and BERT, we have used their official
codebase from GitHub slightly extended for our
specific classification task.

Named entity recognition involves detection of
names of biomedical entities in sentences and usu-
ally used for downstream tasks such as informa-
tion extraction and question answering. For ELEC-
TRA and Bio-ELECTRA/Bio-ELECTRA++, we
have used the ELECTRA architecture for entity
level tasks adapted for BIO annotation scheme. For
BERT, we have used HuggingFace Transformers
Python library single output layer entity classifica-
tion architecture.

In biomedical question answering, after retriev-
ing relevant documents, the sentences containing
the answer need to be filtered and ranked for the
end user. Given a set of answer candidate sentences
per question, where the sentences answering the
question are marked as relevant, the ranking prob-
lem can be cast as a 0/1 loss classification problem
and the learned probability estimates can be used
to rank the candidate sentences by relevance. Due
to highly unbalanced nature of this data set (on
average one positive example per 99 negative ex-
amples), we have also investigated a weighted loss
function. This ranking approach is also compared
to cosine distance based ranking on sentence em-
beddings generated by Sentence-BERT (Reimers

and Gurevych, 2019) with and without domain
adaptation. For Sentence-BERT domain adaptation,
we had further trained Sentence-BERT Siamese
BERT classifier model with the training portion of
our ranking data.

In biomedical relation extraction, a pre-
determined set of relations among two biomedical
entities of interest are classified. For BERT and
ELECTRA, relation extraction can be cast as a sen-
tence classification task where the biomedical en-
tities of interest are anonymized using pre-defined
tokens to indicate to the classifier the identity of
the named entities are not important compared to
the context.

For each fine-tuning experiment, ten randomly
initialized models are trained and average testing
performances and standard deviations are reported.
Default BERT and ELECTRA hyperparameters in-
cluding the number of epochs (two for QA task
and three for classification/NER tasks) are used for
corresponding experiments. More performance can
be squeezed out of the fine-tuned models by hyper-
parameter tuning. For data sets with an explicit
development set, we have investigated the effect of
the hyperparameter tuning. All of the ELECTRA
based fine-tuning trainings are conducted on a GTX
1060 6GB GPU, while the eight times larger BERT
models required training on our RTX 2070 8GB
GPU. For BERT experiments, cased BERT Base
model is used.

3 Results

3.1 Datasets

For biomedical question answering and yes/no an-
swer classification tests, we have generated train-
ing and testing data sets from the publicly avail-
able 2020 BioASQ (Tsatsaronis et al., 2015) Task
B (8b) training data set. BioASQ 8b training set
consists of 3243 questions together with ideal and
exact answers and gold standard snippets. The
questions come in four categories (i.e. factoid, list,
yes/no and summary). Factoid and list questions
are usually answered by a word or phrase (multi-
ple word/phrases for list questions) making them
amendable for extractive answer span detection
type exact question answering for which general
purpose question answering data sets are available
such as SQUAD (Rajpurkar et al., 2016). Snippets
matching their corresponding exact answer(s) are
selected for the bio-medical question answering
labeled set generation. For about 30% of the fac-
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toid/list questions no snippet can be aligned with
their corresponding ideal answers. We analyzed
those cases and were able to recover additional 152
questions after manual inspection for synonyms
and transliterations to include in our labeled data
set. The labeled data set is split into 85%/15%
training/testing data sets of size 9557 and 1809,
respectively.

For yes/no answer classification, the ideal an-
swer text of each BioASQ yes/no questions is used
as the context and the exact answer (i.e. ’yes’ or
’no’) as label for binary classification. The ideal
answers are cleaned up to remove the exact answer
(yes or no) that sometimes occur at the beginning
of the ideal answer. The labeled data is split into
85%/15% training/testing data sets of size 728 and
128, respectively. BioASQ yes/no questions are
skewed towards yes answers where about 80% of
the answers were ’yes’.

For named entity recognition tests, we have used
publicly available datasets used by Crichton et.
al (Crichton et al., 2017). Four common biomed-
ical entity types are considered, namely disease,
drug/chemical, gene/protein and species.

For our biomedical QA system, we have anno-
tated up to 100 answer candidates per question as
returned by the first answer ranker of our QA sys-
tem as relevant or not (up to the first occurrence
of a correct answer). The resulting annotated data
set consists of a training set (44933 sentences for
492 questions) and a testing set (9064 sentences for
100 questions).

For biomedical relation extraction, we
have used two datasets; GAD (Bravo et al.,
2015) (a gene-disease relation dataset) and
CHEMPROT (Krallinger et al., 2017) (a protein-
chemical multi-relation dataset). For GAD,
we have used the pre-processed version from
Bio-BERT (Lee et al., 2019) Github repository. For
CHEMPROT, we have adapted the pre-processed
data from the Github repository of the relation
extraction model described in (Lim and Kang,
2018) for our ELECTRA/Bio-ELECTRA/BERT
experiments.

The datasets used in our experiments are summa-
rized in Table 1. The datasets and source code
are available on Github (https://github.com/
SciCrunch/bio_electra). The Bio-ELECTRA
models are available on Zenodo (https://doi.
org/10.5281/zenodo.3971235).

Figure 1: Change in the exact match performance for
BioASQ question answering as a function of increased
pre-training of Bio-ELECTRA

3.2 Effect of amount of pre-training on the
Bio-ELECTRA performance

The effect of the increased number of training steps
on the BioASQ question answering task is shown in
Figure 1 on exact-match evaluation measure where
the 95% confidence intervals are also shown, Even
at 880K (or 440K in terms of ELECTRA Small++
pre-training with doubled batch size) training steps
the performance of the Bio-ELECTRA is strong
relative to BERT Base as shown in Table 2. Similar
to what is observed in general purpose downstream
question answering tasks (Devlin et al., 2019; Clark
et al., 2020), more pre-training improves down-
stream performance in biomedical question answer-
ing.

3.3 Experimental Results
The biomedical factoid/list question answering re-
sults are shown in Table 2. We have used offi-
cial SQUAD evaluation measures exact answer
span match percentage and F1 measure. While
BERT Base model had slightly better performance,
taken into account their 8 times smaller size and
45 times less training time (Clark et al., 2020), the
performance of both Bio-ELECTRA and ELEC-
TRA Small++ models are impressive. With one
fourth of the training of ELECTRA Small++,
Bio-ELECTRA has nearly same performance as
the ELECTRA Small++. The best performance
among ELECTRA models is observed for the
Bio-ELECTRA++ model further decreasing al-
ready small performance gap between ELECTRA
Small++ and BERT.

BioASQ yes/no question answer classification
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Table 1: Bimedical text mining data sets

Biomedical Question Answering Dataset
Dataset # training examples # testing examples
BioASQ 8b-factoid 9557 1809

Biomedical Yes/No Question Answer Classification Dataset
Dataset # training examples # testing examples
BioASQ 8b-yes/no 728 128

Named Entity Recognition Datasets
Dataset Entity Type # training/dev/testing entities
BC4CHEMD (Krallinger et al., 2015) Drug/Chemical 29478/29486/25346
BC2GM (Smith et al., 2008) Gene/Protein 15197/3061/6325
NCBI Disease (Doğan et al., 2014) Disease 5134/787/960
LINNAEUS (Gerner et al., 2010) Species 2119/711/1433

Biomedical Question Answer Candidate Ranking Dataset
Dataset # training examples # testing examples
BioASQ 5b based 44933 9064

Relation Extraction Datasets
Dataset Relation # training/dev/testing examples
GAD (Bravo et al., 2015) Gene-disease 4796/-/534
CHEMPROT (Krallinger et al., 2017) Protein-chemical 16521/10361/14396

Table 2: Biomedical Question Answering Test Results

Model Exact Match F1

Bio-ELECTRA (1.8M) 57.51 (0.88) 66.87 (0.63)
Bio-ELECTRA++ 57.93 (0.66) 67.48 (0.44)
ELECTRA Small++ 57.78 (0.64) 67.10 (0.55)
BERT 59.98 (0.66) 70.25 (0.48)

task results are shown in Table 3. We have used the
official BioASQ yes/no question evaluation mea-
sure of precision, recall and F1 applied on both
yes and no questions separately. While, both Bio-
ELECTRA and Bio-ELECTRA++ outperforms
BERT Base, BIO-ELECTRA++ is the clear win-
ner due to its superior performance on questions
with negative answer. The high standard deviations
for Bio-ELECTRA and BERT Base are due to one
random run in each case being stuck in a local mini-
mum where the classifier always answers yes (since
BioASQ yes/no questions are highly unbalanced
towards the ’yes’ answer (80% yes/20% no)).

The test results for biomedical NER experiments
are shown in Table 4. Similar to BioBERT (Lee
et al., 2019), we have used precision, recall and
F1 as evaluation measures. Here, the large BERT
Base language representation model showed, the
largest benefit over smaller models at the cost 8
times longer inference time. Bio-ELECTRA++
outperformed Bio-ELECTRA on all datasets and
was better (in terms of mean F1 performance) than
ELECTRA Small++ in three of the four NER entity
types, while ELECTRA Small++ was slightly bet-
ter than Bio-ELECTRA++ on the ’disease’ entity

type.
The test results for biomedical question answer

candidate ranking experiments are shown in Ta-
ble 5. We have used the mean reciprocal rank
(MRR) to evaluate the ranking performance on the
test set. Here, all of the ELECTRA models out-
performed BERT, while Bio-ELECTRA++ being
the best performing among them. Sentence-BERT
sentence embeddings question-answer cosine simi-
larity based approaches performed the worst.

The test results for biomedical relation extraction
experiments are shown in Table 6. For the multi-
relation dataset CHEMPROT, micro-averaged pre-
cision, recall and F1 metrics are used. For GAD
dataset, Bio-ELECTRA performed best closely fol-
lowed by Bio-ELECTRA++. BERT showed best
performance on the CHEMPROT dataset , followed
by Bio-ELECTRA++.

Bio-ELECTRA++ outperformed Electra-
SMALL++ in 8 out of 9 datasets spanning all five
tasks. Against BERT, Bio-ELECTRA++ models
showed, besides named entity recognition tasks,
either competitive or better (in 3 out of 9 datasets)
performance despite having only one eights of the
BERT model’s capacity (parameter size).

3.3.1 Effect of hyperparameter optimization
on Bio-ELECTRA++

For all our BERT and ELECTRA experiments, we
have used default parameters without any hyper-
parameter optimization. To investigate the effect
of hyperparameter optimization on the test perfor-
mance, we have selected the named entity datasets
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Table 3: Biomedical Yes/No Question Answer Classification Test Results

Model P (Yes) R (Yes) F1 (Yes) P (No) R (No) F1 (No)
Bio-ELECTRA (1.8M) 87.99 (2.95) 97.94 (1.35) 92.66 (1.56) 77.14 (26.47) 46.92 (16.39) 58.18 (19.91)
Bio-ELECTRA++ 91.24 (1.57) 95.29 (2.31) 93.19 (0.75) 78.91 (7.41) 63.85 (7.92) 69.84 (3.87)
ELECTRA Small++ 88.18 (0.71) 94.31 (1.74) 91.14 (1.00) 69.92 (7.34) 50.38 (3.19) 58.40 (3.61)
BERT Base 87.02 (2.57) 95.49 (2.64) 90.99 (1.00) 65.15 (22.99) 43.46 (15.20) 51.71 (17.49)

Table 4: Biomedical Named Entity Recognition Test Results

Type Dataset Metrics ELECTRA Small++ Bio-ELECTRA Bio-ELECTRA++ BERT
Disease NCBI disease P 76.96 (0.80) 73.47 (0.92) 75.44 (1.06) 85.43 (0.62)

R 85.79 (0.64) 83.88 (0.64) 85.19 (0.77) 87.08 (0.76)
F1 81.13 (0.69) 78.32 (0.52) 80.01 (0.68) 86.24 (0.55)

Drug/chem. BC4CHEMD P 81.62 (0.53) 82.76 (0.42) 83.65 (0.18) 91.36 (0.13)
R 80.85 (0.47) 83.51 (0.46) 83.95 (0.27) 89.46 (0.22)
F1 81.23 (0.15) 83.13 (0.18) 83.80 (0.19) 90.40 (0.11)

Gene/protein BC2GM P 67.92 (0.40) 67.54 (0.48) 69.34 (0.43) 83.95 (0.27)
R 75.13 (0.29) 75.03 (0.16) 76.09 (0.28) 84.30 (0.31)
F1 71.34 (0.27) 71.08 (0.23) 72.55 (0.30) 84.13 (0.23)

Species LINNAEUS P 86.82 (1.16) 85.90 (1.53) 86.01 (1.55) 96.01 (0.31)
R 83.25 (1.42) 82.38 (0.72) 84.07 (0.92) 93.90 (0.17)
F1 84.99 (1.02) 84.10 (0.79) 85.02 (0.59) 94.94 (0.17)

Table 5: Biomedical Question Answer Candidate
Reranking Test Results

Model MRR
Electra Small++ 0.281 (0.014)
Electra Small++ (weighted) 0.281 (0.008)
Bio-ELECTRA 0.325 (0.011)
Bio-ELECTRA (weighted) 0.332 (0.013)
Bio-ELECTRA++ 0.335 (0.017)
Bio-ELECTRA++ (weighted) 0.332 (0.013)
BERT Base 0.246 (0.007)
SBERT bert-base-nli-mean-tokens 0.181
SBERT domain-adaptation 0.163

and CHEMPROT relation extraction dataset, which
have a development set to use for hyperparame-
ter optimization. Using hyperopt (Bergstra et al.,
2013) Python package, we searched for the opti-
mum F1 value on the corresponding development
set of each dataset for the following hyperparame-
ters; the learning rate among the values 1e-5, 5e-5,
1e-4 and 5e-4, number of epochs among the values
3, 5, 15 and 20 and batch size among the values
12, 24, 32 and 64. The best performing hyperpa-
rameter combination for each data set is then used
to train ten randomly initialized Bio-ELECTRA++
based classifiers.

The test results of the effect of the hyperpa-
rameter optimization on Bio-ELECTRA++ are
shown in Table 7. In all datasets, hyperparameter
optimization resulted in substantial improvement
over Bio-ELECTRA++ classifiers without hyper-

parameter optimization. For the NER datasets,
the improved test performance caught up with
the BERT test performance. Hyperpameter opti-
mized bio-ELECTRA++ relation extraction classi-
fier outperformed BERT. While BERT performance
would also profit from hyperparameter optimiza-
tion, BERT finetuning is more than an order of
magnitude slower than Bio-ELECTRA++ finetun-
ing impeding on its practicality.

4 Conclusion

In this paper, we have shown that small domain-
specific language representation models that make
more efficient use of pre-training data can achieve
comparable or better (in some cases) downstream
performance on several biomedical text mining
tasks to BERT Base with eight times more param-
eters. Two domain-specific biomedical language
representation models based on recently introduced
ELECTRA architecture named Bio-ELECTRA and
Bio-ELECTRA++ were pre-trained on a consumer
grade GPU with only 8GB memory.

While, Bio-ELECTRA performance is highly
competitive to BERT Base for question answering
and classification tasks, its performance lags be-
hing BERT Base for NER tasks. To further improve
the performance of Bio-ELECTRA, we pre-trained
it further with a second biomedical corpus of full
papers from PMC open access initiative. The re-
sulting biomedical language representation model,
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Table 6: Biomedical Relation Extraction Test Results

Relation Dataset Metrics ELECTRA Small++ Bio-ELECTRA Bio-ELECTRA++ BERT
Gene-disease GAD P 71.06 (1.27) 72.99 (1.09) 72.48 (0.55) 72.72 (1.08)

R 91.35 (1.76) 92.70 (1.58) 91.71 (1.17) 88.72 (2.12)
F1 79.92 (0.97) 81.66 (0.73) 80.96 (0.35) 79.91 (1.07)

Protein-chemical CHEMPROT P 59.64 (2.41) 61.38 (1.90) 64.66 (1.63) 69.75 (1.18)
R 59.34 (2.09) 60.40 (3.12) 63.85 (2.35) 69.87 (1.79)
F1 59.41 (0.88) 60.86 (2.22) 64.22 (1.40) 69.80 (1.36)

Table 7: Effect of Hyperparameter Optimization on the Bio-ELECTRA++ Test Performance

Dataset Metrics Bio-ELECTRA++ Bio-ELECTRA++ opt BERT
BC4CHEMD P 83.65 (0.18) 88.45 (0.17) 91.36 (0.13)

R 83.95 (0.27) 87.44 (0.20) 89.96 (0.22)
F1 83.80 (0.19) 87.94 (0.09) 90.40 (0.11)

BC2GM P 69.34 (0.43) 77.73 (0.38) 83.95 (0.27)
R 76.09 (0.28) 80.87 (0.34) 84.30 (0.31)
F1 72.55 (0.30) 79.27 (0.31) 84.13 (0.23)

NCBI disease P 75.44 (1.06) 83.40 (0.79) 85.43 (0.62)
R 85.19 (0.77) 86.36 (0.65) 87.08 (0.76)
F1 80.01 (0.68) 84.85 (0.65) 86.24 (0.55)

LINNAEUS P 86.01 (1.55) 93.77 (1.25) 96.01 (0.31)
R 84.07 (0.92) 96.28 (0.65) 93.90 (0.17)
F1 85.02 (0.59) 95.01 (0.84) 94.94 (0.17)

CHEMPROT P 64.66 (1.63) 73.23 (0.86) 69.75 (1.18)
R 63.85 (2.35) 71.46 (0.79) 69.87 (1.79)
F1 64.22 (1.40) 72.33 (0.71) 69.80 (1.36)

Bio-ELECTRA++, outperformed Bio-ELECTRA
in 8 out of 9 datasets. After hyperparameter fine-
tuning, the performance lead of BERT Base over
Bio-ELECTRA++ on NER tasks is drastically de-
creased making Bio-ELECTRA++ competitive or
superior to BERT in all biomedical text mining
tasks tested.
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