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Abstract

Recent work in compositional distributional
semantics showed how bialgebras model gen-
eralised quantifiers of natural language. That
technique requires working with vector space
over power sets of bases, and therefore is com-
putationally costly. It is possible to overcome
the computational hurdles by working with
fuzzy generalised quantifiers. In this paper, we
show that the compositional notion of seman-
tics of natural language, guided by a gram-
mar, extends from a binary to a many valued
setting and instantiate in it the fuzzy compu-
tations. We import vector representations of
words and predicates, learnt from large scale
compositional distributional semantics, inter-
pret them as fuzzy sets, and analyse their per-
formance on a toy inference dataset.

1 Introduction

The work of [10] showed how one can reason
about generalised quantifiers using bialgebras over
the category of sets and relations over a fixed pow-
erset object (powerset of a universe of discourse).
This provides us with an abstract categorical se-
mantics, which when instantiated to category of
sets and relations, one will obtain a truth-theoretic
semantics. The abstract setting, however, can also
be instantiated to category of vector spaces and
linear maps, in which one obtains a compositional
distributional semantics, in the style of [6, 9]. The
downside is that the resulting vector spaces span
over powersets of the usual set of bases and the
complexity of reasoning in the setting explodes. It
is also not very clear how can one learn the new
basis vectors, consisting of sets of vectors, rather
than just one vectors. One solution would be to
move to a fuzzy setting, as done in [17]. The
rationale behind this move is as follows: fuzzy
sets have been encoded in the category of sets
and many valued relations and the categorical set-

ting of [10] also instantiates to these categories.
We demonstrate the details of this construction in
the Springer Outstanding Contributions volume in
honor of M. Ardeshir. In that paper, we show that
the categorical version of fuzzy sets V-Rel of sets
and many valued relations, is compact closed and
define over it the necessary bialgebras to encode
Zadeh’s fuzzy generalised quantifiers.

In this paper, we spare the categorical tech-
nicalities, and review the definitions of gener-
alised quantifiers in a compositional relational set-
ting (sets and relations) guided by an elementary
generative grammar. Independently, we also re-
view the definitions of fuzzy generalised quan-
tifiers of Zadeh, using the notions of fuzzy sets
and possibility distributions. We then explain how
fuzzy sets can be modelled by many valued re-
lations and define a compositional semantics for
sentences with fuzzy generalised quantifiers in this
setting. Finally, we interpret vectors as fuzzy sets
and show how the many valued semantic computa-
tions can be done over vectorial data. We demon-
strate the workings of our model on toy vectors
extracted from real data and compute a degree of
truth for quantified sentences containing them. In
order to ground our semantics, i.e. conclude that
these computations are sound, we use the results
in a toy inference task and analyse the results.

Finally, although fuzzy concepts are often mo-
tivated by vague predicates such as short and tall,
fuzzy generalised quantifiers have a large, if not
full, overlap with natural language generalised
quantifiers. Most of the latter are non-logical and
consider words such as ”almost, many, most, few”,
and these are exactly the fuzzy generalised quan-
tifiers that Zadeh deals with. Further, and as we
will see in the examples that have been worked
out in the paper, one can apply our methodology
to deal with logical part of generalised quantifiers,
i.e. words such as ”all” and ”some”.
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2 Generalised Quantifiers as Relations

We briefly review the theory of generalised quanti-
fiers in natural language as presented in [2]. Con-
sider the fragment of English generated by the fol-
lowing context free grammar.

S → NP VP
VP → V NP
NP → Det N
NP → John, Mary, ...
N → cat, dog, man, ...

VP → sneeze, sleep, ...
V → love, kiss, ...

Det→ some, all, no, most, almost all, several, ...

A model for the language generated by this gram-
mar is a pair (U, [[ ]]), where U is a universal ref-
erence set and [[ ]] is an inductively defined inter-
pretation function. In order to keep the semantic
simple, we will not fully follow formal seman-
tics guidelines and shall not treat noun phrases as
general quantifiers. Noun phrases and nouns are
treated similarly and by sets. The [[ ]] of terminals
is thus defined via the following cases:

1. The interpretation of a determiner d gener-
ated by ‘Det→ d’ is the following map:

[[d]] : P(U)→ PP(U)

It assigns to each A ⊆ U , a family of sub-
sets of U . The images of these interpretations
are referred to as generalised quantifiers. For
logical quantifiers, these are:

[[some]](A) = {X ⊆ U | X ∩A 6= ∅}
[[every]](A) = {X ⊆ U | A ⊆ X}

[[no]](A) = {X ⊆ U | A ∩X = ∅}
[[n]](A) = {X ⊆ U | | X ∩A |= n}

A similar method is used to define non-
logical quantifiers, for example “most A” is
defined to be the set of subsets of U that has
‘most’ elements of A, “few A” is the set of
subsets of U that contain ‘few’ elements of
A, and similarly for ‘several’ and ‘many’.

Generalising the two cases above, provides
us with the following definition for semantics
[[d]](A) of any generalised quantifier d:

{X ⊆ U | X has d elements of A}

2. The interpretation of a terminal y ∈
{np, n, vp} generated by either of the rules
‘NP → np, N → n, VP → vp’ is [[y]] ⊆ U .
That is, noun phrases, nouns and verb phrases
are interpreted as subsets of the reference set.

3. The interpretation of a terminal y generated
by the rule V→ y is [[y]] ⊆ U × U . That is,
verbs are interpreted as binary relations over
the reference set.

The semantics of [[ ]] on non-terminals is defined
according to the following cases:

1. The interpretation of expressions generated
by the rule ‘NP→ Det N’ is:

[[Det N]] = [[d]]([[n]])

where X ∈ [[d]]([[n]]) iff X ∩ [[n]] ∈ [[d]]([[n]]),
for Det → d and N → n. This condition is
often referred to as conservativity or the liv-
ing on property of generalised quantifiers.

2. The interpretations of expressions generated
by other rules are as usual:

[[V NP]] = [[v]]([[np]])

[[NP VP]] = [[vp]]([[np]])

Here, for R ⊆ U × U and A ⊆ U , by R(A)
we mean the forward image of R on A, that
is R(A) = {y | (x, y) ∈ R, for x ∈ A}.
To keep the notation unified, for R a unary
relation R ⊆ U , we use the same notation
and define R(A) = {y | y ∈ R, for x ∈ A},
i.e. R ∩A.

The ‘meaning’ of a sentence in this setting is its
truth value. So we have that a sentence is true iff
[[NP VP]] 6= ∅ and false otherwise. For the cases
of quantified sentences considered in this paper,
i.e. sentences with quantified subject and object
phrases, a truth value is defined as follows:

1. A sentence of the form ‘Det N VP’ is true
iff [[Det N VP]] = [[vp]] ∩ [[n]] ∈ [[Det N]] and
false otherwise.

2. A sentence of the form ‘NP V Det N’ is
true iff [[NP V Det N]] = [[n]] ∩ [[v]]([[np]]) ∈
[[Det N]] and false otherwise.

For example, the sentence ‘some cats slept’ with
a quantifier at the subject phrase is true iff [[slept]]∩
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[[cats]] ∈ [[some cats]], that is, whenever the set of
things that sleep and are cats is a non-empty set.
Similarly, a sentence with a quantified phrase at its
object position, for instance, ‘Cats like some rats’
is true iff [[rats]] ∩ [[likes]]([[cats]]) ∈ [[some rats]],
that is, whenever, the set of things that are liked by
cats and are rats is a non-empty set. Similarly, the
sentence ‘Cats liked three rats’ is true iff the set of
things that are liked by cats and are rats has three
elements in it.

3 Zadeh’s Fuzzy Generalised Quantifiers

In this section we review definitions of fuzzy sets
and quantifiers, as done by Zadeh [17]. A fuzzy
set is a set whose elements have a corresponding
weight associated to them. For a set A, the weight
µi of element ui is interpreted as the degree of
membership of ui in A. The fuzzy set A with n
elements is represented symbolically by a sum:

A = µ1u1 + µ2u2 + · · ·+ µnun

The cardinality of a fuzzy set is defined via the
notion of sigma-count, defined below:

ΣCount(A) = Σn
i=1µi

Terms whose degrees of membership fall below a
certain threshold, may be omitted from the sum.
This is to avoid a situation where a large number
of terms with low degrees become equivalent to a
small number of terms with high degrees.

The quantified sentences Zadeh considers are
built from two basic forms: “There are Q A’s”
and “Q A’s are B’s”. Each of these propositions
induces a possibility distribution. Zadeh provides
the following insights for the analysis of these
quantified propositions. “There are Q A’s” im-
plies that the probability of event A is a fuzzy
probability equal to Q. “Q A’s are B’s” implies
that the conditional probability of event B given
event A is a fuzzy probability which is equal to
Q. Most statements involving fuzzy probabili-
ties may be replaced by semantically equivalent
propositions involving fuzzy quantifiers and this
is the statement we work with in this paper.

The fuzzy semantics of a proposition p is inter-
preted as “the degree of truth of p”, or the possi-
bility of p, where possibility is treated in an ele-
mentary way, i.e. a function from a set to the unit
interval. In order to compute this, one translates
p into a possibility assignment equation, denoted

by Π(X1,··· ,Xn) = F , where F is a fuzzy subset
of the universe of discourse U and Π(X1,··· ,Xn) is
the joint possibility distribution over (explicit or
implicit) variables X1, · · · , Xn of p. For instance,
the proposition “Vickie is tall” is translated as:

ΠHeight(V ickie) = TALL

Here, TALL is a fuzzy subset, Height(V ickie)
is a variable implicit in “Vickie is tall”, and
ΠHeight(V ickie) is the possibility distribution of
this variable. Following Zadeh, we use the = sign,
but are aware that this makes the reading awkward.
The reader is encouraged to treat (as we did) = as
an informal assignment. The above possibility as-
signment equation implies that

Poss{Height(V ickie) = u} = µTALL(u)

where Poss{X = u} the possibility that X is
u, for u a specified value. The above thus states
that “the possibility that height of Vickie is u is
equal to µTALL(u), that is, is the grade of mem-
bership of u in the fuzzy set TALL. Quantified
sentences are translated in a similar way. For in-
stance, “Vickie has several credit cards”, is trans-
lated to the following:

ΠCount(CreditCards(V ickie)) = SEV ERAL

Suppose that 4 is compatible with the meaning of
“several” with degree 0.8, then the above implies
that, for instance, the possibility that Vickie has 4
credit cards is

Poss{Count(CreditCards(V ickie)) = 4} = 0.8

In order to analyse sentences of the general forms
“There are Q A’s” and ‘Q A’s are B’s”, Zadeh
assumes that they are semantically equivalent to
the following:

There are Q A’s ; ΣCount(A) is Q

Q A’s are B’s ; Proportion(B|A) is Q

Here, Poportion(B|A) is the proportion of ele-
ments of B that are in A, aka the relative cardinal-
ity of B in A, formally defined as follows:

ΠProportion(B|A) :=
ΣCount(A ∩B)

ΣCount(A)

Both Proportion(B|A) and ΣCount(A) may be
fuzzy or non-fuzzy counts. Zadeh then formalises
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the above counts as possibility assignment equa-
tions as follows

ΣCount(A) is Q ; ΠΣCount(A) = Q

Proportion(B|A) is Q ; ΠProportion(B|A) = Q

In the spirit of truth-conditional semantics, the
weight of each of the elements of the set can be
interpreted as the degree of truth of the propo-
sition denoted by the element. This weight is
Q(ΣCount(A)) for sentences of the form “There
are Q A’s” and Q(Proportion(B|A)) for sen-
tences of the form “Q A’s are B’s”.

Writing µA(u) for the degree of membership of
u in the fuzzy set A, we define the intersection of
two fuzzy sets A and B as

A ∩B = Σi min(µA(ui), µB(ui)) ui

where i is understood to range over all the ele-
ments in A and B (when an element is in A but
not in B it will still be represented in A with a de-
gree of 0). A similar version without the Σ is used
to define it for the non-fuzzy case.

Example. Let’s say we have a universe

U = {u1, u2, u3, u4, u5}

and fuzzy sets KP for “kind people” and BP for
“big men”, defined as follows:

KP = 0.5u1 + 0.8u2 + 0.2u3 + 0.6u4

BM = 0.8u1 + 0.3u2 + 0.1u3 + 0.9u4 + 1u5

The quantified sentence “Most big men are kind”,
is translated to the following possibility assign-
ment equation ΠProportion(KP |BM) = MOST .
The intersection of KP and BM is computed as
follows:

KP ∩BM = 0.5u1 + 0.3u2 + 0.1u3 + 0.6u4

The proportion of big men that are kind, i.e.
Proportion(KP |BM), is computed as follows:

ΣCount(BM ∩KP )

ΣCount(BM)
=

1.5

3.1

Suppose that proportions between 0.6 and 0.7 are
compatible with the meaning of MOST with de-
gree 0.75. Then, since 1.5

3.1 = 0.48, the degree
of truth of our sentence is below 0.75. For the
crisp quantifier ALL, the sentence “All big men

are kind” is, since only the proportion 1 is com-
patible with the meaning of ALL with degree 1,
which is not the case here.

Possibility distributions can be learnt, e.g.
Zadeh develops a test-score procedure by sam-
pling from a database of related data.

4 Fuzzy Generalised Quantifiers as
Many Valued Relations

A many-valued relation between two sets A and
B is denoted by R : A 9 B and is a function
R : A × B → V, where V is a commutative
quantale of values, usually the unit interval [0, 1].
This function is viewed as a V-valued matrix. We
compose two relations R : A 9 B and S : B 9
C to get a relation S ◦R : A9 C such that

(S ◦R)(a, c) =
∨
b∈B

(R(a, b) • S(b, c))

holds in V. Here, • and
∨

are operations on the
numbers in the quantale V. When V is the real
interval [0, 1] with operations min and max, the
composition of two V-relations becomes as fol-
lows. Given two V-relations R : A 9 B and S :
B 9 C (so two functions R : A×B → [0, 1] and
S : B×C → [0, 1]), the composite S◦R : A9 C
is given by

(S ◦R)(a, c) = max
b∈B

min(R(a, b), S(b, c)).

We refer to sets and many valued relations on them
as V-Rel.

A non-fuzzy generalised quantifier d is inter-
preted as a relation JdK over the power set of the
universe of discourse P (U), where it relates a sub-
set A ⊆ U to subsets B ⊆ U , based on the car-
dinalities of A and B. The fuzzy version of this
quantifier is interpreted as a many valued relation
over P (U), where, in fuzzy set notation, it relates
A to subsets ui ⊆ U and assigns to each such
subset a degree of membership µi. The result is
a fuzzy set whose weights come from a possibility
distribution over the relative cardinalities of A and
ui’s. In Zadeh’s notation:

JdK(Proportion(ui|A)) = µi (1)

For V = [0, 1] and given a fuzzy generalised
quantifier for which we have ΠProportion(B|A) =

JdK, we define its V-Rel encoding to be the many
valued relation JdK : P (U) 9 P (U), with values
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Table 1: Sentences of our Toy Dataset and their Annotated Degrees of Entailment

Entry 1 Entry 2 Deg.
people strike group attacks 4.31

notice advertises sign announces 5.37
clarify rule explain process 5.00

recommend development suggest improvement 5.37
people clarify rule group explain process 5.00

corporation recommend development firm suggest improvement 5.375
office arrange task staff organize work 5.50

editor threatens application predicts 1.12
progress reduces development replaces 1.22
confirm number approve performance 1.81

editor threatens man application predicts number 1.12
man recall time firm cancel term 1.62

coming from the possibility distribution of JdK, de-
fined as follows:

JdK(A,B) = µi, for µi = [[d]](Proportion(B|A))

In order to obtain a many valued relation in
V-Rel, we need a numerical value assigned to
subsetsA andB of universe. This number is noth-
ing but the weight of [[d]](Proportion(B|A)).

The semantics of a sentence of our grammar ex-
tends from sets and relations to sets and many val-
ued relations. We define a V-Rel model to be the
tuple (V-Rel, P (U), J K) over a universe of dis-
course U . In this model, the language construc-
tions are interpreted as follows:

1. A terminal x of either category N,NP, or
VP is interpreted as a many valued relation
whose value is the degree to which a subset
A of the universe is [[x]]. This is the relative
sigma count of the subset A in [[x]], that is:

?JxKA := Proportion(A|[[x]])

2. A terminal x of category V is interpreted as a
many valued relation whose value is the de-
gree to which its image on a subset A of uni-
verse is a subset B of the universe, that is the
relative sigma count of B in [[x]](A) :

?[[x]](A,B) = Proportion(B|[[x]](A))

where [[x]](A) is the application of [[x]] to
A, resulting in a set Σn

i=1µib where the sub-
scripts of the µ’s vary over elements of fuzzy
sets A and [[v]], so we have

max
ai

min(µA(ai), µ[[v]](ai, bi))

Here, µA and µ[[v]] are degrees of member-
ships of elements of fuzzy sets A and [[v]], re-
spectively.

Using the above interpretation, a quantified sen-
tence s gets a a degree of truth r ∈ [0, 1] as its se-
mantics iff [[s]] = r in (V-Rel,P(U), [[ ]]). Using
this definition, we compute the semantics of the
sentence “several cats sleep” with a fuzzy quanti-
fier at subject position becomes as follows:

max
(A,B)

min
(
?[[cats]]A, ?[[sleep]]B,A[[several]]A∩B

)
This formula will get a maximal value for A =
[[cats]], B = [[sleep]] and when assuming that
ΠProportion(A∩B|A) = several, in which case the
value of semantics becomes as follows:

[[several]]
[ΣCount([[cats]] ∩ [[sleep]])

ΣCount([[cats]])

]
To compute this concretely, suppose that the fuzzy
sets [[cats]] and [[sleep]] are defined as follows:

[[cats]] = 0.2c1 + 0.3c2 + 0.8c3

[[sleep]] = 0.5c1 + 0.4c2 + 0.4c3

Then the value for “several cats sleep” will be

[[several]]
[ΣCount(0.2c1 + 0.3c2 + 0.4c3)

0.2c1 + 0.3c2 + 0.8c3

]
= [[several]]

[0.9

1.3

]
Suppose that the possibility distribution [[several]]
will map low values to low values and very
high values to low values, but intermediate values
would be mapped to a high number as they still
represent “several”. Thus the proportion 9

13 , which
is a high number, will evaluate to a high number.
Thus the many valued relation of this statement
will be high (a number close to 1). For examples of
possibility distributions of some other fuzzy quan-
tifiers, see [17].
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Table 2: Degrees of Truth of the Non Quantified Sentences of the Toy Data Set

Entry 1 Entry 2 Deg.
people strike group attacks [0.63, 0.42]

notice advertises sign announces [0.57, 0.6]
clarify rule explain process [0.54, 0.47]

recommend development suggest improvement [0.69, 0.59]
people clarify rule group explain process [0.50, 0.34]

corporation recommend development firm suggest improvement [0.60, 0.49]
office arrange task staff organize work [0.61, 0.62]

editor threatens application predicts [0.36, 0.49]
progress reduces development replaces [0.69, 0.61]
confirm number approve performance [0.47, 0.67]

editor threatens man application predicts number [0.42, 0.36]
man recall time firm cancel term [0.65, 0.11]

The semantics of a sentence “Mice eat several
plants” with a fuzzy quantifier at object place is
computed as follows. Suppose we have fuzzy sets

[[mice]] = 0.7c1 + 0.6c2 + 0.2c3

[[eat]] = 0.5(c1, c1) + 0.8(c1, c3) + 0.2(c2, c1)

+ 0.3(c2, c3) + 0.9(c3, c3)

[[plants]] = 0.2c1 + 0.3c2 + 0.6c3

Then the semantics we get is

[[several]]
[ΣCount([[eat]]([[mice]]) ∩ [[plants]])

ΣCount([[plants]])

]
The application of the verb to its subject gives

[[eat]]([[mice]]) = 0.5c1 + 0.7c3

As a result, the whole expression now evaluates to

[[several]]
[ ΣCount(0.2c1 + 0.6c3)

ΣCount(0.2c1 + 0.3c2 + 0.6c3)

]
= [[several]]

[0.8

1.1

]
This gives another relatively high value for
the many valued semantics of this sentence, as
Proportion([[eat]]([[mice]])|[[plants]]) certainly
indicates a case of “several” mice eating plants.

Finally, for the case where we have fuzzy quan-
tifiers at both subject and object places, e.g. in the
sentence “Several mice eat most plants”, a seman-
tics is computed as follows. Given that the fuzzy
sets representing mice and plants are as before and
taking the same fuzzy relation for [[eat]], we com-
pute the meaning of this sentence. Suppose further
that [[most]] is a possibility distribution that assigns
the value 0 to numbers below 0.5, and gradually
increasing the value for numbers from 0.5 to 1. In

this case, first, we compute the application of the
quantifiers to their respective noun phrases:

[[several]][[[mice]]] =

arg max
B

(
[[several]]

[ΣCount([[mice]] ∩B)

ΣCount([[mice]])

])
If we assume that “several” has the highest value
for 0.4, then it would for instance assign to the set
0.4[[mice]] the value Σi0.4µiui for µiui in [[mice]].
The second application gives

[[most]][[[plants]]] =

arg max
A

(
[[most]]

[ A ∩ [[plants]]

ΣCount([[plants]])

])
This will set A = [[plants]], given that 1 has the
highest probability of being “most”.

The value of the whole sentence will be the verb
applied to the quantified subject and object, hence
we obtain

[[eat]]
[
[[several]][[[mice]]], [[most]][[[plants]]]

]
=[[eat]]

[
0.4[[mice]], [[plants]]

]
= max

a,b
min(µ0.4[[mice]](a), µ[[eat]](a, b), µ[[plants]](b))

= max
(

min(0.28, 0.5, 0.2),min(0.28, 0.8, 0.6),

min(0.24, 0.2, 0.2),min(0.24, 0.3, 0.6),

min(0.08, 0.9, 0.6)
)

= max(0.2, 0.28, 0.2, 0.24, 0.08) = 0.28

That is, the extent to which several mice eat most
plants is 28%.

5 From Many Valued Relations to
Vectors Spaces and Linear Maps

By transferring our natural language semantics
of quantified sentences from sets and relations to
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Table 3: Degrees of Truth of the Quantified Sentences of the Toy Data Set

Entry 1 Entry 2 Deg.
all people strike several groups attacks [0.8, 0.8]

all noticesadvertise many signs announce [0.8, 0.8]
clarify several rules explain some processes [0.8, 0.8]

recommend many developments suggest several improvements [0.8, 0.8]
all people clarify rule several groups explain process [0.2, 0.8]

all corporations recommend development many firms suggest improvement [0.8, 0.2]
several offices arrange task some staff organize work [0.8, 0.8]

few editors threaten all applications predict [0.8, 0.2]
many progresses reduce all developments replace [0.8, 0.2]
confirm several numbers approve few performances [0.8, 0.2]
few editors threaten man all applications predict number [0.8, 0.2]

few men recall time many firms cancel term [0.2, 0.2]

sets and many valued relations, we generalised
our Boolean-valued true-false semantics to a many
valued semantics with degrees of truth from the
unit interval [0, 1]. Transferring sets and many val-
ued relations to vector spaces and linear maps en-
ables us to compute the meaning of our sentences
via quantitative reasoning on the statistical data
provided in distributional semantics. A distribu-
tional vector for a target word w is seen as a fuzzy
set whose degrees of membership are the degrees
of co-occurrences of w with a set of context words
c, or the degrees of contextual relevance of w to
c, or other similar readings. In this section we use
this interpretation and implement the formulae for
obtaining the degrees of truth of fuzzy generalised
quantifiers on vectors obtained from the combined
UKWac/Wackypedia corpus [16], extracted using
normalised co-occurrence counts, to ensure that
the vectors indeed represent fuzzy sets. As Zadeh
only provides semantics for a set of two atomic
quantifiers without invoking grammatical compo-
sitionality, we use the many valued semantics of
the previous section to compute the semantics of
our quantified sentences compositionally.

We start with the sentence entailment dataset of
[13] and later combine it with the entailed gener-
alised quantifiers of [1]. The former dataset is a
small dataset of 12 pairs of sentences, classified
in three bands: high entailment, medium entail-
ment, and low entailment. Each band is anno-
tated with human judgements with a number in
the range 1-7, representing the degree of entail-
ments between each pair of sentences. The bands
of entailment are decided upon based on the av-
erages of the annotations. For the purpose of this
paper, we only work with clear (non-)entailments
and thus only present data for the high and low
bands. In the high band, both subjects/objects and

verbs/verb phrases/intransitive verbs entail each
other. These got an average annotation of 4 and
above. In the low band are the non-entailing
entries, i.e. neither of the subjects/objects or
verbs/verb phrases/intransitive verbs entail each
other. These got an average annotation of 2 or un-
der. The entries of the dataset and their annotated
degrees of entailment are given in table 1.

We implement our fuzzy semantics on the sen-
tences of each entry and obtain degrees of truth.
These degrees are given in table 2, with a hori-
zontal line separating the high and low bands of
entailment. A list of entailing and non-entailing
quantifiers were provided in [1]. The list is a mix-
ture of logical and generalised quantifiers. Entail-
ment for logical quantifiers, e.g. ‘all’ and ‘some’,
is clear and so we drop these as well as numerical
quantifiers such as ‘both’ which are not fuzzy. The
case of generalised quantifiers is the interesting
one. Here, the degrees of truth of the non quanti-
fied sentences will change after applying the quan-
tifiers to them, as we saw in the examples of the
previous section for the quantifier ‘several’. Thus
we work with the generalised quantifier subset of
the data set of [1]. These are as follows:

Entailing Non-Entailing
all, several several, all
all, many many, all

several, some several, few
many, several few, all

few, many

We use the entailing ones to strengthen the en-
tailments of the high band and the non-entailing
ones to weaken the entailments of the low band.
This provides us with the following dataset, the
positive entailments are separated from the nega-
tive ones by a bar in the table. Hardcoding the
meaning of generalised quantifiers, in the same
way as we did in the previous section, provides
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’

Table 4: Degrees of Entailment for Sentences Before and After Quantification

Entry 1 Entry 2 Deg.1 Deg.2
people strike group attacks - +

notice advertises sign announces + +
clarify rule explain process - +

recommend development suggest improvement - +
people clarify rule group explain process - +

corporation recommend development firm suggest improvement - -
office arrange task staff organize work + +

editor threatens application predicts + -
progress reduces development replaces - -
confirm number approve performance + -

editor threatens man application predicts number - -
man recall time firm cancel term - +

us with new degrees of truth for each pair of sen-
tences of our dataset, which we give in table 3.

The intuitions for the hard coding of quantifiers
are obtained following [17] and are stipulated in
the table below:

quantifier hard coding
all high → 0.8, low → 0.2

some very low → 0.2, the rest → 0.8
several low → 0.2, high → 0.2, interm. → 0.8
many low → 0.2, high → 0.8, interm. → 0.2
few low → 0.8, high → 0.2, interm. → 0.2

In this table, the quantifier ‘all’ expectedly sends
high numbers to high numbers and low numbers to
low numbers, whereas e.g. ’several’ maps low val-
ues to low values, very high values to low values,
but intermediate values to high values. In order
to be able to compare the resulting numbers in a
uniform way we apply the convention that ‘low’ is
0.2, ‘high’ is 0.8 and intermediate is 0.5.

Given a pair of degrees of truth, we now com-
pute an entailment and a degree for it using the
definition of fuzzy entailment [17, 8]. A fuzzy
proposition p entails another fuzzy proposition q
iff q is less specific than p. For p and q two fuzzy
sets, this is defined to be the point wise ordering
between their possibilistic distributions. After a
proportion is computed on the fuzzy sets, the or-
dering becomes the ordering between their com-
puted degrees of truth, i.e. on ΠProportion(B|A) for
the proportion of elements of B in A. A degree of
entailment is computed from a pair of degrees of
truth, by subtracting them. Whenever this number
is positive, we mark it with a + sign and when-
ever it is negative we mark it with a - sign. If the
result is 0, it must have come from a case where
the degrees of truth of each entry of the pair is the
same. Since the ordering is ≤ and not strict, these
cases stand for as a full entailment and given a +
sign. The degrees of entailment of the entries of

our dataset thus becomes as in the Deg. 1 column
of table 4, the two high and low bands are com-
bined in one table with a bar separating them.

This means that out of the seven cases of pos-
itive entailment, only two (the ones marked with
a +) are predicted correctly and out of the five
cases of negative entailment, only three (the ones
marked with -) re predicted correctly. However,
after applying the generalised quantifiers to them,
the results improve, as shown in the Deg. 2 col-
umn of table 4. Here, the + signs increase from
two to six, predicting all but one case correctly.
The number of the - signs also increase by 1, so
the model is predicting that 4 out of the 5 entries
do not entail each other correctly.

6 Conclusion and Future Work

We showed how the compositional semantics of
the generalised quantifiers of natural language ex-
tends from a binary setting to a many valued set-
ting and how this latter can be used to model fuzzy
generalised quantifier. In a quest to relate these
developments to large scale data learnt from dis-
tributional semantics, we interpreted vectors as
fuzzy sets and computed degrees of truth for the
sentences of a toy dataset. We then extended
the dataset with quantifiers and showed how these
computations can be used for an inference task.

One essential piece of work is experimenting
with the model on main stream inference datasets
such as SNLI and Fracas. We mainly chose to
work with this small dataset since the details of its
high and low bands and the annotations for them
where published and we could use them to pro-
vide a detailed case by case analysis. A theoreti-
cal direction is to use the logic of fuzzy sets, e.g.
that of [12], to develop a logic for distributional
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data. Quantifiers are known to impose contextual
restrictions on their domains, e.g. in the donkey
sentences. In previous work [15, 14] authors have
shown how compositional distributional semantics
deals with these issues. Finding out the added
value of working in a fuzzy setting for such ex-
amples remains to be worked out.

Finally, we are aware of the tension that ex-
ists between the membership values of fuzzy sets
and the probabilities that come from the nor-
malised distributional vector representations. In
their simplest forms, the latter probabilities are log
likelihood estimates resulting from co-occurrence
counts of a corpus of text. Fuzzy values, however,
are obtained from distribution of the individuals in
the domain of vague predicates in a model. Re-
lating these two should be possible by machine
learning and alongside recent work on Bayesian
inference semantics [5], unified functional distri-
butional models [7], and distributional model the-
oretic approach [11, 3, 4].
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