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Abstract

This paper describes our participating system
on the Chinese Grammatical Error Diagno-
sis (CGED) 2020 shared task. For the detec-
tion subtask, we propose two BERT-based ap-
proaches 1) with syntactic dependency trees
enhancing the model performance and 2) un-
der the multi-task learning framework to com-
bine the sequence labeling and the sequence-
to-sequence (seq2seq) models. For the correc-
tion subtask, we utilize the masked language
model, the seq2seq model and the spelling
check model to generate corrections based
on the detection results. Finally, our system
achieves the highest recall rate on the top-3
correction and the second best F1 score on
identification level and position level.

1 Introduction

Chinese has become an influential language all over
the world. More and more people choose Chinese
as a second/foreign language (CSL/CFL). Their
writings usually contain grammatical errors includ-
ing spelling and collocation errors. For instance, a
Japanese learner may write “我苹果喜欢” (I ap-
ple like) while its correct expression should be “我
喜欢苹果” (I like the apple). The inconsistency
of Chinese and Japanese grammatical structures
will lead to different expression order. Grammat-
ical structure in Chinese is different from other
languages and affects expression.

The previous works used to do feature engineer-
ing including pretrained features and parsing fea-
tures to improve performance. In this paper, we
fertilize the representations from BERT with the
syntactic dependency tree and propose a multi-task
learning of error detection and correction. We em-
ploy three strategies based on BERT for correction
based on detection results. Experiment shows that
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Figure 1: A sample of the training data.

our system is effective on both detection and cor-
rection level. Our contributions are summarized as
follows:

• We propose the graph-convolutional-network-
based (GCN-based) approach to improve the
baseline model’s understanding of syntactic
dependency and introduce the sequence-to-
sequence (seq2seq) model to improve the per-
formance of the original sequence labeling
task.
• We combine three approaches including the

masked language model, the seq2seq and the
Chinese spelling check to correct the erro-
neous sentences based on the detection results.
• We get the highest recall rate of the top-3

correction and the second highest F1 score at
the identification level and position level of
the detection.

This paper is organized as follows. Section 2
describes the CGED task. Section 3 describes our
system for grammatical error detection and cor-
rection. Section 4 reports the experimental results
conducted by the proposed methods. Section 5
concludes this work.

2 Chinese Grammatical Error Diagnosis

The CGED shared task has been held since 2014.
Several sets of training data have been released
written by CFL learners which contain a lot of
grammatical errors. For detection, the CGED de-
fines four types of errors: (1) R (redundant word
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Wrong Input:

Correct Input:

Smoking can cause many diseases

Smoking can many diseases

Figure 2: The different structures of syntax tree be-
tween the error sentence and right sentence.

errors);(2) M (missing words); (3) W (word order-
ing errors);(4) S (word selection errors) as shown in
Figure 1. The performance is measured at detection
level, identification level and position level. For
correction, systems are required to recommend at
most 3 corrections for missing and selection errors.

3 System Description

3.1 BERT-CRF

Previous works regard the detection task as the
sequence labeling problem solving by the LSTM-
CRF model (Huang et al., 2015). We introduce the
BERT model (Devlin et al., 2018) to replace the
LSTM model. For different pretrained BERT mod-
els, we choose the StructBERT (Wang et al., 2019)
as our main body model. One of the reasons is that
its pretraining strategy Word Structural Objective
accepts sentences with wrong word order, which is
similar to the word ordering errors in this task.

3.2 BERT-GCN-CRF

Previous works (Yang et al., 2017; Fu et al., 2018)
spent a lot of effort in feature engineering including
pretrained features and parsing features. Part-of-
speech-tagging(POS), and dependency information
are the most important parsing features, which in-
dicates to us the task is closely associated with
the structure of the sentence syntactic dependency.
Specifically, the redundant error and the missing
error sentences syntax tree are very different from
the correct sentences as the Figure 2 shows.

To understand the dependency structure of an
input sentence better, we introduce the Graph Con-
volution Network (GCN) (Kipf and Welling, 2016;
Marcheggiani and Titov, 2017).

Figure 3 shows our BERT-GCN-CRF model ar-
chitecture. We will explain each part in detail.

Word Dependency We split the input sentences
into words and obtain the dependency relation of
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Figure 3: The structure of BERT-GCN-CRF model

each word. As BERT acts on character level in
Chinese, we add extra dependency edges for one
word to all of characters of the word.

Graph Convolution Network The multi-layer
GCN network accepts the high-level character in-
formation obtained by the BERT model and the
adjacency matrix of the dependency tree. The con-
volution operation is adopted for each layer.

f(A,H l) = AHlW
g
l (1)

where W g
l ∈ R

D×D is a trainable matrix for the
l-th layer, A is the adjacency matrix of the depen-
dency tree, Hl = (h1, h2, ..., hn) is the hidden
state of the characters. Words use the same input
representation in the network to indicate the depen-
dency relation of the characters.

Accumulated Output After the graph convolu-
tion network, we concatenate the representation Hl

for the l-th layer and the BERT hidden state passing
to a linear classifier as the input of the CRF layer.

V = Linear(H0 ⊕Hl) (2)

CRF Layer A CRF layer is introduced to predict
the sequence tags for each token.

Score(X,Y ) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Vi,yi (3)

P (Y |X) =
exp(Score(X,Y ))∑
Ŷ exp(Score(X, Ŷ ))

(4)
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Figure 4: The structure of the multi-task learning

where X , Y , Ŷ represents the input sequence, the
truth tag sequence, and an arbitrary label sequence,
V represents the emission scores, and A is the
transition scores matrix of the CRF layer. The
loss function is calculated as:

Losssl = − log(P (Y |X)) (5)

We use Viterbi Decoding (Huang et al., 2015) to
inference answers.

3.3 Multi-task

Most previous works trained their model by the
sequence tags (Yang et al., 2017; Li and Qi, 2018;
Fu et al., 2018). We utilize not only tags but also
correct sentences during the training process. Cor-
rect sentences are important for providing better
representation in the hidden state. Moreover, with
the correct sentences, the model can have a better
understanding of the original meaning of the input
sentence. Therefore, we introduce the seq2seq task
(Sutskever et al., 2014; Vaswani et al., 2017) treat-
ing the training process as multi-task learning. As
shown in Figure 4, the sequence labeling model
is the encoder in our structure combined with the
transformer decoders to predict the truth sentence.
The sequence labeling loss and the seq2seq loss are
combined by a hyper-parameter w:

Loss = w ∗Losssl + (1−w) ∗Lossseq2seq (6)

During the inference phase, we use the sequence
labeling module to predict answers.

3.4 Ensemble Mechanism

To take advantage of the predictions from multiple
error detection models, we employ a two-stage
voting ensemble mechanism.

In the first stage, predictions from multiple mod-
els are utilized to distinguish the correct sentences

from the sentences with grammar errors. Specifi-
cally, we label the sentences as correct when less
than θdet models detect errors in the sentence.

In the second stage, an edit-level voting is ap-
plied to the predictions for the sentences with gram-
mar errors. We only include edits that appear in the
predictions of more than θedit models.

In the experiments, we use the grid search to
choose the θdet and θedit according to the perfor-
mance on the validation data.

3.5 Correction

For the selection (S) and missing (M) errors, we
introduce two methods to generate corrections.

In the first method, we insert mask tokens into
the sentence and use BERT to generate correction
by replacing mask tokens one by one in an auto-
regressive style. In the experiments, we insert 1 to
4 mask tokens to cover most of the cases and adopt
the beam-search algorithm to reduce the search
complexity.

In the second method, we generate the candi-
dates by a seq2seq model trained by mapping the
wrong sentences to the correct sentences. Accord-
ing to the detection result, we keep generating next
characters until the correct character appears within
the beam-search algorithm, and then replace the
incorrect span.

3.6 Chinese Spelling Check

The Chinese Spelling Check (CSC) models are uti-
lized to handle spelling errors. We combine the re-
sults from a rule-based checker and a BERT-based
spelling checker learned from the CSC data (Bao
et al., To appear). The rule-based checker is good
at handling non-word errors. The BERT-based
checker treats the CSC task as a sequence labeling
problem and is good at handling real-word errors.
The corrections are then segmented and aligned
with the input sentences to get the edited results
on the word-level. As the CSC models show a
high precision on the validation data, we treat the
spelling errors as word selection errors and directly
merge the CSC results into the detection and cor-
rection results for our final submissions.

4 Experiments

4.1 Data and Experiment Settings

We trained our models by CGED 2015, 2016, 2017,
2018 training data and used pairs of error sentences
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Method Detection Identification Position
Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT-CRF 78.4 76.7 77.5 61.4 50.8 55.6 40.7 28.7 33.6
BERT-GCN-CRF 65.5 91.2 76.3 53.1 62.7 57.5 34.7 36.1 35.4

BERT-CRF + multi-task 65.5 90.8 75.9 52.2 60.6 55.4 36.0 36.2 36.1
StrcutBERT-CRF 72.1 89.3 79.8 60.0 60.7 60.3 42.1 36.2 38.9

StrcutBERT-GCN-CRF 77.6 84.5 80.9 64.1 58.0 60.9 45.7 35.3 39.8
StrcutBERT-CRF + multi-task 73.5 88.4 80.3 60.7 62.6 61.6 42.0 38.7 40.2

Ensembled Model 85.5 78.6 81.9 68.1 62.1 65.0 48.0 41.3 44.4

Table 1: The results of single models and ensemble model on validation dataset.

Detection Identification Position Correction Top-3 Correction
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Run#1 92.8 84.4 88.4 72.2 61.2 66.3 43.7 33.7 38.1 13.6 11.0 12.1 7.7 18.4 10.8
Run#2 91.6 86.4 89.0 71.9 54.5 62.0 42.4 27.3 33.2 18.9 12.5 15.0 9.6 17.7 12.5
Run#3 92.5 86.0 89.1 72.3 62.9 67.3 44.3 36.1 39.8 17.8 15.3 16.5 9.3 22.8 13.3
Top 1 85.7 97.6 91.2 73.6 62.1 67.4 47.2 35.4 40.4 28.5 14.2 18.9 32.2 13.3 18.9

Table 2: Final results on the official evaluation testing data. “Run #1” represents the ensemble model with correc-
tion. “Run #2” represents the single best model with correction. “Run #3” represents the ensemble model with
correction and CSC. ”Top 1” reports the highest F1 score with its precision and recall at different levels.

and correct sentences for the seq2seq training with-
out extra data. We used the CGED-2018 testing
dataset as our validation dataset. We introduced
the BIOES (Ratinov and Roth, 2009) scheme for
tagging.

Language Technology Plantform (LTP) (Che
et al., 2010) was introduced to obtain the depen-
dency tree. The hyper-parameters are selected ac-
cording to the performance on the validation data
through official metrics. For the GCN model, the
hidden vector size was 256 with 2 layers. The batch
size, learning rate, and GCN dropout were set to
32, 1e-5, 0.2. For the multi-task model, the batch
size, learning rate and w are set to 32, 3e-5, 0.9.

Transformer decoder parameters are initialized
from the BERT parameters as much as possible.

4.2 Validation Results

We use the BERT-CRF (base) and StructBERT-
CRF (large) as our baseline models. The results
of different methods are listed in Table 1. The
StructBERT-CRF (large) overwhelms the BERT-
CRF (base) model by obtaining a significantly bet-
ter recall rate on all levels.

Both GCN and multi-task approaches achieve
improved performance over the baseline model in
identification level and position level. Thus, we se-
lect StrcutBERT-GCN-CRF and StructBERT-CRF
+ multi-task models for ensemble.

To obtain diverse single models for ensemble,
we trained 38 StrcutBERT-GCN-CRF models and
65 StructBERT-CRF + multi-task models with dif-
ferent random seeds and hyper-parameters. As
shown in Table 1, the proposed ensemble mecha-

Model Type Precision Recall F1
BERT-CRF R 42.6 28.3 34.0

BERT-GCN-CRF R 36.2 34.8 35.4
BERT-CRF M 36.3 26.6 30.7

BERT-GCN-CRF M 32.8 30.0 31.7

Table 3: The position level performance of the BERT-
CRF and BERT-GCN-CRF model on validation data.
“R” denotes the redundant error and “M” denotes the
missing error.

nism achieves an obvious improvement over the
single models.

We evaluated the contribution of the GCN net-
work of the redundant and missing error type. The
experiment shows the effectiveness of the BERT-
GCN-CRF model to resolve redundancy and miss-
ing errors.

4.3 Testing Results

For the final submission, we submitted three results
from different strategies: (1) single best model with
correction; (2) ensemble model with correction; (3)
ensemble model with correction and CSC.

As shown in Table 2, our system approach
achieves the second highest F1 scores at identifica-
tion level and position level by a balanced precision
and recall and highest recall rate at top-3 correc-
tion. One of the reasons for the detection gap is
that for an error sentence there are multiple meth-
ods to modify the sentence and the modification
granularity is difficult to control.

Most of the sentences in our training data contain
grammar errors and the ensemble mechanism is
tuned based on the F1 score on the validation data.
These factors hurt the precision at detection level
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as well as the False Positive Rate.

5 Conclusion

This article describes our system in the CGED
shared task. We proposed two approaches includ-
ing BERT-GCN-CRF model and multi-task learn-
ing to improve the baseline model to detect gram-
matical errors. We also designed three approaches
including masked language model, seq2seq and
spelling check to correct these errors. We got first
place in the recall rate of the top-3 correction and
got the second highest F1 scores at the identifica-
tion level and position level.
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