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Abstract
The task of automatic misogyny identifica-
tion and categorization has not received as
much attention as other natural language tasks
have, even though it is crucial for identify-
ing hate speech in social Internet interactions.
In this work, we address this sentence clas-
sification task from a representation learning
perspective, using both a bidirectional LSTM
and BERT optimized with the following met-
ric learning loss functions: contrastive loss,
triplet loss, center loss, congenerous cosine
loss and additive angular margin loss. We set
new state-of-the-art for the task with our fine-
tuned BERT, whose sentence embeddings can
be compared with a simple cosine distance,
and we release all our code as open source for
easy reproducibility. Moreover, we find that al-
most every loss function performs equally well
in this setting, matching the regular cross en-
tropy loss.

1 Introduction

Whether it is at the word or at the sentence level,
learning robust representations allows neural net-
works to consolidate knowledge that can later be
transferred to other tasks and domains. Many ap-
proaches have dealt with this problem in differ-
ent ways, for instance with CBOW or skip-gram
from word2vec (Mikolov et al., 2013) for context-
independent word embeddings, or more recently
with BERT’s (Devlin et al., 2019) sentence embed-
dings and contextual word embeddings.

In order to learn sentence representations, a
neural encoder enc needs to learn a mapping
from an initial representation xi to a target vec-
tor space. In a metric learning approach, the dis-
tances between each pair of sentence embeddings
(enc(xi), enc(xj)) should be low if classes yi = yj
(intra-class compactness) and high if yi 6= yj (inter-
class separability). To achieve this objective, the an-
gle θij separating a pair of embeddings (as depicted

in Figure 1) can be used to redefine the model’s
loss function.

In the domain of face recognition, many loss
functions (Schroff et al., 2015; Wen et al., 2016; Liu
et al., 2017; Wang et al., 2018; Deng et al., 2019)
have been proposed to learn better face representa-
tions, motivated by high intra-class variability due
to lighting, position or background. Other studies
have experimented with these methods in different
domains with similar characteristics, like speaker
verification (Bredin, 2017; Chung et al., 2018; Ya-
dav and Rai, 2018), and even as an enhancement
of BERT’s sentence representations (Reimers and
Gurevych, 2019) for semantic textual similarity.
A recent study (Srivastava et al., 2019) has also
focused on comparing these methods on face verifi-
cation, showing that angular margin losses achieve
superior performance.

On the other hand, the automatic misogyny
identification (AMI) evaluation campaign (Fersini
et al., 2018a) was proposed to address misogyny
on tweets. Included tasks were identification (i.e.
misogynous or not), categorization over five dif-
ferent misogyny types, and target identification (to
an individual or a group). However, no partici-
pant has proposed a metric learning model. The
best system (Ahluwalia et al., 2018) uses a bidirec-
tional LSTM with word embeddings of size 100 for
the identification task, and ensemble methods with
feature engineering for category and target classi-
fication. They achieve a macro F1 score of 36.1
on the misogyny categorization part of sub-task B,
which is the one we address as well. A different
architecture (Caselli et al., 2018) uses a multi-layer
character bidirectional LSTM for categorization,
obtaining a macro F1 score of 14.1.

In this paper, we focus on five metric learning
losses for the task of misogyny categorization, us-
ing the AMI (Fersini et al., 2018a) dataset. Our
hypothesis was that metric learning might reduce
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Figure 1: Depiction of embeddings in two dimensions.
The dotted vector wk represents a centroid for some
class k, while the other vectors are sentence embed-
dings. θ values are angles separating two vectors.

the natural intra-class variability within misogyny
categories, making representations robust to writ-
ing styles, irony, insults, etc. The loss functions
we experiment with are contrastive loss (Hadsell
et al., 2006), triplet loss (Schroff et al., 2015), cen-
ter loss (Wen et al., 2016), congenerous cosine loss
(Liu et al., 2017) and additive angular margin loss
(Deng et al., 2019), as well as cross entropy loss.
We optimize these loss functions with two different
architectures: a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) and BERT (Devlin et al.,
2019), and we evaluate their performance using
a simple K-nearest neighbors (KNN) classifier to
better measure representation quality.

Our main contributions consist of new state-of-
the-art performance for the misogyny categoriza-
tion task, as well as empirical evidence that these
methods do not perform better than cross entropy
loss on closed-set sentence classification. More-
over, our code is released as open source for easy
reproducibility.

2 Loss Functions

In this section, we present the loss functions chosen
for our study, which can be separated into contrast-
based and classification-based, according to how
they are computed.

2.1 Contrast-based losses

The contrastive loss (Hadsell et al., 2006) uses
pairs annotated as similar/dissimilar (also called
positive/negative). It brings representations from
similar examples closer together, while separating

dissimilar ones explicitly:

L =

P+∑
i=1

(Di)
2 +

P−∑
i=1

max(m−Di, 0)
2 (1)

where P+ is the number of similar pairs, P− the
number of dissimilar pairs, Di = 1 − cos θi the
distance between embeddings of the ith pair, and
m a margin.

The triplet loss (Schroff et al., 2015) is calcu-
lated over triplets composed of a reference example
known as the anchor, a positive and a negative, both
the latter with respect to the anchor. Following the
idea introduced by Gelly and Gauvain (2017), we
define this loss using the sigmoid function:

L =
T∑
i=0

sigmoid(α (cos θni − cos θpi ))) (2)

where T is the number of triplets, α a scaling hyper-
parameter, θpi the angle separating the anchor and
the positive embeddings, and θni the angle separat-
ing the anchor and the negative ones.

Taking Figure 1 as an example, contrast-based
losses encourage the cosine distance between em-
beddings i and j to be larger if yi 6= yj , and smaller
if yi = yj . This is achieved a single pair at a
time with contrastive loss, while triplet loss does it
jointly using both the positive and negative inside
the triplet.

2.2 Classification-based losses
These loss functions derive from the cross entropy
loss, either by modifying how the classification
layer output is calculated or working as a penal-
ization term. The cross entropy loss is defined as:

LCE = − 1

N

N∑
i=1

log softmax(σi, yi) (3)

whereN is the number of training examples, σi the
output of the classification layer, and yi the class
of the ith example.

The congenerous cosine (CoCo) loss (Liu et al.,
2017) interprets the weights wk of the classifica-
tion layer as class centroids, learning to maximize
the cosine similarity between a representation and
its centroid. The classification layer output σi is
redefined as:

∀k σik = α · cos θiwk
(4)

where θiwk
is the angle separating the ith represen-

tation and wk, and α a scaling hyper-parameter.
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The additive angular margin (AAM) loss (Deng
et al., 2019) goes one step further adding a margin
in angular space to penalize the distance between a
representation and its centroid:

∀k σik = α · cos(θiwk
+ δikm) (5)

where m is a margin, and δik = 1 if k = yi and 0
otherwise.

Finally, the center loss (Wen et al., 2016) pe-
nalizes the cross entropy loss with the distance to
jointly learned centroids ck external to the classifi-
cation layer:

L = LCE +
λ

2

N∑
i=1

(1− cos θicyi )
2 (6)

where λ is a hyper-parameter controlling the effect
of penalization.

To see the effect of classification-based losses
more intuitively, consider embeddings and centers
in Figure 1. If yi = k, then both congenerous co-
sine loss and center loss will penalize the loss value
with the distance from embedding i to wk (or ck in
the case of center loss), hence bringing all vectors
from class k close to the centroid k. The additive
angular margin loss follows the same principle, but
penalizing further by artificially augmenting the
distance of embedding i to wk with the angular
margin.

3 Task

The term misogyny is defined as hatred towards
women. Hate speech of this nature is unfortu-
nately common in social Internet interactions, and
current language models are generally unable to
accurately detect and classify it. The AMI task
and corpus were proposed in the context of the
IberEval 2018 (Fersini et al., 2018b) and Evalita
2018 (Fersini et al., 2018a) evaluation campaigns,
allowing researchers to train models focused specif-
ically on misogyny. The corpus consists of an en-
semble of tweets with three different types of an-
notations: misogyny (binary), misogyny category
and target (active or passive).

We use the same dataset as in Fersini et al.
(2018a) and we focus exclusively on misogyny
categorization, using an additional class for non
misogynous tweets. Our results are thus compared
to the categorization part of sub-task B. An ex-
planation of misogyny categories according to the
definitions given in Fersini et al. (2018a) can be
found in Table 2.

Class Train Dev Test

derailing 74 18 11
discredit 811 203 141
dominance 118 30 124
sexual harassment 282 70 44
stereotype 143 36 140
non misogynous 1,772 443 540
total 3,200 800 1,000

Table 1: Number of sentences per class for each parti-
tion of the AMI dataset. Note that classes are greatly
imbalanced.

As the corpus does not provide a development
set, one was constructed from the training set fol-
lowing the same class distribution. The final Train
set is composed of 3200 tweets, and the Dev and
Test sets of 800 and 1000 tweets respectively. Class
distribution is described in detail in Table 1. The
task is evaluated using the macro F1 score.

4 Experiments

4.1 Experimental protocol
As different losses rely on different hyper-
parameters, we perform a hyper-parameter search
including learning rates, margins m, scalings α,
and λ. The values we have experimented with are
shown in Table 3. Each configuration is trained
on Train for 60 epochs and validated using a KNN
classifier on Dev. As we deal with a rather small
dataset, the best configuration for each loss and
each architecture is then trained and validated from
scratch 10 times to reduce the effect of randomness.
Reported results are the mean macro F1 score and
standard deviation on Test over these 10 runs.

In all experiments we use the cosine distance
to compare embeddings, as congenerous cosine
loss and additive angular margin loss can only be
optimized in this way. Additionally, a linear clas-
sification layer is jointly trained with the sentence
encoder when optimizing classification-based loss
functions.

4.2 Architecture
We experiment with two different encoder archi-
tectures. The first one is a one-layer bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) with
output size 768 (to match BERT) and word em-
beddings of size 300 obtained from a word2vec
CBOW model (Mikolov et al., 2013) trained on 2-
billion-word Wikipedia dumps. The second one is
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Category Description Example

derailing
“to justify women abuse, “if rape is real why aren’t more people

rejecting male responsibility” reporting it? just another feminist lie”

discredit
“slurring over women with

“this b*** is a s***”
no other larger intention”

dominance
“to assert the superiority of men “#didyouknow the male brain is 3.4 times larger

over women to highlight gender inequality” than the female brain? #maledominance”

sexual “sexual advances, harassment of
“come on box I show you my c*** darling”

harassment a sexual nature, etc.”

stereotype
“a widely held but fixed and “these people are hysterical. it’s like a commercial

oversimplified image or idea of a woman” for why men should never marry [. . . ]”

Table 2: Misogyny categories as described by the corpus authors (Fersini et al., 2018a) along with examples found
in the training set.

Parameter Values

LR
{10−2, 10−3, 10−4, 10−5, 10−6}•
{10−4, 10−5, 10−6, 10−7}◦

m {0.02, 0.05, 0.25, 0.5, 0.75}
α and λ {0.01, 0.1, 1, 10, 100, 1000}

Table 3: Values tested during initial hyper-parameter
search, totaling 486 configurations. LR stands for learn-
ing rate, and m, α and λ are loss parameters (see Sec-
tion 2). Values with • are LSTM only and values with
◦ are BERT only.

the standard monolingual uncased BERT (Devlin
et al., 2019) from the huggingface library (Wolf
et al., 2019) pretrained on Wikipedia.

To obtain a sentence embedding from an encoder,
we perform a max pooling over the hidden states of
the last layer, leaving us with sentence embeddings
of size 768 on both models.

4.3 Implementation details

All sentences are pre-tokenized using the
TweetTokenizer from the NLTK toolkit (Bird
et al., 2009) in order to correctly deal with Twitter-
specific tokens like hashtags, mentions, and even
emojis. During this process we remove handles
and URLs. When training BERT, we do a second
pass of tokenization with BERT’s pretrained
tokenizer. We use a batch size of 32 sentences and
RMSprop as optimizer, reducing the learning rate
by half every 5 epochs of no improvement. The
best configurations found during hyper-parameter
search for each architecture and loss function are
shown in Table 4.

Our code is released as open source, available at
github.com/juanmc2005/MetricAMI.

4.4 Evaluation
We evaluate each model with the macro F1 score of
a KNN classifier with K = 10 fit with all sentence
embeddings from Train. However, given the high
class imbalance, the a priori probability of a ran-
dom embedding being closer to a non-misogynous
embedding is higher than for a discredit one (see
Table 1). To circumvent this issue, we penalize the
vote for class k by the number of examples from k
in Train. We believe this simple classifier to be a
better measure for representation quality, as it re-
lates to the separability and compactness properties
that we expect from a metric learning model.

5 Results

The results are summarized in Figure 2. With a
fixed architecture, it is clear that all loss functions
perform equally, with the exception of LSTM with
contrastive and triplet loss. As the LSTM encoder
is rather shallow (4.4M parameters) in compari-
son to BERT (110M parameters), it is possible that
contrast-based losses need bigger models to per-
form competitively.

The fact that almost all losses perform equally
well shows that, contrary to what we thought, met-
ric learning models perform no better than cross
entropy, in contrast to other findings (Srivastava
et al., 2019) on face verification. One possible ex-
planation is that the AMI dataset may not contain
enough examples or classes for these models to
exploit. However, another factor might be responsi-
ble for this behavior. One of the key differences of
AMI with respect to face verification is the closed-
set nature of the problem. An open-set task is
evaluated with unseen classes, while a closed-set
task is evaluated with unseen instances of the train-
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Loss Hyper-parameters

Cross entropy
LR = 10−3 •

LR = 10−5 ◦

AAM
LR = 10−3, m = 0.05, α = 100 •

LR = 10−5, m = 0.05, α = 100 ◦

Center
LR = 10−4, λ = 1000 •

LR = 10−5, λ = 0.1 ◦

Congenerous LR = 10−3, α = 10 •

cosine LR = 10−5, α = 100 ◦

Contrastive
LR = 10−4, m = 0.25 •

LR = 10−6, m = 0.25 ◦

Triplet
LR = 10−4, α = 1000 •

LR = 10−6, α = 1000 ◦

Table 4: Best hyper-parameter configurations found per
loss function. LR stands for learning rate, and m, α
and λ are loss parameters (see Section 2). Rows with •
correspond to LSTM and rows with ◦ to BERT.

ing classes. It is possible that open-set verification
tasks are more suitable for metric learning than
closed-set tasks, meaning that the power of metric
learning might in fact lie in generalizing to unseen
classes rather than unseen class instances. The fact
that verification tasks more closely resemble the
training objective than exact class prediction could
provide an explanation for this.

On the other hand, our fine-tuned BERT outper-
forms the Evalita winner baseline (Ahluwalia et al.,
2018), setting new state-of-the-art for misogyny
categorization, with the added benefit of having
comparable embeddings with a simple cosine dis-
tance.

As a final note, results in Table 4 suggest that
congenerous cosine loss and center loss hyper-
parameters could be more sensitive to architecture
changes than other losses, as they are the only ones
whose best configurations differ from one architec-
ture to the other. Perhaps not surprisingly, we also
observe that additive angular margin loss works
better with lower margins. This is consistent with
the margin’s role, serving as an upper bound for
the distance between an embedding and its cen-
troid, while the margin in contrastive loss serves as
a lower bound for the distance between two nega-
tives.

6 Conclusion

In this work we have addressed the problem of
misogyny categorization from a metric learning
perspective, comparing the performance of sev-
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Figure 2: F1 scores on Test for each architecture and
loss function. Scores are calculated as the mean of 10
runs and standard deviation is shown as error bars. The
baseline of the Evalita 2018 winner (Ahluwalia et al.,
2018) is shown for reference.

eral loss functions. We hypothesized that reducing
intra-class variability in this way would be bene-
ficial. However, we have shown that none of the
considered losses can outperform the regular cross
entropy on the task. Our results suggest that metric
learning approaches might not be suited to closed-
set sentence classification tasks.

Finally, our fine-tuned BERT sets new state-of-
the-art performance, with a macro F1 score of 40.5.
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