
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 126–131
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

126

TextAttack: Lessons learned in designing Python frameworks for NLP

John X. Morris∗ Jin Yong Yoo∗ Yanjun Qi
University of Virginia

{jm8wx, jy2ma, yq2h}@virginia.edu

Abstract

TextAttack is an open-source Python toolkit
for adversarial attacks, adversarial training,
and data augmentation in NLP. TextAttack
unites 15+ papers from the NLP adversarial
attack literature into a single framework, with
many components reused across attacks. This
framework allows both researchers and devel-
opers to test and study the weaknesses of their
NLP models. To build such an open-source
NLP toolkit requires solving some common
problems: How do we enable users to sup-
ply models from different deep learning frame-
works? How can we build tools to support as
many different datasets as possible? We share
our insights into developing a well-written,
well-documented NLP Python framework in
hope that they can aid future development of
similar packages.

1 Introduction

Deep neural network (DNN) models have seen
dominant use in NLP tasks such text classifica-
tion, natural language inference, machine transla-
tion, and question answering. However, despite
their state-of-the-art performance, NLP DNNs are
still vulnerable to adversarial attacks (Zhang et al.,
2020). As a result, there have been growing efforts
to develop tools that can help researchers and devel-
opers better understand the capability of their NLP
models. Both Wallace et al. (2019) and Tenney
et al. (2020) introduced web-based visual interac-
tive tools that enable users to see model’s local
explanations. Ribeiro et al. (2020) introduced a
behavioral testing framework that runs a suite of
tests to sanity check NLP models.

One of the challenges for building such tools
is that the tool should be flexible enough to work
with many different deep learning frameworks (e.g.
PyTorch, Tensorflow, Scikit-learn). Also, the tool

∗equal authorship

Figure 1: Example usage of the TextAttack API.
CamemBERT (Martin et al., 2019) and its tokenizer are
initialized using HuggingFace transformers (Wolf et al.,
2019) and wrapped in TextAttack model wrappers. Ad-
versarial attack is PWWS (Martin et al., 2019) modified
to use WordNet in French (Sagot and Fiser, 2008) in-
stead of English. TextAttack’s flexible API makes these
customizations possible in just a few lines of code.

should be able to work with datasets from various
sources and in various formats. Lastly, the tools
needs to be compatible with different hardware
setups.

We developed TextAttack, an open-source
Python framework for adversarial attacks, adversar-
ial training, and data augmentation. Our modular
and extendable design allows us to reuse many
components to offer 15+ different adversarial at-
tack methods proposed by literature. Our model-
agnostic and dataset-agnostic design allows users
to easily run adversarial attacks against their own
models built using any deep learning framework.

This paper describes some lessons learned along
the path to creating TextAttack. Figure 1 shows
our API in action. Our advice is tailored towards
researchers developing NLP libraries in Python that
support a variety of models and datasets, and use
them for downstream applications.

We provide the following broad advice to help
other future developers create user-friendly NLP



127

libraries in Python:

1. To become model-agnostic, implement a
model wrapper class.

2. To become data-agnostic, take dataset inputs
as (input, output) pairs, where each model
input is represented as an OrderedDict.

3. Do not plan for inputs (tensors, lists, etc.) to
be a certain size or shape unless explicitly
necessary.

4. Centralize common text operations, like pars-
ing and string-level operations, in one class.

5. Whenever possible, cache repeated computa-
tions, including model inferences.

6. If your program runs on a single GPU, but
your system contains N GPUs, you can ob-
tain an performance boost proportional to N
through parallelism.

7. Dynamically choose between devices. (Do
not require a GPU or TPU if one is not neces-
sary.)

2 Model agnosticism

There are growing number of deep learning frame-
works and different researchers and groups have
preferences about which frameworks to use for dif-
ferent tasks. Unless the library relates to model
training or development (and sometimes then), it
is possible to build a library that supports deep
learning models from any framework.

TextAttack supports both black-box and white-
box attacks on NLP models. Black-box attacks can
only access the model for inference. In essence, the
attack sends lists of text to the model and receives
predictions. Model predictions come as lists of
floats (for classification), strings, or dictionaries.
No other information about the model is required.
From the start, we wanted TextAttack to work on
models from any framework, without too much
headache.

2.1 Original approach: “magic” (model
detection logic)

Our original approach was to take a model and
tokenizer as input to each attack and wrangle data
into the correct format behind the scenes. This
involved a complex series of decisions based by
checking the format of the dataset, testing model
and tokenizer superclasses, and handling errors as
they arose. In the end, it worked: based on the

model, tokenizer, and dataset, as well as based on
errors raised by passing different data formats to
the model, we could perform inference on PyTorch
and TensorFlow models. It was ugly, but it worked.

This approach did not scale as there were many
edge cases. For example, some TensorFlow Hub
models were designed to take strings as predic-
tions, and did not have a tokenizer at all. Some
Scikit-learn models took a dataframe as input. We
supported both these use cases, but edges cases
requiring complex workarounds kept popping up,
with no clear end in sight.

2.2 Better approach: model wrappers

Our long-term solution was to abstract away the to-
kenizer and require a new model wrapper class for
each model. The idea of model wrappers is that
each model is wrapped in a model wrapper that im-
plements a single function, call , which takes
a list of text inputs and returns a list of predic-
tions. We designed TextAttack to interact exclu-
sively with the model wrapper– not directly with
the model, or the tokenizer.

Model wrappers allow each model to handle its
own internals: including tokenization and batch
size. TextAttack does not know or care about
how information is tokenized before it’s sent to
the model. TextAttack sends the model a list of
strings and receives a list, numpy.ndarray,
or torch.Tensor of predictions.

In this way, TextAttack becomes totally model-
agnostic: any user can implement a model wrap-
per to enable compatibility for a new model or
framework. To make the process easier, TextAt-
tack provides model wrappers for common frame-
works and patterns. Currently, TextAttack provides
model wrappers and example for models imple-
mented with PyTorch (Paszke et al., 2019), Hug-
gingFace transformers (Wolf et al., 2019), Tensor-
Flow (Abadi et al., 2016), Scikit-learn (Pedregosa
et al., 2011), and AllenNLP (Gardner et al., 2018).

3 Data agnosticism

Another goal of TextAttack was to be able to run
the same attack on any dataset. This has obvious
benefits: two attacks that report results on different
datasets can easily be compared with TextAttack.

3.1 Text inputs as OrderedDict objects

We rely on other libraries for providing default
datasets. We provide dataset wrappers for loading



128

datasets from these external libraries. We also al-
low users to provide their own datasets– via CSV
files or Python scripts that load datasets. In essence,
each dataset is a list of (input, output) pairs.
Each text input is a string (for single-input tasks)
or an OrderedDict (for tasks that require more
complex input formats).

Each input is an OrderedDict for two rea-
sons: (i) to maintain column labels for display pur-
poses and to make column-specific logic possible
and (ii) to maintain ordering so that inputs can be
provided to the model in the proper order. An indi-
vidual text input to the model is a tuple of strings.

To create these OrderedDict objects from
dictionaries loaded from popular dataset libraries,
we maintain a tuple of input columns and a string
representing the output column. Then, objects from
any dataset can be mapped to a data pair for TextAt-
tack: the input is an OrderedDict created from tak-
ing the input values in order of the input columns,
and an output is the value corresponding to the
dataset’s output column.

4 Model output flexibility with
GoalFunction

With the proper input and ouput columns and a cor-
responding model, adversarial attacks can be run
on any dataset on any model. Models may have
different output formats. For example, a sentiment
classifier would produces a list of the probabilities
of each class, while a sequence-to-sequence mod-
els produce a text output. Task-specific subclasses
of the TextAttack GoalFunction class allow ad-
versarial attack goal functions to be defined at a
high level, such that the same goal function can be
used for any model with the same output type. For
example, the MinimizeBleuScore goal func-
tion attempts to minimize the BLEU score (Pap-
ineni et al., 2002) between the correct output and
the output the model produces for a given pertur-
bation. This goal function only assumes that the
model output a prediction as a string. Given this
design pattern, the MinimizeBleuScore goal
function can be applied to attack any sequence-to-
sequence model. Similar goal functions can be
designed for other output formats, like classifica-
tion models or sentence taggers.

5 Common functions for text inputs with
AttackedText

Across TextAttack modules, some functionality is
required over and over again. Many transforma-
tions want to split text inputs into a list of words.
Many constraints require part-of-speech tagging.
We want to avoid repeating code in too many places,
and also to set a standard as to which tokenization,
part-of-speech tagger, etc. is used.

Therefore, with the exception of models (which
take string inputs), TextAttack modules operate
on AttackedText objects – not vanilla Python
strings. The AttackedText contains string function-
ality that performs word replacement, prepares text
to input to the model, prints inputs along with their
column names, and manages attack-specific con-
text attributes.

It is relatively common for NLP libraries to pro-
vide some base class that provides additional func-
tionality to what are essentially enhanced string
objects. For example, flair (Akbik et al., 2018) per-
forms text-level operations on a Sentence class.
TextAttack follows a similar strategy and stores
each text input as an AttackedText object.

5.1 Everything is a single string

A single input may consist of multiple strings. Tex-
tAttack transformations apply string-level transfor-
mations to inputs – for example, reordering words,
or replacing a single word with its synonym. Most
transformations are defined in the attack papers to
operate on a single string-input. For multi-input
classification tasks, adversarial attacks often just
choose a single input on which to operate, like
the hypothesis in the case of entailment (Jin et al.,
2019).

TextAttack enables such single-string trans-
formations and constraints without restricting
itself to single-input tasks. Transformations
and constraints assume the input is a single
string. The AttackedText contains a property
(AttackedText.text) that joins all text inputs
with a space in between. This text value is passed to
each transformation & constraint, and then broken
up again by column.

6 Improving Performance

Model inference memoization Adversarial at-
tacks in NLP spend most of their time on the GPU.
For each text input, the attack must obtain the



129

Attack Queries Cache hits
Alzantot et al. (2018) 1029 736

Zang et al. (2020) 3745 3080

Table 1: “Queries” stands for average number of
queries to victim model to attack one sample, while
“cache hits” represents the average number of times a
query has resulted in a hit to the model output cache.
Each cache hit saves a query to the model, so more
cache hits indicates a higher performance boost due to
caching.

model’s output, as well as the output of any mod-
els used to apply certain linguistic constraints, like
a sentence encoder to ensure semantic similarity
between adversarial example and the original text.
Upon further examination, many of these model
inferences appear over and over again during the
attack process. For example, the attack needs to
compute the model’s score for an input that has
already been seen. Some population-based stochas-
tic search methods, like the genetic algorithm of
Alzantot et al. (2018), may revisit the same input
multiple times during the search process, which
increases the number of redundant computations.

TextAttack caches model outputs to avoid re-
dundant computations. This is done using a least-
recently-used (LRU) function cache. Since outputs
are generally small, TextAttack can maintain a very
large LRU cache for each purpose without using an
excessive amount of memory. In some cases, this
high-level caching can cause a significant perfor-
mance increase. We experimented with attacking
100 samples for BERT-base model (Devlin et al.,
2018) trained on SST-2 dataset (Socher et al., 2013)
using methods proposed by Alzantot et al. (2018)
and Zang et al. (2020). Table 1 shows that in both
cases, significant number of queries to the victim
model result in hits to the model output cache, help-
ing us save time by avoiding unnecessary computa-
tions.

Multiprocessing strategy Efficient use of GPUs
is critical for any deep learning job. If a GPU is
available, TextAttack attacks typically use it for
victim model inference and for inference on any
models required for constraints. These inference
times are the main bottleneck for many attacks.
On systems with multiple GPUs, running attacks
on samples sequentially results in use of only one
GPU. We provide multiprocessing feature with the
--parallel flag to instead runs attacks in paral-

lel.
TextAttack parallel mode works by starting a

new attack worker process for each GPU. Each
worker takes dataset samples off of an in-queue,
runs an attack on a single sample, puts the attack
result on an out-queue, and repeats, until the in-
queue is empty. An additional non-GPU worker
works to print attack results as they appear on the
out queue.

This multiprocessing paradigm is quite simple,
and works nicely with various current deep learning
packages. Other libraries that face similar single-
GPU-intensive workloads could employ this pat-
tern to parallelize many GPUs. In the future, the
additional help of a distributed computing interface
like MPI could allow an attack to be run across
multiple machines as well.

7 Enabling use across different operating
systems and devices

Operating system compatibility Different oper-
ating systems follow different filesystem conven-
tions. Specifying full file paths explicitly is almost
never a good idea. Instead, prefer using absolute
paths. TextAttack uses absolute paths and com-
bines filenames using Python’s os.path.join
utility function. This enables file manipulation on
any system (not just Unix).

GPU Hubris Current deep learning frameworks
allow explicit device placement of tensors – choos-
ing whether a given tensor is on CPU or a specific
GPU. It is easy to design specifically for your sys-
tem: putting each tensor explicitly on the GPU
where it belongs. However, this hurts cross-system
compatibility: the code is now only able to run on
systems with GPUs. TextAttack checks to see if
CUDA is available before putting tensors on the
GPU, and puts them on the CPU otherwise. This al-
lows the library to run on machines without GPUs.

8 Conclusion

Writing an excellent, well-documented library that
is easy to install and run is a good way to get re-
searchers interested in a research topic as it lowers
the barriers to entry. Moreover, a well-structured,
extendable design empowers newcomers to make
their contributions to the field. We hope that our
lessons from developing TextAttack will help oth-
ers create user-friendly open-source NLP libraries.



130

Acknowledgments

Thanks to all the TextAttack contributors who
helped us solve these tough problems– including
Eli Lifland, Jake Grigsby, Di Jin, Kevin Ivey, Alan
Zheng, and others. Thanks also to Robin Jia and
Paul Michel who provided invaluable feedback to-
ward the development and design of TextAttack.

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorFlow: A system for large-scale machine learning.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638–
1649.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907. 11932.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suárez, Yoann Dupont, Laurent Romary, Éric Ville-
monte de la Clergerie, Djamé Seddah, and Benoı̂t
Sagot. 2019. CamemBERT: a tasty french language
model.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, High-Performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8026–8037. Curran Asso-
ciates, Inc.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12(85):2825–2830.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Benoı̂t Sagot and Darja Fiser. 2008. Building a free
french wordnet from multilingual resources.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language in-
terpretability tool: Extensible, interactive visualiza-
tions and analysis for nlp models.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019. Al-
lennlp interpret: A framework for explaining predic-
tions of nlp models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M Rush. 2019. Hug-
gingFace’s transformers: State-of-the-art natural lan-
guage processing.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combina-
torial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080, Online. Association
for Computational Linguistics.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1911.03894
http://arxiv.org/abs/1911.03894
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/2008.05122
http://arxiv.org/abs/2008.05122
http://arxiv.org/abs/2008.05122
http://arxiv.org/abs/1909.09251
http://arxiv.org/abs/1909.09251
http://arxiv.org/abs/1909.09251
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://www.aclweb.org/anthology/2020.acl-main.540
https://www.aclweb.org/anthology/2020.acl-main.540


131

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM Trans. Intell. Syst. Technol.,
11(3):1–41.


