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Abstract

Skip-Gram is a simple, but effective, model to
learn a word embedding mapping by estimat-
ing a conditional probability distribution for
each word of the dictionary. In the context
of Information Geometry, these distributions
form a Riemannian statistical manifold, where
word embeddings are interpreted as vectors in
the tangent bundle of the manifold. In this pa-
per we show how the choice of the geometry
on the manifold allows impacts on the perfor-
mances both on intrinsic and extrinsic tasks, in
function of a deformation parameter alpha.

1 Introduction

Word embeddings are compact representations for
the words of a dictionary. Rumelhart et al. (1986)
first introduced the idea of using the internal repre-
sentation of a neural network to construct a word
embedding. Bengio et al. (2003) employ a neu-
ral network to predict the probability of the next
word given the previous ones. Mikolov et al. (2010)
proposed the use of a recurrency language model
based on RNN, to learn the vector representations.
More recently, this approach has been exploited
further, with great success by means of bidirec-
tional LSTM (Peters et al., 2018) and transform-
ers (Radford et al., 2018; Devlin et al., 2018; Yang
et al., 2019). In this paper we focus on Skip-
Gram (SG), a well-known model for the condi-
tional probability of the context of a given central
word, which it has been shown to work well at effi-
ciently capturing syntactic and semantic informa-
tion. SG is at the basis of many popular word em-
beddings algorithms, such as Word2Vec (Mikolov
et al., 2013a,b), the contpdfinfoinuous bag of
words (Mikolov et al., 2013a,b), and models based
on weighted matrix factorization of the global co-
occurrences as GloVe (Pennington et al., 2014),
cf. Levy and Goldberg (2014). These methods are

deeply related, Levy and Goldberg showed how
Word2Vec SG with negative sampling is effectively
performing a matrix factorization of the Shifted
Positive PMI (Levy and Goldberg, 2014).

It has been noted (Mikolov et al., 2013c) how,
once the embedding space has been learned, syn-
tactic and semantic analogies between words trans-
late in linear relations between the respective word
vectors. There have been numerous works investi-
gating the reason of the correspondence between
linear properties and word relations. Pennington et
al. gave a very intuitive explanation in their paper
on GloVe (Pennington et al., 2014). More recently
Arora et al. (Arora et al., 2016) tried to study this
property by introducing a hidden Markov model,
under some regularity assumptions on the distribu-
tion of the word embedding vectors, cf. (Mu et al.,
2017). Word embeddings are also often used as in-
put for another computational model, to solve more
complex inference tasks. The evaluation of the
quality of a word embedding, which ideally should
encode syntactic and semantic information, is not
easy to be determined and different approaches
have been proposed in the literature. This evalu-
ation can be in terms of performance on intrinsic
tasks like word similarity (Bullinaria and Levy,
2007, 2012; Pennington et al., 2014; Levy et al.,
2015), or by solving word analogies (Mikolov et al.,
2013c,a), however several authors (Tsvetkov et al.,
2015; Schnabel et al., 2015) has showed a low de-
gree of correlation between the quality of an em-
bedding for word similarities and analogies on one
side, and on downstream (extrinsic) tasks, for in-
stance on classification or prediction, to which the
embedding is given in input.

Several works have highlighted the effectiveness
of post-processing techniques (Bullinaria and Levy,
2007, 2012), such as PCA (Raunak, 2017; Mu et al.,
2017), focusing on the fact that certain dominant
components are not carriers of semantic nor syn-
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tactic information and thus act like noise for de-
terminate tasks of interest. A different approach
which still acts on the learned vectors after training
has been recently proposed by Volpi and Malagò
(2019). The authors present a geometrical frame-
work in which word embeddings are represented
as vectors in the tangent space of a probability sim-
plex. A family of word embeddings called natural
alpha embeddings is introduced, where α is a de-
formation parameter for the geometry of the proba-
bility simplex, known in Information Geometry in
the context of α-connections (Amari and Nagaoka,
2000; Amari, 2016). Noticeably, alpha word em-
beddings include the classical word embeddings
as a special case. In this paper we provide an ex-
perimental evaluation of natural alpha embeddings
over different tasks, both intrinsic and extrinsic, in-
cluding word similarities and analogies, as well as
downstream tasks, such as document classification
and sentiment analysis, in order to study the impact
of the geometry on performances.

2 Conditional Models and the
Embeddings Structure

The Skip-Gram conditional model (Mikolov et al.,
2013b; Pennington et al., 2014) allows the unsu-
pervised training of a set of word-embeddings, by
predicting the conditional probability of any word
χ to be in the context of a central word w

p(χ|w) = pw(χ) =
exp(uTwvχ)

Zw
(1)

with Zw =
∑

χ′∈D exp(uTwvχ′) partition function.
The conditional model represents an exponential
family in the simplex, parameterized by two matri-
cesU and V of size n×d, where n is the cardinality
of the dictionary D , and d is the size of the embed-
dings. We will refer to the rows of a matrix V as
vχ or V χ, and to its columns as Vk. It is common
practice in the literature of word embedding to con-
sider uw or alternatively uw + vw as embedding
vectors for w (Bullinaria and Levy, 2012; Mikolov
et al., 2013a,b; Pennington et al., 2014; Raunak,
2017). In the remaining part of this section we
briefly review the natural alpha embeddings and
limit embeddings, based on Information Geome-
try framework. We refer the reader to Volpi and
Malagò (2019) for more details and mathematical
derivations.

2.1 Alpha Embeddings

After training, the matrices U and V are fixed. For
each w, the conditional model pw(χ) is an expo-
nential family E in the n− 1 dimensional simplex,
where n is the size of the dictionary. This models
the probability of a word χ in the context, when w
is the central word. The sufficient statistics of this
model are determined by the columns of V , while
each row uw of U can be seen as an assignment for
the natural parameters, i.e., each row identifies a
probability distribution.

According to the language of Information Ge-
ometry, a statistical model can be modelled as a
Riemannian manifold endowed with the Fisher
information matrix and with a family of α-
connections (Amari, 1985; Shun-Ichi and Hiroshi,
2000; Amari, 2016). The alpha embeddings are
defined up to the choice of a reference distribution
p0. The natural alpha embedding of a given wordw
is defined as the projection of the logarithmic map
Logαp0 w onto the tangent space of the submodel
Tp0E . The main intuition is that a word embed-
ding for w corresponds to the vector in the tangent
space which allows to reach the distribution of the
context of w from p0. Deforming the simplex con-
tinuously with a family of isometries depending
from a parameter alpha, and by considering a fam-
ily of α-logarithmic maps, depending on the choice
of the α-connection, a family of natural alpha em-
beddings Wα

p0(w) can be defined as a function of
the deformation parameter α

Wα
p0(w) = Πα

0

(
Logαp0 pw

)
= I(p0)

−1
∑
χ

lαp0 w(χ) ∆V (p0)
χ (2)

where ∆V (p0) = V − Ep0 [V ] is the matrix of
centered sufficient statistics in p0 and

lαp0 w(χ) =


p0(χ)(ln pw(χ)− ln p0(χ)) α = 1

p0(χ)
2

1−α

((
pw(χ)
p0(χ)

) 1−α
2 − 1

)
α 6= 1

.

(3)

The Fisher metric is simply computed as the metric
for an exponential family (Amari and Nagaoka,
2000)

I(p0) = Ep0
[
∆V (p0)

T∆V (p0)
]
, (4)

and it does not depend on alpha since the family
of alpha divergences induces the same Fisher infor-
mation metric for any value of alpha.
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The notion of alpha embeddings can be used
both for downstream tasks and also to evaluate
similarities and analogies in the tangent space of
the manifold (Volpi and Malagò, 2019). Given two
words a and b, a measure of similarity is defined
by

simα
p0(a, b) =

〈Wα
p0(a),Wα

p0(b)〉I(p0)
||Wα

p0(a)||I(p0)||Wα
p0(b)||I(p0)

,

(5)
while analogies of the form a : b = c : d
can be solved by minimizing an analogy measure
κ
(α)
p0 (pa, pb, pc, pd) defined as∥∥Wα

p0(b)−Wα
p0(a)−Wα

p0(d) +Wα
p0(c)

∥∥
I(p0)

.

(6)
It is possible to show that for α = 1 and choosing
p0 equal to the uniform distribution, the embed-
dings of Eq. (2) reduce to the standard vectors uw.
Furthermore, by substituting the Fisher Informa-
tion matrix I(p0) with the identity1, Eqs. (5) and
(6) reduce to the standard formulas used in the lit-
erature for similarities and analogies.

The embedding vectors u+ v have been shown
to provide better results (Pennington et al., 2014)
than simply u. In the context of natural alpha em-
beddings, the vectors u+ v can be interpreted as a
recentering of the natural parameters u of the expo-
nential family. This corresponds to a reweighting
of the probabilities in Eq. (1)

p(+)(χ|w) = Nw exp(vwvχ)p(χ|w) (7)

based on a change of reference measure propor-
tional to exp(vwvχ), i.e., by weighting more those
words χ in the context whose outer vectors are
aligned to the outer vector of the central word w.

2.2 Limit Embeddings
The behavior of the alpha embeddings for α pro-
gressively approaching minus infinity turns out to
be particularly interesting. In this case, lαp0 w(χ) is
progressively more and more peaked on

χ∗w = arg max
χ

pw(χ)

p0(χ)
, (8)

and presents a growing norm, see Eq. (3). By nor-
malizing these alpha embeddings to preserve the
direction of the tangent vector, a simple formula

1Proposition 3 in Volpi and Malagò (2019) provides condi-
tions under which Fisher Information matrix is isotropic, i.e.,
proportional to the identity.

can be obtained depending only on the χ∗w row
of the matrix of sufficient statistics ∆V (p0). The
normalized limit embeddings then simplify to

LWα
p0(w) = lim

α→−∞
Wα

0 (w)

= I(p0)
−1∆V (p0)

χ∗w ,
(9)

leading to simple geometrical methods in the limit.
Let us notice that the same row ∆V a can be associ-
ated to multiple words, thus limit embeddings are
also naturally inducing a clustering in the embed-
ding space.

3 Experiments

We considered two corpora: English Wikipedia
dump October 2017 (enwiki), with 1.5B words,
and its augmented version composed by Guten-
berg (Gutenberg), English Wikipedia and Book-
Corpus (Zhu et al., 2015; BookCorpus; Kobayashi)
(geb), with 1.8B words. For each corpus we trained
a set of GloVe word embeddings (Pennington et al.,
2014) with vector sizes of 300 and 50, window size
of 10, until convergence for a maximum of 1,000
epochs (more details in Appendix A).

The embeddings in Eq. (2) will be denoted with
‘E’ in figures and tables, while the limit embeddings
in Eq. (9) will be denoted with ‘LE’. Embeddings
have been normalized either with the Fisher Infor-
mation matrix (F) or with the Identity (I). Similarly
after normalization, the scalar products can be com-
puted with the respective metric (on the tasks that
requires scalar product calculation). In this study,
normalization and scalar product are always us-
ing the same metric. For the reference distribution
needed for the computation of the alpha embed-
dings we have chosen the uniform distribution (0),
the unigram distribution of the model (u) - obtained
by marginalization of the joint distribution learned
by the model, or the unigram distribution estimated
from the corpus data (ud). Embeddings are denoted
by ‘U’, if in the computation of Eqs. (2) and (9),
the formula used for pw is Eq. (1), while they will
be denoted by ‘U+V’ if Eq. (7) is used instead.

We evaluated the alpha embeddings on intrin-
sic (similarities, analogies, concept categorization)
and extrinsic (document classification, sentiment
analysis) tasks.

3.1 Intrinsic Tasks
In Fig. 1 we report results for similarities and
analogies with embedding size 300. For simi-
larities we use: ws353 (Finkelstein et al., 2001),
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Table 1: Spearman correlations for similarities tasks. WG5 inside the enwiki and geb section are the wikigiga5
pretrained vectors on 6B words (Pennington et al., 2014) tested for comparison on the dictionary of the smaller
corpora enwiki and geb. Lastly, U and U+V are the standard methods with the word embeddings vectors. PM
are the accuracies reported by Pennington et al. (2014) on enwiki, BDK is the best setup across tasks (varying
hyperparameters) reported by Baroni et al. (2014) and LGD are the best methods in cross-validation with fixed
window size of 10 and 5 (for varying hyperparameters) reported by Levy et al. (2015).

method ws353 mc rg scws ws353sim ws353rel men mturk287 rw simlex999 all

en
w

ik
i LE-U+V-ud-F 75.5 83.4 81.5 63.5 77.8 69.2 75.6 60.1 55.6 41.6 62.6

WG5-U+V 65.1 73.8 77.6 62.2 71.3 60.7 77.2 65.7 51.5 41.0 61.3
U 60.2 69.3 69.8 58.3 67.1 56.4 69.2 67.2 47.1 31.4 53.6

U+V 63.8 74.5 75.2 58.7 69.5 60.9 71.6 67.3 45.5 32.2 55.1

ge
b

LE-U+V-ud-F 77.0 81.2 83.5 65.0 80.3 68.7 79.6 62.4 59.3 46.9 65.2
WG5-U+V 65.1 73.8 77.9 61.8 71.3 60.7 77.2 65.7 53.2 40.6 60.4

U 61.3 73.0 76.3 58.7 68.6 54.0 68.7 68.1 48.9 30.6 51.9
U+V 64.9 77.4 79.9 59.1 71.5 58.8 71.4 68.1 48.5 32.5 53.7

PM 6B 65.8 72.7 77.8 53.9 - - - - 38.1 - -
BDK 73 - 83 - 78 68 80 - - - -

LGD win5 - - - - 74.5 61.7 74.6 63.1 41.6 38.9 -
LGD win10 - - - - 74.6 64.3 75.4 61.6 26.6 37.5 -

Figure 1: Word similarities (top) and word analogies
(bottom) for different values of α.

mc (Miller and Charles, 1991), rg (Rubenstein and
Goodenough, 1965), scws (Huang et al., 2012),
men (Bruni et al., 2014), mturk287 (Radinsky et al.,
2011), rw (Luong et al., 2013) and simlex999 (Hill
et al., 2015). For analogies we use the Google
analogy dataset (Mikolov et al., 2013a). The limit
embeddings (colored dotted lines) achieve good
performances on both tasks, above the competitor
methods from the literature U and U+V centered
and normalized by column, as described in Pen-
nington et al. (2014). Comparison with baseline
methods from literature on word similarity is pre-
sented in Tables 1, we compare with the limit em-
beddings since they usually seem to be the best
performing on the similarity task, see Fig. 1 top
row. The limit embedding methods reported in
the table outperform Wiki Giga 5 pretrained vec-
tors (Pennington et al., 2014) (6B words corpus)

and other comparable baselines from the literature
with similar window size. In Table 2 we report

Table 2: Analogy tasks for the different methods on
enwiki and geb. The best alpha is selected with a 3-
fold cross validation (α between -10 and 10), unless
the limit embedding is the best performing. PM are
the accuracies reported by Pennington et al. (2014) on
enwiki, BDK is the best setup across tasks (varying hy-
perparameters) reported by Baroni et al. (2014).

method sem syn tot

en
w

ik
i E-U+V-0-I 84.5± 0.4 67.33± 0.6 74.4± 0.1

WG5-U+V 79.4 67.5 72.6
U 77.8 62.1 68.9

U+V 80.9 63.4 70.9

ge
b

E-U+V-0-I 83.8± 0.4 72.2± 0.4 76.7± 0.3
WG5-U+V 78.7 65.2 70.7

U 75.7 66.8 70.4
U+V 80.0 68.5 73.2

PM 1.6B 80.8 61.5 70.3
PM 6B 77.4 67.0 71.7
BDK 80.0 68.5 73.2

best performances on analogy task on alpha embed-
dings, where alpha is selected with cross-validation
(Table 3). For enwiki syn, the limit embedding
has been found to work better instead. The errors
reported are obtained averaging the performances
on test of the top three alpha selected based on best
performances on validation. The errors obtained
are relatively small which indicates that tuning al-
pha is easy also on tasks with small amount of data
in cross-validation. The best tuned alpha on the
geb dataset completely outperform the baselines.

The last intrinsic tasks considered are cluster
purity for concept categorization datasets AP (Al-



65

muhareb, 2006) and BLESS (Baroni and Lenci,
2011). The purity curves (Fig. 2) are more noisy,
this is because the datasets available for this task
are quite limited in size. Almost all the curves ex-
hibit a peak which is relatively more pronounced
for smaller embedding sizes, while the limit be-
haviour for very negative alphas is better perform-
ing for larger embedding size. This points to the
fact that the natural clustering performed by the
limit embeddings of Eq. 9 is better behaved when
the dimension of the embedding grows. Increasing
the embedding size, increases the number of suf-
ficient statistics, thus allowing more flexibility for
the limit clustering during training.

Table 3: Best cross-validated alphas for methods of Ta-
ble 2 (enwiki and geb).

method sem syn tot
en E-U+V-0-I 1.8± 0.1 −∞ 1.7± 0.1
geb E-U+V-0-I 1.7± 0.1 1.3± 0.1 1.3± 0.1

Figure 2: Cluster purity on concept categorization task.

3.2 Extrinsic Tasks

As extrinsic tasks we choose 20 Newsgroup multi
classification (Lang, 1995) and IMDBReviews sen-
timent analysis (Maas et al., 2011). Embeddings
are normalized before training either with I or F. We
use a linear architecture (BatchNorm+Dense) for
both tasks, while for sentiment analysis we also use
a recurrent architecture (Bidirectional LSTM 32
channels, GlobalMaxPool1D, Dense 20 + Dropout
0.05, Dense). In Tables 4 and 5 we report the
best methods chosen with respect to the valida-
tion set and the best limit embedding performances
for embedding size 300. A more complete set of

experiments can be found in Appendix. Limit Em-
beddings have been generalized, instead of con-
sidering only the max row χ∗ (see Sec. 2.2), by
considered the top k rows from ∆V . Limit embed-
dings are evaluated with respect to top 1, 3, and 5,
denoted -t1/3/5. Furthermore we denote by -w if
a weighted average (with weights pw(χ)/p0(χ)) is
performed for the top rows of ∆V . The improve-
ments reported in the Tables are small but consis-
tent, of above 0.5% accuracy on both Newsgroups
and IMDBReviews, furthermore the improvement
persist also with increased complexity of the net-
work architecture (bidirectional LSTM). Fig. 3

Table 4: AUC and accuracy on test of 20 Newsgroups
multiclass classification, compared to baseline vectors.
Best alpha and best limit method (on validation) are
reported in parenthesis.

method
20 Newsgroups

AUC acc
U+V 96.34 65.06

E-U+V-0-F 96.76 (0.2) 65.86 (0.4)
E-U+V-u-F 96.79 (0.2) 66.30 (0.2)
E-U+V-ud-F 96.79 (0.4) 65.24 (0.6)
LE-U+V-0-F 96.65 (t3-w) 64.47 (t1)
LE-U+V-u-F 96.65 (t3-w) 64.54 (t1)
LE-U+V-ud-F 96.38 (t5-w) 64.76 (t3-w)

Table 5: Accuracy on test of IMDBReviews sentiment
analysis binary classification, with linear and with BiL-
STM architecture, compared to baseline vectors. Best
alpha and best limit method (on validation), are re-
ported in parenthesis.

method
IMDB Reviews

acc lin acc BiLSTM
U+V 83.76 88.00

E-U+V-0-F 83.58 (2.4) 88.12 (−4.0)
E-U+V-u-F 83.72 (−3.0) 88.56 (−4.0)

E-U+V-ud-F 84.23 (−3.0) 88.48 (−2.2)
LE-U+V-0-F 84.00 (t1) 88.36 (t1)
LE-U+V-u-F 84.29 (t1) 88.66 (t1)
LE-U+V-ud-F 84.00 (t3-w) 88.49 (t3-w)

reports curves for the values on test with early stop-
ping based on validation for embedding sizes of 50
and 300. The improvements for tuning alpha are
higher on size 50 exhibiting a more evident peak.
For size 300 improvements are smaller but consis-
tent. In particular a peak performance for alpha can
be always easily identified for a chosen reference
distribution and a chosen normalization.
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Figure 3: Performances on 20 Newsgroups and IMDB Reviews for varying alphas. Metrics I and F refers to
embeddings normalization before training.
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4 Conclusions

For word similarities and analogies alpha embed-
dings provide significant improvements over base-
line methods (corresponding to α = 1). For the
other tasks the improvements are smaller but con-
sistent, depending on the value of α, the chosen
reference distribution (0, u, ud) and the chosen
normalization method (I, F). The improvements
persist also when increasing the complexity of the
networks used (linear vs BiLSTM). This motivates
further studies on more complex architectures, for
example on models employing transformers with
the aim to close the experimental gap with the state
of the art.

The best value of alpha depends both on the task
and on the dataset. Alpha embeddings thus provide
an extra handle on the optimization problem, al-
lowing to choose the deformation parameter based
on data. Alpha values lower than 1 and negative
seems to be preferred across most tasks. Limit
embeddings provide a simple method which does
not require validation over alpha, but can still offer
an improvement on several tasks of interest. Fur-
thermore limit embeddings can be interpreted as a
natural clustering in space learned by the SG model
itself during training. Performances of the limit em-
beddings grow with increasing dimension, pointing
to the possibility to have a consistent improvement
in higher embedding dimensions without tuning
alpha.
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A Additional Details

We have performed experiments using two corpora:
english Wikipedia dump October 2017 (enwiki)
and also we augmented this last one with Guthen-
berg(Gutenberg) and BookCorpus(BookCorpus;
Kobayashi) calling this geb (guthenberg, enwiki,
bookcorpus). We used the wikiextractor python
script(Attardi) to parse the Wikipedia dump xml
file. A minimal preprocessing have been used:
lower case all the letters, remove stop-words and
remove punctuation. We use a cut-off minimum fre-
quency (m0) of 1000 during GloVe training (Pen-
nington et al., 2014). We obtained a dictionary of
about 67k words for both enwiki and geb. The win-
dow size was set to be 10 as in (Pennington et al.,
2014), with decaying weighting rate from the cen-
ter of 1/d for the calculation of cooccurrences. We
trained the models for a maximum of 1000 epochs.
Embedding sizes used are 50 and 300.

Table 6: AUC on Newsgroups with linear architecture
(BatchNorm + Dense). We use geb embeddings, fixed
during the classifiers training. The alpha for which to
report performances on test is chosen based on the best
measure on the validation set and we report both per-
formances on validation and on test (α between -4 and
4 with adaptive step: 0.2 between [-1, 1] and 0.4 in be-
tween [-3, 3] and 1 between [-4, 4]). We also report
limit embedding performances.

method AUC val AUC test
E-U+V-0-I (α = 1.0) 0.96347 0.96342
E-U+V-0-F (α = 0.2) 0.96765 0.9676
E-U+V-u-F (α = 0.2) 0.96792 0.96787
E-U+V-ud-F (α = 0.4) 0.96798 0.96792

LE-U+V-0-F-t3-w 0.9666 0.96654
LE-U+V-u-F-t3-w 0.96662 0.96655
LE-U+V-ud-F-t5-w 0.96388 0.96381

Table 7: Accuracy on Newsgroups (BatchNorm +
Dense).

method accuracy val accuracy test
E-U+V-0-I (α = 1.0) 0.66846 0.65056
E-U+V-0-F (α = 0.4) 0.67708 0.65858
E-U+V-u-F (α = 0.2) 0.68068 0.66298
E-U+V-ud-F (α = 0.6) 0.67744 0.65242

LE-U+V-0-F-t1 0.66739 0.64472
LE-U+V-u-F-t1 0.66954 0.64545

LE-U+V-ud-F-t3-w 0.6602 0.64763

Table 8: Accuracy on IMDBReviews with linear archi-
tecture (BatchNorm + Dense).

method accuracy val accuracy test
E-U+V-0-I (α = 1.0) 0.83426 0.83758
E-U+V-0-F (α = 2.4) 0.83574 0.83582

E-U+V-u-F (α = −3.0) 0.83434 0.83721
E-U+V-ud-F (α = −3.0) 0.8360 0.8423

LE-U+V-0-F-t1-f 0.8351 0.84001
LE-U+V-u-F-t1-wf 0.83724 0.84293
LE-U+V-ud-F-t3-wf 0.83493 0.84001

Table 9: Accuracy on IMDBReviews with BiLSTM-
pool architecture (Bidirectional LSTM 32 channels,
GlobalMaxPool1D, Dense 20 + Dropout 0.05, Dense).

method accuracy val accuracy test
E-U+V-0-I (α = 1.0) 0.87813 0.88002

E-U+V-0-F (α = −4.0) 0.88066 0.88117
E-U+V-u-F (α = −4.0) 0.88173 0.88565
E-U+V-ud-F (α = −2.2) 0.88366 0.88481

LE-U+V-0-F-t1 0.88258 0.88365
LE-U+V-u-F-t1 0.87761 0.88656
LE-U+V-ud-F-t1 0.88117 0.8825
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Table 10: Spearman correlations for similarities tasks for the different methods on enwiki and geb. LE represents
the cos product between limit embeddings on the exponential family model. WG5 inside the enwiki and geb
section are the wikigiga5 pretrained vectors on 6B words (Pennington et al., 2014) tested for comparison on the
dictionary of the smaller corpora enwiki and geb. Lastly, U and U+V are the non-geometric methods with the word
embeddings vectors.

method ws353 mc rg scws ws353sim ws353rel men mturk287 rw simlex999 all

en
w

ik
i

LE-U+V-0-F 70.7 77.2 77.3 64.0 75.7 66.6 74.7 68.7 54.2 37.7 61.0
LE-U+V-0-I 72.1 82.7 81.3 64.2 76.5 67.1 74.8 65.9 54.8 40.0 61.7
LE-U+V-u-F 69.6 77.1 77.5 63.6 74.7 65.2 74.5 69.1 54.1 36.7 60.5
LE-U+V-u-I 72.5 81.9 81.7 64.3 76.7 67.8 75.6 67.7 55.9 39.1 62.1

LE-U+V-ud-F 75.5 83.4 81.5 63.5 77.8 69.2 75.6 60.1 55.6 41.6 62.6
LE-U+V-ud-I 68.6 82.9 78.9 59.3 73.6 57.2 71.3 50.3 53.8 41.6 58.8
WG5-U+V 65.1 73.8 77.6 62.2 71.3 60.7 77.2 65.7 51.5 41.0 61.3

U 60.2 69.3 69.8 58.3 67.1 56.4 69.2 67.2 47.1 31.4 53.6
U+V 63.8 74.5 75.2 58.7 69.5 60.9 71.6 67.3 45.5 32.2 55.1

ge
b

LE-U+V-0-F 72.9 80.5 83.9 65.4 78.6 66.3 77.2 70.7 57.6 39.6 62.0
LE-U+V-0-I 74.3 82.2 84.6 66.0 79.3 67.1 78.0 67.3 58.6 43.4 63.5
LE-U+V-u-F 74.1 81.4 84.6 65.8 79.9 67.5 78.2 70.4 57.7 40.4 62.7
LE-U+V-u-I 75.7 82.1 84.8 66.0 80.5 68.2 79.2 67.0 58.8 44.1 64.1

LE-U+V-ud-F 77.0 81.2 83.5 65.0 80.3 68.7 79.6 62.4 59.3 46.9 65.2
LE-U+V-ud-I 71.5 78.2 79.9 60.9 76.8 58.9 74.7 52.4 57.2 48.1 61.5
WG5-U+V 65.1 73.8 77.9 61.8 71.3 60.7 77.2 65.7 53.2 40.6 60.4

U 61.3 73.0 76.3 58.7 68.6 54.0 68.7 68.1 48.9 30.6 51.9
U+V 64.9 77.4 79.9 59.1 71.5 58.8 71.4 68.1 48.5 32.5 53.7

Table 11: Analogy tasks for the different methods on enwiki and geb. The best alpha is selected with a 3-fold
cross validation (α between -10 and 10). The methods reported are implementing either euclidean normalization
(I) or normalization with the Fisher (F) in different points on the manifold (0, u). Scalar products (-p) are always
calculated with respect to the Identity in this table (I).

corpus method
semantic syntactic total

alpha acc alpha acc alpha acc

en
w

ik
i1

.5
B

E-U+V-0-nF-pI 1.7± 0.1 85.7± 0.3 −9.5± 0.5 65.9± 0.4 −9.5± 0.5 73.6± 0.4
E-U+V-0-nI-pI 1.8± 0.0 84.6± 0.4 −2.2± 5.5 66.6± 0.3 1.7± 0.1 74.4± 0.1
E-U+V-u-nF-pI −7.2± 3.3 81.8± 0.2 −9.5± 0.7 65.7± 0.5 −9.5± 0.7 72.7± 0.4
E-U+V-u-nI-pI −8.5± 0.3 82.3± 0.4 −9.1± 1.2 67.1± 0.4 −8.5± 1.1 73.6± 0.4

LE-U+V-0-nF-pI −∞ 83.4 −∞ 66.9 −∞ 74.0
LE-U+V-0-nI-pI −∞ 82.8 −∞ 67.3 −∞ 74.0
LE-U+V-u-nF-pI −∞ 81.6 −∞ 66.2 −∞ 72.8
LE-U+V-u-nI-pI −∞ 82.0 −∞ 67.5 −∞ 73.7

WG5-U+V n/a 79.4 n/a 67.5 n/a 72.6
U n/a 77.8 n/a 62.1 n/a 68.9

U+V n/a 80.9 n/a 63.4 n/a 70.9

ge
b

1.
8B

E-U+V-0-nF-pI 1.9± 0.2 84.6± 0.3 −8.5± 2.0 68.1± 0.2 −9.9± 0.1 73.8± 0.3
E-U+V-0-nI-pI 1.7± 0.1 83.8± 0.4 1.3± 0.1 72.2± 0.4 1.3± 0.1 76.7± 0.3
E-U+V-u-nF-pI −9.1± 1.3 80.0± 0.2 −9.7± 0.4 69.7± 0.4 −9.7± 0.4 73.9± 0.3
E-U+V-u-nI-pI 1.0± 0.0 81.8± 0.3 −2.1± 4.4 70.3± 0.8 1.0± 0.0 75.2± 0.2

LE-U+V-0-nF-pI −∞ 82.1 −∞ 67.1 −∞ 73.2
LE-U+V-0-nI-pI −∞ 81.2 −∞ 67.3 −∞ 72.9
LE-U+V-u-nF-pI −∞ 80.1 −∞ 68.0 −∞ 72.9
LE-U+V-u-nI-pI −∞ 80.9 −∞ 68.5 −∞ 73.5

WG5-U+V n/a 78.7 n/a 65.2 n/a 70.7
U n/a 75.7 n/a 66.8 n/a 70.4

U+V n/a 80.0 n/a 68.5 n/a 73.2


