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Abstract

We present DeepPaperComposer, a simple so-
lution for preparing highly accurate (100%)
training data without manual labeling to ex-
tract content from scholarly articles using con-
volutional neural networks (CNNs). We used
our approach to generate data and trained
CNNs to extract eight categories of both tex-
tual (titles, abstracts, authors, headers, figure
and table captions, and body texts) and non-
textual content (figures and tables) from 30
years of 2916 IEEE VIS conference papers, of
which a third were scanned bitmap PDFs. We
curated this dataset and named it VISpaper-3K.
We then showed our initial benchmark perfor-
mance using VISpaper-3K over CS-150 using
YOLOv3 and Faster-RCNN. We have open-
sourced DeepPaperComposer for training data
generation1 and have released the resulting an-
notation data VISpaper-3K2 to promote repro-
ducible research.

1 Introduction

Texts, figures, tables and their associated cap-
tions are used in leveraging key concepts, data,
and inferences to improve accessibility of knowl-
edge (Chaudhri et al., 2014), to offer succinct con-
tent summaries (Erera et al., 2019; Kupiec et al.,
1995), to understand visual literacy, to tell data
stories, and to improve research workflow, e.g.,
CiteSeerX (Caragea et al., 2014)3, Microsoft Aca-
demic (Sinha et al., 2015)4, Google Scholar (Dong
et al., 2014)5, Semantic Scholar (Lo et al., 2020)6,
and IBM Science summarizer (Choudhury et al.,
2015)7.

1http://go.osu.edu/deeppapercomposer
2http://go.osu.edu/vispaper-3k.
3https://citeseerx.ist.psu.edu/
4https://academic.microsoft.com/
5https://scholar.google.com
6https://semanticscholar.org/
7https://dimsum.eu-gb.containers.appdomain.cloud

In these applications, extracting textual and non-
textual content is often a necessary first step be-
fore any subsequent uses of these components
are possible. However, the vast majority of pub-
lished scholarly articles are available only in PDFs
or scanned bitmaps. Even though recent deep-
learning-based algorithms using convolutional neu-
ral networks (CNNs) provide considerably better
performance (Xu et al., 2020; Kavasidis et al.,
2019; Siegel et al., 2018; Schreiber et al., 2017;
Gilani et al., 2017; Hao et al., 2016), the quality of
the labeled training data often determines the suc-
cess of these CNN-based algorithms. The lack of
large-scale labeled document datasets has been rec-
ognized as a major hindrance in deep-learning re-
search for structure analyses (Li et al., 2020; Qasim
et al., 2019; Zhong et al., 2019).

Training data for the CNN-based algorithms
are typically prepared manually by crowdsourc-
ing (e.g., CS-150 (Clark and Divvala, 2015)) or
by automated tag extraction in XML (e.g., CS-
Large (Clark and Divvala, 2016)). Recently, Siegel
et al. (2018) designed a most successful and least
labor-intensive approach to align and modify LATEX
syntax-based documents to automatically extract
labels of over 4-million pages and achieve training
data label accuracy of up to 94%.

Inspired by these recent advances, we designed
DeepPaperComposer, a simple data-preparation
method to create 100% accurate training samples
of any scale for content extraction in large numbers
of scientific documents, by simply “rendering” pa-
pers to paste non-textual and textual content onto a
white page to assemble the look of a real document.
We introduce the workflow (Figure 1), the resulting
real-world case study to construct a new annotated
dataset VISpaper-3K, and two benchmark tests us-
ing this new dataset.

The main contributions of this work include:
1. DeepPaperComposer, a simple data-

http://go.osu.edu/deeppapercomposer
http://go.osu.edu/vispaper-3k
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Figure 1: DeepPaperComposer is an end-to-end framework for reverse-engineering research papers by pasting
image and text cohorts onto empty white pages, localizing textual and non-textual classes by combining the outputs
from Faster-RCNN and YOLOv3, and further improving prediction accuracy by rule-based post-processing.

preparation method to synthesize dummy
papers for generating accurate annotated
labels, grounded upon scholarly articles’
structural heuristics, without human in-
tervention, in particular without manual
labeling.

2. VISpaper-3K, a new scholarly dataset with
eight categories of ground-truth annotation of
2916 IEEE-VIS conference papers (24,660
pages).

2 DeepPaperComposer: Our
End-to-End Paper Parser

Our goal is to extract textual and non-textual con-
tent from research papers. The essence of our ap-
proach is to couple the new CNN-based solutions
and the heuristic-based method: we use heuris-
tics to produce the structures of dummy papers as
the training set and then let CNNs perform clas-
sification tasks before feeding the results to post-
processing (Figure 1).

2.1 Training Data: Dummy Paper Page
Composer

We treat training data as a composition of indi-
vidual document elements, where the goals are
(1) to record bounding boxes for each of the la-
bels/component parts in a PDF paper to produce
high-quality labels, and (2) to synthesize appear-
ance to reduce the differences between the training
data and the real paper.

Composer workflow. We used our text corpus
and figure and table corpus to automatically syn-
thesize a large set of paper pages by inserting para-

graphs, figures, and tables using our Matlab-based
rendering engine into pages (Figure 1). We first
created a blank image with a default 1075× 1400
pixel resolution. Depending on the page format,
we inserted the randomly generated header, title,
and abstract. We then ‘pasted’ a random number of
images from our figure and table cohort, and added
captions with random texts underneath figures and
tables. Finally, we inserted body text in the white
space and randomly broke the sentences into para-
graphs. We recorded the accurate bounding-box
locations in this process.

Textual and non-textual content. We assem-
bled the textual content of a paper page (body text,
document headers, paper titles, paper abstracts, and
captions) using the context-free grammar in SCI-
gen (Stribling et al., 2005). We assembled a diverse
set of figures and tables by repurposing images
from the MASSVIS dataset collected by Borkin
et al. (2013) and the spatial data collections by Li
and Chen (2018).

Dummy paper pages. We generated 13,000
pages (10,000 for training and 3,000 for valida-
tion), each of dimensions of 1075 × 1400 pixels
and labeled by up to 17 class tags shown in Table 1.
All these tags have accurate ground-truth bounding
box locations.

Compared to DeepFigures (Siegel et al., 2018),
our approach does not depend on LATEXsyntax to
obtain ground-truth bounding boxes. Theoretically,
given an image cohort and classes, we can render
any number of images with 100% accurate bound-
ing boxes.
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Textual content Five types: body text; paper title; abstract, header; bullets and equations
Figures 10 types: area and circle charts; bar charts; line and curve charts; maps;

matrix and parallel coordinates; multi-types; photos; points;
scientific data visualizations; trees and networks

Tables One type: tables with diverse layout and background colors
Captions One type: figure and table caption

Table 1: Our Dummy Paper Page Composer can automatically compose 17 types of scholarly article content in
four categories with accurate bounding box labels.

Figure 2: Sample dummy paper pages with automati-
cally produced ground-truth labels.

2.2 Training and Voting on Two CNNs’
Predictions

We trained two complementary CNN models,
YOLOv3 (Redmon and Farhadi, 2018; Redmon
et al., 2016) and Faster-RCNN (Ren et al., 2017), in-
dependently for subsequent figure extraction from
the actual papers. Both YOLOv3 and Faster-RCNN
returned the four coordinates of each bounding box,
along with class labels. We chose these two CNN
methods because we found during pilot studies
that Faster-RCNN was a better localization method
that provided more precise bounding boxes, while
YOLOv3 was fast and improved recall compared
to Faster-RCNN.

We combined the two models’ labeling results
by union and voting. We first union the detections
captured by both Faster-RCNN (better localization)
and YOLOv3 (better detection). The bounding
boxes were taken by voting from the model with
higher confidence. Annotations of the textual con-
tent labels are produced by heuristics (e.g., titles
only appeared on the first page; author informa-
tion is after the title and for IEEE VIS, abstracts
and teaser images appear after author information).
Figures can have several class labels since most
figures in IEEE VIS contain multiple figure types.

2.3 Post-processing of Model Prediction

We then perform several post-processing steps:
1. tighten or expand labeled bounding boxes to

acquire more accurate regions for each figure
and table. In this process, over-segmented
tables (Shafait and Smith, 2010) (different
parts of the ground-truth tables were detected
as separate tables) were often fixed especially
for tables with boundaries.

2. remove redundant bounding boxes.
3. match captions to tables and figures by mini-

mizing the total distance between them (Siegel
et al., 2018).

4. compute author(s)’ information assuming the
author list is between title and abstract.

Textual content is computed after we obtain the
ground-truth labels of figures, tables, and captions.
We fill in the remaining spaces in between with text
boxes, and tighten or expand them until fit.

3 Case Study: Curating the
VISpaper-3K Dataset

We applied the proposed DeepPaperComposer
framework to IEEE VIS publications over the past
30 years.

Training and validation data from dummy
papers. In total, we used 13K dummy paper pages
(10K for training and 3K for validation), each of di-
mensions 1075× 1400 pixels and labeled by eight
class tags (the five text content types, figure, ta-
ble, and captions in Table 1). All these tags have
accurate ground-truth bounding box locations.

DeepPaperComposer modeling process. The
two CNN models are trained using the automated
dummy paper generation. The output using Deep-
PaperComposer contains the annotated pages.

Preprocessing of test data. The collection con-
sists of articles from a single narrow conference:
IEEE VIS. The test dataset contains the 2916 full-
paper PDFs for the years 1990–2019 (Isenberg
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Training Data Validation Test Data IoU Precision Recall F1
10K dummy pages 3K dummy pages IEEE VIS 24,660 pages 0.8 0.94 0.84 0.89

Table 2: Case study validation of our method against the 24,660 pages of the VISpaper-3K ground-truth data.

Figure 3: Benchmark performance of VISpaper-3K dataset for figure, table, and caption extraction. A total of
14,796 VISpaper-3K paper pages were used for training and 4932 pages for validation running 10 times for two
popular CNN methods, YOLOv3 and Faster-RCNN. Models were tested using 4932 pages of VISpaper-3K and
1176 pages of the CS-150 benchmark data.

et al., 2016). We converted these PDFs to PNG
images.

Validating DeepPaperComposer. Since we
must have ground-truth in order to quantify the
performance of our automatic pipeline using Deep-
PaperComposer, we first curated the ground-truth
data: 10 coders checked figure and table tags of
2916 papers. Given the groundtruth, we followed
the evaluation metrics of Clark and Divvala (2016)
to measure the overall performance obtained by our
approach on VISpaper-3K. A predicted bounding
box is compared to a ground truth based on the
Jaccard index or intersection over union (IoU), and
is considered correct when IoU exceeds 0.8. Ex-
tracted figures with identifiers that did not exist in
the ground truth were considered incorrect. The
results are in Table 2.

4 Quantitative Evaluation

To assess the utility of the VISpaper-3K dataset, we
conducted two experiments aimed at understanding
whether the dataset can be used to extract figures,
tables, and captions.

Study settings. Both experiments used 60%
(14,796 pages) and 20% (4932 pages) of VISpaper-
3K for training and validation accordingly. Both

YOLOv3 and Faster-RCNN were used and tested
on the remaining 20% (4932 pages) of VISpaper-
3K and CS-150. We ran the models 10 times and
tested the models using both our data and CS-150.

Results. We again followed the evaluation
method of Clark and Divvala (2016) as described
in Section 3. We show the main results in Figure 3.
As we can see the four metric measures for tables
are about the same for the two datasets but dropped
considerably for figures and captions for the CS-
150 dataset. Here the F1 score measures test accu-
racy; our F1 scores for figures in CS-150 (0.84 from
YOLOv3 and 0.90 from Faster-RCNN) are slightly
lower than that of PDFFigures 2.0 (0.97) (Clark and
Divvala, 2016). The F1 scores for tables are also
lower than PDFFigures 2.0 (0.97). One main rea-
son could be that the structural content in CS-150
is different from IEEE-VIS papers and YOLOv3
and Faster-RCCN were trained with VISpaper-3K
and tested on CS-150, indicating that the training
set may not be diverse enough.

Analyses. The runtime performance computes
the average time per page it takes to return the
bounding boxes of the figures, tables, and captions.
The current implementation of YOLOv3 takes 0.09
seconds and Faster-RCNN 0.23 seconds on average.
YOLOv3 is considerably faster than Faster-RCNN.
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(a)

(b)

Figure 4: Sub-figure segmentation challenges. Multi-
ple sub-figures with or without sub-captions are often
combined by leaving gaps between these sub-figures.
Neither YOLOv3 nor Faster-RCNN can simultane-
ously identify sub-figures and figures. Our algorithm
sometimes (a) predicted a single figure and a single
caption when there are two compound figures in two
columns, and (b) included sub-captions in the predic-
tions but not in other times; further, our algorithm did
not couple these two sub-figures.

Evaluating algorithm performance is a challeng-
ing topic and different performance metrics have
been used in the literature for evaluating figure-
and table-detection algorithms. Consider the chal-
lenging cases with compound figures and captions
shown in Figure 4. Using these metrics of preci-
sion, however, both subfigures in Figure 4(a) and
(b) will be considered “correct” in classification
tasks, although they still demand subsequent algo-
rithmic or human corrections. Our future work will
study metrics for detailed evaluation, as processing
compound figures remains one of the leading chal-
lenges in document analyses (Davila et al., 2020).

5 Conclusion

We present in this short work-in-progress paper a
new training data preparation approach to gener-
ate accurate ground-truth labels. Our preliminary
results showed that our dummy paper composer
could be a viable solution to train CNNs to extract
several semantic and graphical entities. We have
released our source code for training data genera-
tion online. We plan to diversify the structure and
content our paper generator can compose and en-
able researchers to upload their own data to train

models and run the predictions.
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