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Introduction

Welcome to the ACL 2020 Workshop on NLP for Medical Conversations.

Primary care physicians spend nearly two hours on creating and updating electronic medical/health
records (EMR/EHR) for every one hour of direct patient care. Additional administrative and regulatory
work has contributed to dissatisfaction, high attrition rates and a burnout rate exceeding 44% among
medical practitioners. Recent research has also linked burnout to medical errors, showing doctors who
report signs of burnout are twice as likely to have made a medical error. It is imperative to find a solution
to minimize causes of such errors, via better tooling and visualization or by providing automated decision
support assistants to medical practitioners.

First steps towards introducing automation for clinical documentation have recently emerged. These
include approaches from end-to-end clinical documentation to the development of a dialog system with
virtual patients for physician training. Commercial products include offerings from large corporations
like Microsoft, Nuance, Amazon, and Google to many upcoming startups.

The goal of this workshop is to bring together NLP researchers and medical practitioners, along with
experts in machine learning, to discuss the current state-of-the-art approaches, to share their insights
and discuss challenges. This is critical in order to bridge existing gaps between research and real-world
product deployments, this will further shed light on future directions. This will be a one-day workshop
including keynotes, spotlight talks, posters, and panel sessions.

Our call for papers for this inaugural workshop met with a strong response. We received 20 paper
submissions, of which we accepted 9 papers with acceptance rate of 45%. Our program covers a broad
spectrum of applications and techniques. It was augmented by invited talks from Tanuj Gupta (Cerner),
Adam Miner(Stanford), Anitha Kannan(Curai), Steven Bendrick(OHU) and Judy Chang(UPSM).
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Classifying Electronic Consults for Triage Status and Question Type
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2Harvard T.H. Chan School of Public Health, Boston, MA
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Abstract

Electronic consult (eConsult) systems allow
specialists more flexibility to respond to re-
ferrals more efficiently, thereby increasing ac-
cess in under-resourced healthcare settings
like safety net systems. Understanding the
usage patterns of eConsult system is an im-
portant part of improving specialist efficiency.
In this work, we develop and apply classi-
fiers to a dataset of eConsult questions from
primary care providers to specialists, classify-
ing the messages for how they were triaged
by the specialist office, and the underlying
type of clinical question posed by the pri-
mary care provider. We show that pre-trained
transformer models are strong baselines, with
improving performance from domain-specific
training and shared representations.

1 Introduction

Electronic consult (eConsult) systems allow pri-
mary care providers (PCPs) to send short mes-
sages to specialists when they require specialist
input. In many cases, a simple exchange of mes-
sages precludes the need for a standard in-person
referral. eConsult systems decrease wait times
for a specialty appointment. (Barnett et al., 2017)
An example eConsult question is shown in Fig-
ure 1. In general, these questions are much shorter
than, say, electronic health record texts. There is a
stereotypical structure to these questions, including
short histories, descriptions of the current problem,
and questions about diagnosis, medication man-
agement, procedures, or other issues. When the
message is received by a specialist’s office, spe-
cialist reviewers in that office determine whether
the patient needs to be scheduled for a specialist
visit or whether the specialist may be able to an-
swer a PCP’s question directly without a visit. If a
visit needs to be scheduled, the specialists decide
whether it is urgent or not (in practice, whether the

<age> year old woman with newly diagnosed dermatomyosi-
tis who also has significant dysphagia to solids greater than
liquids. She has been started on prednisone and methotrex-
ate. She is originally from <country> and has had no prior
colon cancer screening. We would appreciate an evaluation
for both upper endoscopy and colonoscopy. Upper endoscopy
to evaluate her dysphagia and colonoscopy for malignancy
screening (dermatomyositis patients are at increased risk for
malignancy)

Figure 1: An example eConsult question

patient goes to the front of the queue). Because
these eConsult messages are unstructured, health
systems do not know how they are used. Auto-
matically extracting information about the content
and response to these questions can help health
systems better understand the specialist needs of
their PCPs and guide population health manage-
ment. Accurately classified eConsults can inform
decision-making about how to allocate resources
for quality improvement, additional specialist in-
vestment and medical education to best serve their
patient population.

In this work, we use standard support vector
machine (SVM)-based baselines and transformer-
based pre-trained neural networks (i.e., *BERT
models) to classify eConsult questions along two
dimensions, focusing on referrals to gastroenterol-
ogy and liver specialists.

First, we build classifiers that attempt to learn to
predict triage status (e.g., urgent or non-urgent) as-
signed to questions by the specialist reviewer. Our
goal is to use the ability (or inability) of classifiers
to perform this task to understand the consistency
of scheduling decisions across individual clinicians.
This addresses a concern that specialist review-
ers vary too much in their judgment on whether
a visit is urgent or non-urgent. To do this, we per-
formed experiments that compare classifiers trained
on triage decisions of single specialist reviewers.
The magnitude of inconsistency or unexplainable
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decisions among reviewers would inform whether
these systems can consistently work as intended to
reduce specialist visits safely and effectively.

Second, we build classifiers for the task of under-
standing the implicit information need that is the
cause for the PCP asking the question – we call this
question type. We developed an annotation scheme
and annotated a sample of questions from across
eight years for five question types. We then train
and evaluate several classifier models, including
standard architectures with problem-specific addi-
tions. Our results show that triage status is difficult
to learn in general, but even more difficult between
reviewers, suggesting inconsistent reviewer deci-
sions may be occurring. When classifying ques-
tion type, the best-performing models are domain-
specific pre-trained transformers, and that jointly
training to predict different question types is the
most effective technique. Our best result occurs
when combining domain-specific vocabularies with
multi-task learning, suggesting that there is a syn-
ergistic effect between these two augmentations.

2 Background

BERT (Bidirectional Encoder Representations
from Transformers), along its variants, have been
proven to outperform other contextual embedding
(e.g. ELMo (Peters et al., 2018)) or traditional
word embedding models (e.g. Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), etc.)
in a wide variety NLP tasks.

BERT learns contextual embeddings through
pre-training on a large unlabeled corpus (includ-
ing the BooksCorpus (800M words) and En-
glish Wikipedia (2,500M words)) via two tasks,
a masked language model task and a next sentence
prediction task (Devlin et al., 2019).

Domain-specific BERT models have been re-
leased, including BioBERT (Lee et al., 2020),
which started from a BERT checkpoint and ex-
tended pre-training on biomedical journal arti-
cles, SciBERT (Beltagy et al., 2019), which is
pre-trained from scratch with its own vocabulary,
and ClinicalBERT (Alsentzer et al., 2019) which
started from BERT checkpoints and extended pre-
training using intensive care unit documents from
the MIMIC corpus (Johnson et al., 2016). In this
work, we use vanilla BERT, SciBERT, and two
versions of ClinicalBERT, Bio+Clinical BERT and
Bio+Discharge Summary BERT1.

1Bio+Clinical BERT and Bio+Discharge Summary BERT

Figure 2: Normalized pointwise mutual information be-
tween categories in the question type annotations. Val-
ues close to 0 represent variables whose distributions
are independent, values above 0 (up to 1) represent
pairs of variables that are more likely than chance to
occur together, and values below 0 (down to -1) repre-
sent pairs of variables that are less likely than chance
to occur together.

3 Materials and Methods

3.1 Data

We use de-identified text data from 2008-2017 from
the San Francisco Department of Public Health
(SFDPH), for which we examined one specialty
(gastroenterology and liver) with over 33,000 eCon-
sults.2 For each eConsult question there are four
possible scheduling decisions, Initially Scheduled
(IS – added to the end of the specialist visit queue),
Not Scheduled (NS – not added to the queue, typi-
cally was resolved via a return message), Overbook
(OB – added to the front of the queue) and Sched-
uled After Review (SAR – added to the end of the
queue after deliberation or additional exchange of
messages). Each eConsult also contains meta-data,
including a unique identifier referring to the spe-
cialist reviewer who first reviewed that question
which we use later to train reviewer-specific mod-
els. This data was obtained by Boston Children’s
Hospital under a data use agreement with SFDPH,
but unfortunately the terms of that agreement do
not allow for public release of the dataset.

For the question type annotation, there
are five possible types, Diagnosis/Management

are initialized from BioBERT and respectively trained using
MIMIC notes from all types and the notes from discharge
summary only.

2This research was approved by our institution’s Institu-
tional Review Board as “Not human subjects research.”
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(D/M), Procedure-EGD3 (P-EGD), Procedure-
Colonoscopy (P-C), Procedure-Other (P-Other),
and Procedure-FlexSig (P-F). These types are not
mutually exclusive – a question could, for example,
request both a colonoscopy and an EGD. Figure 2
shows the normalized pointwise mutual informa-
tion between each of the five question type cate-
gories. For that reason, it should be modeled as
multi-label classification tasks, rather than a multi-
class classification task.

This set of categories was created by an iterative
process, where clinical experts coded samples of a
few dozen eConsult questions at a time, refining af-
ter each iteration, with the goal of striking a balance
between informativeness to leaders at these health
care systems, learnability, and ease of annotation.
The annotator who performed the question type
annotations is a certified medical coder with sev-
eral decades of experience in coding clinical docu-
ments for various administrative and NLP-related
categories. We double annotated a portion of the
data and scored them for inter-annotator agreement
using Cohen’s Kappa. Agreements 0.76 for D/M,
0.94 for P-C, 0.87 for P-EGD, and 0.29 for P-O.
P-O is difficult to annotate reliably because it is not
clear when it needs to be annotated at all – it is a
bit of a default category that probably needs clearer
instructions for when it should be annotated.

For the triage classifier, we can use all questions
in the data set, because they contain automatic la-
bels for the triage decisions that were made by the
specialist reviewers. For the question type classi-
fier, we use a sample of 969 questions annotated by
our trained medical coder. We divided the data into
training, development, and test splits for training
classifiers with an 70%/10%/20% split.

3.2 Machine Learning Algorithms

3.2.1 SVM with Bag Features
The simplest method for classifying text uses an
SVM with “bag-of-words” (BoW) features. The
text is represented by a “feature vector” v of size
V (i.e., vocabulary size) while the value of ith el-
ement, vi equals to the frequency of the ith word
in the vocabulary in the document. A generaliza-
tion of BoW is “bag-of-n-grams” (BoN). N-grams
is a contiguous sequence of n items from a given
sample of text. A bag-of-N-grams model has the
simplicity of the BoW model, but allows the preser-
vation of more word locality information. In this

3Esophagogastroduodenoscopy

study, we combine the words and n-grams to create
the features. Optimal number of n-grams and the
hyper-parameter C of SVM are selected by grid
search with 3-fold cross-validation. We performed
SVMs with BoN features for both tasks as the base-
line reference given that it is surprisingly strong for
many tasks in document classification.

One mutation of BoW in the clinical domain is
the “bag of CUIs” (BoC). CUIs, or Concept Unique
Identifiers map the text spans to medical dictionar-
ies and words with the same medical implications
are unified to the same concepts. We use Apache
cTAKES (Savova et al., 2010) to extract the medi-
cal concepts existing in the text data and apply an
SVM on the bag of concepts.

We use the Scikit-Learn implementation of
SVMs to implement the training and inference (Pe-
dregosa et al., 2011).

3.2.2 BERT Models
We fine-tune the models (updating the weights
of the encoders and classification layer) on
our tasks with four different versions of BERT
models, BERT (base-uncased), SciBERT (base-
uncased), Bio+Clinical BERT (base-cased) and
Bio+Discharge Summary BERT (base-cased). For
both tasks, we use the last hidden state of the
[CLS] token as the aggregate sequence representa-
tion. The [CLS] representation is fed into an output
layer (softmax for the triage status classifier, sig-
moid for the question type classifiers) to get the
predicted probability of all labels. All parameters
from BERT are fine-tuned by minimizing the over-
all cross-entropy loss. We use the HuggingFace
Transformers library (Wolf et al., 2019) for our
BERT implementations.4 We monitor the training
and validation loss for each training epoch and save
the model with the highest Macro-F1 score on the
validation set before testing on the test split.

3.2.3 Multi-task BERT
For the question task, we also explore a multi-task
learning scheme which allows us to jointly fine
tune BERT for predicting all the labels with the
same model. This forces the fine-tuning process
to learn representations that are good for multiple
tasks, which can potentially benefit as both reg-
ularization and by indirectly sharing information
between labels that are known to be correlated. For
this model, the same [CLS] representation is fed

4https://github.com/huggingface/
transformers
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IS NS OB SAR Ave.
SVM 0.64 0.46 0.54 0.17 0.45

BERT 0.62 0.48 0.54 0.21 0.46
SciBERT 0.64 0.54 0.53 0.15 0.47

Bio+Clinical BERT 0.64 0.50 0.55 0.22 0.48
Bio+DS BERT 0.65 0.49 0.54 0.24 0.48

Table 1: F1 scores of SVM and BERT classifiers for predict-
ing scheduling decisions

R1 R2 R3 R4
R1 0.46 0.28 0.21 0.33
R2 0.35 0.43 0.27 0.39
R3 0.18 0.19 0.37 0.23
R4 0.32 0.36 0.37 0.49

Table 2: Macro F1 scores showing performance of BERT
fine tuned on one reviewer’s labels and tested on another.

into five separate output nodes with the sigmoid
activation function to get the predicted probabili-
ties of five binary outcomes. The BERT parameters
are fine tuned by minimizing the aggregated binary
cross-entropy loss of all labels.

4 Experiments and Results

4.1 Triage Status
For the triage classifier, we first train several clas-
sifiers first on the entire eConsult training split,
and test it on the development split. Results of
the SVM with linear kernel and a few fine-tuned
BERT models show that training across all consults
results in poor performance (Table 1). As noted in
the introduction, one explanation is that specialist
reviewers were not consistent relative to each other.
We thus examined was whether reviewers distribu-
tions over triage statuses were similar. Figure 3
shows a histogram of each reviewer’s distributions
of decisions – there are large differences in what
fraction are labeled urgent (Overbook category).
In order to further investigate the consistency of
these scheduling decisions among different review-
ers, we also trained four reviewer-specific models.
Table 2 shows the results of each reviewer-specific
model on text from other reviewers. Column head-
ers indicate the reviewer used to train the model
and rows indicate test reviewer.

4.2 Question Type Classification
We evaluated several different architectures on this
task to explore the value of domain-specific in-
formation, as well as the importance of sharing
information between the different labels. Tables 3
and 4 shows the results of the experiments for the
question type classifiers. We omit results for P-

Figure 3: Distribution of scheduling decisions for dif-
ferent reviewers.

Question Type D/M P-C P-EGD P-Other
Linear SVM+BoN 0.71 0.75 0.81 0.32
Linear SVM+BoC 0.69 0.77 0.83 0.34
Kernel SVM+BoC 0.69 0.73 0.85 0.20

BERT 0.71 0.77 0.86 0.32
SciBERT 0.77 0.80 0.84 0.29

Bio+Clinical BERT 0.78 0.79 0.85 0.26
Bio+DS BERT 0.77 0.84 0.92 0.33

Table 3: F1 scores for question type classification with
separate classifiers.

Question Type D/M P-C P-EGD P-Other
BERT 0.71 0.79 0.85 0.21
SciBERT 0.82 0.86 0.89 0.41
Bio+Clinical BERT 0.74 0.80 0.85 0.39
Bio+DS BERT 0.77 0.79 0.86 0.39

Table 4: F1 scores for question type classification with
multi-task learning with different BERT variants.

FlexSig because there were only two instances in
the split we evaluate on (current work is creating
more annotations). The best overall performance
was obtained by the SciBERT multi-task learning
setup. In the single-task setting, Bio+Discharge
Summary BERT alone provides several points of
benefit on Procedure-Colonoscopy and Procedure-
EGD. Multi-task learning provides an inconsistent
benefit, increasing score in some categories while
decreasing in others. However, when these two are
combined, multi-task learning and SciBERT pro-
vide a large benefit over all other configurations.

5 Discussion & Conclusion

Within-reviewer results (diagonal of Table 2) indi-
cate that predicting scheduling decisions from text
alone is difficult, and there are few obvious cues
to the urgency of a question. However, we also
saw a large decrease in performance across review-
ers, suggesting that individual reviewers behave
very differently. Improving reviewer consistency
may be a viable method for improving efficiency
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of specialist referrals in health systems. It still is
not totally clear from these results whether the in-
dividual reviewers are inconsistent – it is possible
that the classifier model we chose is simply the
right representation to perform this task. Future
work should look deeper at within-reviewer clas-
sifier performance to explore the degree to which
scheduling decisions are essentially random.

One possible explanation for the improved per-
formance of SciBERT is that it uses domain-
specific pre-training as well as a domain-learned
vocabulary (ClinicalBERT, in comparison, is pre-
trained on clinical data but uses the original BERT
vocabulary). Practically speaking, the result is that
the SciBERT vocabulary contains more biomedical
terms. For example, the term colonoscopy occurs
as a single token in the SciBERT vocabulary, while
the standard BERT vocabulary breaks it into sev-
eral word pieces. We suspect that this makes it
easier for SciBERT to learn domain-specific lan-
guage, as the meaning is attached directly to the
word piece embedding rather than being learned
through BERT encoding layers.

Future work should explore further modeling of
domain structure, including understanding ques-
tion text better, but also in modeling relationships
between output variables. For example, sometimes
the Diagnosis/Management category is clear from
expressions like Please eval, but in other cases the
request is only implicit. In these cases, the best
clue is the lack of any specific procedure request.
A sequential classification decision process may be
able to incorporate this logic. In addition, we are
continuing the annotation process, including con-
tinuing to revise guidelines to improve agreement,
annotating more questions for question type in the
gastroenterology specialty, and developing guide-
lines for additional specialties. Our early results
suggest that the question type classifier can still
be improved with additional data, despite already-
promising performance.
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Abstract

Domain Adaptation for Automatic Speech
Recognition (ASR) error correction via ma-
chine translation is a useful technique for im-
proving out-of-domain outputs of pre-trained
ASR systems to obtain optimal results for
specific in-domain tasks. We use this tech-
nique on our dataset of Doctor-Patient conver-
sations using two off-the-shelf ASR systems:
Google ASR (commercial) and the ASPIRE
model (open-source). We train a Sequence-
to-Sequence Machine Translation model and
evaluate it on seven specific UMLS Semantic
types, including Pharmacological Substance,
Sign or Symptom, and Diagnostic Procedure
to name a few. Lastly, we breakdown, ana-
lyze and discuss the 7% overall improvement
in word error rate in view of each Semantic
type.

1 Introduction

Off-the-shelf ASR systems like Google ASR are be-
coming increasingly popular each day due to their
ease of use, accessibility, scalability and most im-
portantly, effectiveness. Trained on large datasets
spanning different domains, these services enable
accurate speech-to-text capabilities to companies
and academics who might not have the option of
training and maintaining a sophisticated state-of-
the-art in-house ASR system. However, for all the
benefits these cloud-based systems provide, there
is an evident need for improving their performance
when used on in-domain data such as medical con-
versations. Approaching ASR Error Correction
as a Machine Translation task has proven to be
useful for domain adaptation and resulted in im-
provements in word error rate and BLEU score
when evaluated on Google ASR output (Mani et al.,
2020).

However, it is important to analyze and under-
stand how domain adapted speech may vary from

Model Transcript
Reference you also have a pacemaker be-

cause you had sick sinus syn-
drome and it’s under control

Google ASR you also have a taste maker be-
cause you had sick sinus syn-
drome and it’s under control

S2S you also have a pacemaker be-
cause you had sick sinus syn-
drome and it’s under control

Reference like a heart disease uh atrial fib-
rillation

Google ASR like a heart disease asian popu-
lations

S2S like a heart disease atrial fibril-
lation

Table 1: Examples from Reference, Google ASR tran-
scription and corresponding S2S model output for two
medical words, “pacemaker” and “atrial fibrillation”.
In this work, we investigate how adapting transcription
to domain and context can help reduce such errors, es-
pecially with respect to medical words categorized un-
der different Semantic types of the UMLS ontology.

ASR outputs. We approach this problem by us-
ing two different types of metrics - 1) overall tran-
scription quality, and 2) domain specific medical
information. For the first one, we use standard
speech metric like word error rate for two differ-
ent ASR system outputs, namely, Google Cloud
Speech API1 (commercial), and ASPIRE model
(open-source) (Peddinti et al., 2015). For the sec-
ond type of evaluation, we use the UMLS2 ontol-
ogy (O., 2004) and analyze the S2S model output
for a subset of semantic types in the ontology using

1https://cloud.google.com/speech-to-text/
2The Unified Medical Language System is a collection of

medical thesauri maintained by the US National Library of
Medicine
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a variety of performance metrics to build an un-
derstanding of effect of the Sequence to Sequence
transformation.

2 Related Work

While the need for ASR correction has become
more and more prevalent in recent years with the
successes of large-scale ASR systems, machine
translation and domain adaptation for error cor-
rection are still relatively unexplored. In this pa-
per, we build upon the work done by Mani et al.
(Mani et al., 2020). However, D’Haro and Banchs
(D’Haro and Banchs, 2016) first explored the use
of machine translation to improve automatic tran-
scription and they applied it to robot commands
dataset and human-human recordings of tourism
queries dataset. ASR error correction has also been
performed based on ontology-based learning in
(Anantaram et al., 2018). They investigate the use
of including accent of speaker and environmental
conditions on the output of pre-trained ASR sys-
tems. Their proposed approach centers around bio-
inspired artificial development for ASR error cor-
rection. (Shivakumar et al., 2019) explore the use
of noisy-clean phrase context modeling to improve
ASR errors. They try to correct unrecoverable er-
rors due to system pruning from acoustic, language
and pronunciation models to restore longer con-
texts by modeling ASR as a phrase-based noisy
transformation channel. Domain adaptation with
off-the-shelf ASR has been tried for pure speech
recognition tasks in high and low resource scenar-
ios with various training strategies (Swietojanski
and Renals, 2014, 2015; Meng et al., 2017; Sun
et al., 2017; Shinohara, 2016; Dalmia et al., 2018)
but the goal of these models was to build better
ASR systems that are robust to domain change. Do-
main adaptation for ASR transcription can help
improve the performance of domain-specific down-
stream tasks such as medication regimen extraction
(Selvaraj and Konam, 2019).

3 Domain Adaptation for Error
Correction

Using the reference texts and pre-trained ASR hy-
pothesis, we have access to parallel data that is
in-domain (reference text) and out-of-domain (hy-
pothesis from ASR), both of which are transcrip-
tions of the same speech signal. With this parallel
data, we now frame the adaptation task as a trans-
lation problem.

Sequence-to-Sequence Models : Sequence-to-
sequence (S2S) models (Sutskever et al., 2014)
have been applied to various sequence learning
tasks including speech recognition and machine
translation. Attention mechanism (Bahdanau et al.,
2014) is used to align the input with the output
sequences in these models. The encoder is a deep
stacked Long Short-Term Memory Network and
the decoder is a shallower uni-directional Gated
Recurrent Unit acting as a language model for de-
coding the input sequence into either the transcrip-
tion (ASR) or the translation (MT). Attention-based
S2S models do not require alignment information
between the source and target data, hence useful for
monotonic and non-monotonic sequence-mapping
tasks. In our work, we are mapping ASR output
to reference hence it is a monotonic mapping task
where we use this model.

4 Experimental Setup

4.1 Dataset

We use a dataset of 3807 de-identified Doctor-
Patient conversations containing 288,475 utter-
ances split randomly into 230,781 training utter-
ances and 28,847 for validation and test each. The
total vocabulary for the machine translation task is
12,934 words in the ASR output generated using
Google API and ground truth files annotated by hu-
mans in the training set. We only train word-based
translation models in this study to match ASR
transcriptions and ground truth with further down-
stream evaluations. To choose domain-specific
medical words, we use a pre-defined ontology by
Unified Medical Language System (UMLS) (O.,
2004), giving us an exhaustive list of over 20,000
medications. We access UMLS ontology through
the Quickumls package (Soldaini and Goharian,
2016), and use seven semantic types - Pharmaco-
logical Substance (PS), Sign or Symptom (SS), Di-
agnostic Procedure (DP), Body Part, Organ, or Or-
gan Component (BPOOC), Disease or Syndrome
(DS), Laboratory or Test Result (LTR), and Organ
or Tissue Function (OTF). These are thereby re-
ferred by their acronyms in this paper. These seven
semantic types were chosen to cover a spread of var-
ied number of utterances available for each type’s
presence, from lowest (OTF) to the highest (PS) in
our dataset.

Alignment: Since the ground truth is at utter-
ance level, and ASR system output transcripts are

8



Ontology Utts Unique Terms
Train, Test Train, Test

PS 35301, 4481 1233, 532
DS 17390, 2191 859, 310
BPOOC 15312, 1944 513, 222
SS 14245, 1805 429, 181
DP 4016, 484 217, 82
LTR 3466, 407 70, 33
OTF 1866, 228 68, 26

Table 2: Breakdown of the Full Data based on REF.

at word level, specific alignment handling tech-
niques are required to match the output of multiple
ASR systems. This is achieved using utterance
level timing information i.e., start and end time
of an utterance, and obtaining the corresponding
words in the ASR system output transcript based
on word-level timing information (start and end
time of each word). To make sure same utterance
ID is used across all ASR outputs and the ground
truth, we first process our primary ASR output tran-
scripts from Google Cloud Speech API based on
the ground truth and create random training, valida-
tion and test splits. For each ground truth utterance
in these dataset splits, we also generate correspond-
ing utterances from ASPIRE output transcripts sim-
ilar to the process mentioned above. This results
in two datasets corresponding to Google Cloud
Speech and ASPIRE ASR models, where utterance
IDs are conserved across datasets. However, this
does lead to ASPIRE dataset having a lesser utter-
ances as we process Google ASR outputs first in
an effort maximize the size of our primary ASR
model dataset.

Pre-trained ASR: We use the Google Cloud
Speech API for Google ASR transcription and the
JHU ASPIRE model (Peddinti et al., 2015) as two
off-the-shelf ASR systems in this work. Google
Speech API is a commercial service that charges
users per minute of speech transcribed, while the
ASPIRE model is an open-source ASR model. We
explore the trends we observe in both–a commer-
cial API as well as an open-source model.

5 Results and Discussions

5.1 Transcription Quality

We use WER and BLEU scores to evaluate im-
provement on ASR model outputs using the S2S
model. A consistent gain is observed across all

Transcript WER (⇓) BLEU (⇑)
Google ASR output 41.0 52.1
+ S2S Adapted 34.1 56.4
ASPIRE ASR output 35.8 54.3
+ S2S Adapted 34.5 55.8

Table 3: Results for adaptive training experiments with
Google ASR and ASPIRE model. We compare abso-
lute gains in WER and BLEU scores with un-adapted
ASR output.

metrics, with an absolute improvement of 7% in
WER and a 4 point absolute improvement in BLEU
scores on Google ASR. While the Google ASR
output can be stripped of punctuation for a better
comparison, it is an extra post-processing step and
breaks the direct output modeling pipeline. If nec-
essary, ASPIRE model output and the references
can be inserted with punctuation as well.

5.2 Qualitative Analysis

In Table 4, we compare S2S adapted outputs with
Google ASR for each semantic type, broken down
by Precision, Recall and F1 scores. The two out-
puts are also compared directly by counting utter-
ances where S2S model made the utterance better
with respect to a semantic term - it was present in
the reference and S2S output but not Google ASR,
and cases where S2S model made the utterance
worse - semantic term was present in the reference
and Google ASR but not S2S output. We refer to
this metric as semantic intersection in this work.

As observed, the F1 scores are higher for S2S
outputs for all the semantic types in the Ontology,
except for one (BPOOC) where it ties. In terms
of Precision and Recall too, S2S performs better
for most categories. These numbers can be dis-
cussed with a couple of underlying factors - how
common or rare the semantic terms are on average
for each semantic type, and how many training ex-
amples has the model seen for those terms. This is
important to consider as Google ASR learns on a
much larger vocabulary of words spanning many
different domains, where as S2S is trained on a do-
main specific dataset. For example, we see a large
gain on Precision for DP, which can be attributed
to the rarity of the terms under this category, like
‘echocardiogram’, ‘pacemaker’, etc. Its also for
this reason we see only a slight improvement in
Precision for PS even though it has the most num-
ber of training examples. Many of the medication
names are rare, but a lot of them are pretty common
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Ontology Unique Terms S2S adpt, ASR o/p
S, G, R P R F1 SI

PS 282, 393, 532 0.86 , 0.85 0.61 , 0.55 0.72 , 0.67 0.10, 0.02
DS 210, 302, 310 0.75 , 0.75 0.68 , 0.68 0.76 , 0.75 0.03, 0.02
BPOOC 173, 235, 222 0.82 , 0.81 0.70 , 0.70 0.75 , 0.75 0.02, 0.02
SS 144, 169, 181 0.87 , 0.88 0.74 , 0.72 0.8 , 0.79 0.03, 0.01
DP 54, 73, 82 0.89 , 0.75 0.65 , 0.70 0.75 , 0.72 0.02, 0.07
LTR 26, 26, 33 0.77 , 0.85 0.67 , 0.61 0.72 , 0.71 0.07, 0.01
OTF 26, 32, 26 0.79 , 0.74 0.79 , 0.77 0.79 , 0.75 0.04, 0.02

Table 4: Medical WER results per Ontology for adaptive training experiments on Test data. We use Precision,
Recall, F1 and Semantic Intersection (as defined in 5.2) metrics for comparing S2S model output to Google ASR.

nowadays even though they are domain specific,
like ‘aspirin’. Moreover, this is also supported by
the numbers observed for BPOOC, where terms
like ‘legs’, ‘heart’ and ‘lungs’ are the top 3 most
frequently occurring words.

The number of unique terms for the S2S output
are lower in comparison to Google ASR and refer-
ence as observed in Table 4. This might indicate
that the S2S model is incorrectly modifying some
Google ASR output medical terms which may not
have as many examples in the Training set. How-
ever, our semantic intersection metric indicates that
we get an overall improvement in all categories, ex-
cept for DP. We hypothesize this to be largely due
to a combination of how rare the words are, and
the overall number of training examples for DP
being low. When we calculate semantic intersec-
tion on the Full set, we get almost equal results for
S2S and Google ASR outputs, 0.5 and 0.6 respec-
tively. When we look at our top 5 and bottom 5
least frequent terms for each semantic types, almost
all the terms overlap between S2S, Google ASR
and reference, even though the number of unique
terms might be less for S2S. Overall, it is evident
from analyzing the results that as the number of
occurrences increases for each medical term, the
performance of the S2S model in identifying errors
and correcting them increases rapidly, as shown in
Table 2 and Table 4.

In a production environment, the S2S model may
be confidently used for correcting ASR errors for
top K most frequently occurring medical terms,
where the value of K must be decided based on
the dataset available for training. Future extension
of this work will also be looking into the class
imbalance problem for a more robust performance
on different semantic types.

6 Conclusion

We present an analysis of how ASR Error Correc-
tion using Machine Translation impacts the dif-
ferent semantic types of the UMLS ontology for
a medical conversation. We run the S2S model
on a dataset of Doctor-Patient conversations as a
post-processing step to optimize the Google off-the-
shelf ASR system. We use different input represen-
tations and compare the performance of our S2S
model using WER and BLEU scores on Google
ASR and ASPIRE outputs. We deep dive into how
our adaptation model affect medical WER for each
semantic type, and breakdown the results using
Precision, Recall, F1 and Semantic Intersection
numbers between S2S and Google ASR. We estab-
lish the robustness of S2S model performance for
more frequently occurring medical terms. In the
future, we want to explore other representations
like phonemes which might capture ASR errors
better, and address the class imabalance problem
for rarer medical terms in different semantic types.
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Abstract

Medical conversation is a central part of med-
ical care. Yet, the current state and quality
of medical conversation is far from perfect.
Therefore, a substantial amount of research
has been done to obtain a better understanding
of medical conversation and to address its prac-
tical challenges and dilemmas. In line with
this stream of research, we have developed a
multi-layer structure annotation scheme to an-
alyze medical conversation, and are using the
scheme to construct a corpus of naturally oc-
curring medical conversation in Chinese pedi-
atric primary care setting. Some of the prelim-
inary findings are reported regarding 1) how a
medical conversation starts, 2) where commu-
nication problems tend to occur, and 3) how
physicians close a conversation. Challenges
and opportunities for research on medical con-
versation with NLP techniques will be dis-
cussed.

1 Introduction

Medical conversation is at the core of medical care.
Through conversation, doctors collect the informa-
tion needed to form a diagnosis and provide a treat-
ment recommendation for the patient’s condition.
Effective communication is essential for achiev-
ing optimal medical outcomes. Yet breakdowns in
doctor-patient conversation are common in medi-
cal practices. For example, the largest proportion
of hospital and community health services com-
plaints in the UK were about communications with
medical professional in 2017-2018 (NHS, 2018).
Thus, a better understanding of medical conver-
sation (e.g., how it is conducted; what practical
problems and dilemmas doctors and patients face)
could improve not only the quality of care, but also
the efficiency of the healthcare system.

In this paper, we first review the major issues that
medical conversation research has investigated; we

then introduce the data and methods that we use
to analyze medical conversation; lastly, we present
some preliminary findings based on our analysis
of the corpus and conclude with a discussion on
implications of the study and our future work.

2 Research on Medical Conversation

Research on medical conversation has a long tra-
dition. Earlier studies that use naturally occurring
medical conversation data can be traced back to
1970s in the United Kingdom and the United States.
Having audio-recorded and analyzed 2500 record-
ings of medical conversation, British researchers
Byrne and Long (1976) were regarded as the pio-
neers in medical conversation research. At about
the same time, American physicians Korsch and
Negrete (1981) conducted one of the most influen-
tial studies on medical communication, based on
800 audio-recordings of conversation collected in
the Los Angeles Children’s Hospital. These stud-
ies showed that medical communication practices
significantly affect patient health outcomes.

More recently, a substantial body of research
using conversation analysis (Drew et al., 2001; Her-
itage and Maynard, 2006) emerged and investigated
a wide range of topics in medical conversation.
These topics generally fall into three categories.

How is medical conversation conducted? This
stream of research examines the process and con-
stituent activities of medical conversation. In other
words, how do physician and patient coordinate in
this social encounter and how is medical conversa-
tion organized?

Unlike many other types of conversation, med-
ical conversation are treated as having a discern-
able overall structure. For example, acute primary
care encounters in the UK were found ordinar-
ily beginning with an opening sequence, progress-
ing through problem presentation, history taking,
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physical examination, diagnosis, and treatment rec-
ommendations, and then onto a closing sequence
(Byrne and Long, 1976).

While this overall structure of conversation can
be considered as socialized through physicians’
training in medical school and patients’ repeated
exposure since childhood, it is also considered a
product of coordination and negotiation between
physicians and patients in local interaction context.
Therefore, a lot of research in this stream has been
done to investigate questions such as how one activ-
ity transits toward another in medical conversation,
and what constitutes a complete sequence within
some particular activity phase.

For example, studies find that there are varying
expectations for what constitutes a complete diag-
nosis sequence and a treatment recommendation
sequence. While patients’ no response or weak
response (e.g., mm hmm) is treated as sufficient for
a diagnosis sequence to complete (Heritage and
Sefi, 1992), patients’ explicit acceptance of treat-
ment recommendation is oriented as necessary for
completing a treatment recommendation sequence
(Stivers, 2005).

What are the practical problems and dilemmas
in medical conversation? The second stream of
research on medical conversation concerns with
more concrete problems in medical conversation.
For instance, how physicians’ and patients’ ac-
tions are designed and sequences are organized
to deal with various kinds of practical challenges
and dilemmas in medical conversation.

For example, physicians use various forms of
questions to solicit patients’ problem presentations,
and these different action types can afford different
opportunities for patients’ contribution to medi-
cal conversation. Specifically, the length of pa-
tients’ problem presentation is significantly longer
if physicians use open-ended solicitation questions,
as compared with close-ended questions (Heritage
and Robinson, 2006).

In addition, when delivering a diagnosis to termi-
nal patients, it is found that physicians can deploy a
rather complicated form of sequence (the so-called
News Delivery Sequence (NDS)), in which patients’
perspectives of their health condition are incorpo-
rated, in order to prepare them for the bad news
(Maynard, 1997).

How does medical conversation affect medical
outcomes? The third stream of medical conver-

sation research examines the associations between
doctor-patient interaction and outcomes in medical
conversation, such as patient satisfaction or medi-
cation adherence.

For instance, research shows that if a candidate
diagnosis (e.g., I don’t know whether she’s got a
sinus, but she has a lot of drainage in her nose.) ap-
pears in patients’ problem presentation, physicians
are more likely to perceive the patient as expecting
antibiotics (Stivers et al., 2003), and are more likely
to prescribe antibiotics inappropriately (Mangione-
Smith et al., 1999).

Similarly, toward the end of medical conversa-
tion, it is found that physicians’ action design has
a significant impact on the effect of medical com-
munication. For instance, by replacing the word
any in ‘Do you have any other concerns you want
to address today?’ with the word some, it reduces
the likelihoods of patients’ unaddressed concerns
by up to 50% (Heritage and Robinson, 2006).

In sum, a substantial amount of effort has been
made to obtain a better understanding of medical
conversation. As a result, many important issues
have been discovered and effective solutions have
been provided to improve the practice of medical
communication and the quality of care.

However, the existing resources and tools for
medical conversation research suffer from two ma-
jor problems, which put significant obstacles to
the advancement of the field. These problems are:
1) collecting and analyzing natural conversation
data in the medical setting requires a tremendous
amount of resources (e.g., labor, time); 2) few stan-
dard coding frameworks exist, which allow for
systematic analysis of medical conversation that
takes into account the interactivity of utterances.
Although coding schemes such as Roter Interac-
tion Analysis System (RIAS) (Roter and Larson,
2002) attempt to implement an exhaustive classifi-
cation of the events in medical conversation, these
schemes tend to treat utterances in conversation as
isolated units (Heritage and Maynard, 2006).

Motivated by these considerations, we construct
a corpus that consists of 1,000 medical conversa-
tions and develop a coding scheme that captures the
deep structure of conversation. Then we conduct a
systematic microanalysis of the medical conversa-
tion, which takes into account of both the content
and the context of utterances. While not being a
focus of this paper, we will conclude the paper with
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a few potential use cases of our proposed work.

3 Data and Corpus

In this section, we introduce the the corpus that we
construct for medical conversation research.

3.1 Video-recorded Data
A total of 1,000 medical conversation were video-
recorded in Chinese pediatric primary care settings.
Participants involve 14 physicians and 1,000 pa-
tients with their caregivers in 9 hospitals in north-
ern, central and eastern China.

For each conversation, a complete course of med-
ical consultation is included, starting from the pa-
tients getting seated, progressing through the dis-
cussion of patients’ health conditions, and toward
the patients leaving the office.

Topics in the conversation are mostly concerning
children’s acute respiratory tract infections (ARTIs)
problems, which involve health complaints such as
fever, cough, etc.

The conversation is primarily between physi-
cians and caregivers, similar to pediatric primary
care conversation in other countries. It should be
noted that although most of the conversation is
dyadic, multi-party conversation is also common
in our corpus, as more than one caregiver can be
present and contribute to conversation.

3.2 Transcribed Data
The video-recorded medical conversation data are
transcribed manually by trained research assistants.
Adopting the Conversation Analysis transcribing
conventions (Jefferson, 2004), each conversation is
segmented into turns at turn-taking positions. Be-
sides capturing the verbatim of each turn, the tran-
scription also captures a series of para-linguistic
features (e.g., dysfluencies, intonations, overlaps
of turns, noticeable silence in and between turns,
non-verbal actions such as nodding, etc.), which
are essential aspects of natural spoken language.

In addition, the transcribed text is automatically
segmented into words using an in-house CRF word
segmenter trained on the Chinese Treebank (Xia
et al., 2000), so as to provide the necessary basis
for conducting related NLP tasks.

3.3 Ethical Considerations
All research procedures were reviewed and ap-
proved by UCLA IRB and UW IRB. All identify-
ing information (e.g., person, institution, location
names) has been removed from the corpus.

3.4 Our Analysis

In this paper, we describe a series of findings based
on the corpus regarding the following aspects.

Overall organization and opening a medical
conversation Similar to ordinary conversation,
medical conversation is a social encounter where
physicians and patients build rapport and social re-
lationship (Schegloff, 1968). Thus, quite often at
the beginning of medical conversation, physicians
and patients engage in social exchange activities
such as greetings and identifying. We refer to this
kind of exchange as opening phase in medical con-
versation. Ex 1 illustrates an example of opening
phase in our corpus.1

Ex 1: Opening in conversation
1 DOC: Hi. @NAME@? How are you?
2 DAD: Yes, that’s us. How are you?
3 DOC: What’s going on today?

However, medical conversation is also where pa-
tients and physicians deal with patients’ health con-
cerns. Thus, in many cases, conversation starts with
physicians and patients talking about the patients’
health problems, without going through opening
phase. We refer to this kind of activity as problem
presentation phase.

Although medical conversation can be opened
with either the opening phase or the problem pre-
sentation phase, there seems to be a distributional
difference in different cultural and medical settings.
We will discuss this in more detail in Section 5.

Sequence expansion and making treatment de-
cisions A second aspect of our analysis focuses
on sequences within some particular phases in med-
ical conversation.

For example, within treatment recommendation
phase, we examined how treatment recommenda-
tions are delivered and received. Specifically, it is
found that treatment decisions (e.g., antibiotic pre-
scriptions) can be negotiated between physicians
and patients by patients withholding acceptance of
physicians’ recommendations. Thus, the minimal
form of ‘recommendation-acceptance’ sequence
can be expanded quite extensively, in order to
secure the patients’ explicit acceptance of the
physicians’ treatment recommendation. Ex 2 and 3
illustrate examples of a non-expanded form and

1To save space, we omit the Chinese line and show the
translation only
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an expanded form of treatment recommendation
sequence, respectively.

Ex 2: Non-expanded treatment sequence
1 DOC: I’ll probably put her on some antibiotics.
2 MOM: Okay.

Ex 3: Expanded treatment sequence
1 DOC: I’ll give her some decongestant.
2 MOM: Decongestant?
3 DOC: Yeah. It’s a viral infection. Antibiotics
won’t kill.
4 MOM: Okay, let’s use some decongestant.

Although arguably the most ideal form of treat-
ment recommendation sequence consists of two
turns (like in Ex 2), patients’ acceptance may be
delayed and will then be pursued by physicians
(like in Ex 3).

Action design and initiating conversation clo-
sures Similar to ordinary conversation, the physi-
cian and the patient also need to coordinate to close
a medical conversation, rather than simply falling
silent (Sacks and Schegloff, 1973).

In medical conversation, past research has shown
that, upon reaching a point when the treatment de-
cision is made, physicians produce various forms
of actions to initiate the closure of the medical visit
(West, 2006) . Although the patients can always
resist such attempts to close and the conversation
may go back-and-forth to other phases, the conver-
sation is considered as entering the closing phase,
when these closure initiation actions are produced.

After physicians secure the warrant from
patients to terminate the conversation, the two
parties can then proceed to the terminal exchange
of the conversation. Ex 4 illustrates an example of
the closure initiation action in our corpus.

Ex 4: Closure (a) Making future arrangement
1 DOC: Okay. Follow up in two days, ok?
2 DAD: Okay. Thank you.
3 DOC: You’re welcome.

In Ex 4, the physician initiates the closure of
the medical conversation by making a future ar-
rangement for the patient’s follow-up visit at line
1. The patient’s father accepts the proposal and the
two parties immediately proceed to the terminal
exchange (thank you-you’re welcome) at lines 2-3.

Besides the closure initiation action (a) making

future arrangement shown in Ex 4, there are two
other forms of action recurrently observed in the
medical conversation: (b) summarizing treatment
plans and (c) announcing closures. Ex 5 and 6
illustrate two examples.

Ex 5: Closure (b) Summarizing treatment plans
1 DOC: Just use these three medications, ok?
2 MOM: Okay
3 DOC: Alright.
4 MOM: Ok. Goodbye, doctor.

Ex 6: Closure (c) Announcing closures
1 DOC: Okay. That’s it.
2 MOM: Thank you, Doctor.
3 DOC: You’re welcome.

The above examples show that, when implement-
ing particular actions in conversation, there can be
different turn designs so as to accommodate the
particular contingencies arising from the interac-
tion context. These choices of turn design may
afford different opportunity for the recipient’s par-
ticipation, and thereby have different impact on the
subsequent development of the conversation. A
close examination of this phenomenon thus pro-
vides a window to uncover the practical constraints
that the patients and the physicians face. Action-
able solutions can then be developed to deal with
these constraints.

4 COSTA Scheme

To enable a systematic analysis of medical conver-
sation in the dimensions that we described above,
we developed an annotation scheme that marks up
the structure of medical conversation at multiple
levels. In addition, application-dependent labels
can be created and added on top of the structural
annotation, tailored to particular researchers’ inter-
ests.

Below we briefly introduce how medical con-
versations are analyzed using the COnversational
STructures and Actions (COSTA) scheme, in terms
of 1) conversational structures, and 2) application-
dependent labels for conversational actions.

4.1 Annotating conversation structure

Figure 1 illustrates how the hierarchical structure
of medical conversation is annotated according to
the COSTA scheme. Detail of the COSTA scheme
can be found in (Wang et al., 2018).

15



Figure 1: A hierarchical organization of medical conversation.
The blue dots represent turns lined up in the temporal order
of a conversation. The yellow boxes represent phases in the
medical conversation (e.g., opening, history-taking, treatment
recommendation, etc.), which are consisted of one or more
sequences. The blue boxes represent sequences, which can be
minimally consists of one pair, or multiple pairs with one base
pair and its expansion pairs. Within a sequence, the red arrows
link the two turns of a base pair; whereas the gray arrows
suggest that the two connected turns belong to an expansion
pair, which is dependent on the base pair.

Overall organization At the highest level, medi-
cal conversation is segmented and marked up with a
series of component phases. Based on related find-
ings on the overall organization of medical conver-
sation from past research (Robinson, 2003; Byrne
and Long, 1976) and analysis of our corpus, labels
of the phases are created, including, (P0) open-
ing, (P1) problem presentation, (P2) history taking,
(P3) physical examination, (P4) diagnosis, (P5)
treatment recommendation, (P6) lifeworld discus-
sion, (P7) closing, (P8) additional health concerns.
Disruptions (e.g., physicians interrupted by calls)
are also common in medical conversation and we
mark up them as (P9) unrelated activities. 2

Despite that past research has shown these con-
stituent phases are ordered in a normative sense,

2Labels of phases can be adjusted for different types of
medical conversation.

it is not unusual that the physicians and patients
go back and forth between these phases. By anno-
tating which phase a turn belongs to, we are not
only able to show where the boundaries are among
the phases in medical conversation, but also how
transitions are coordinated by the participants.

Pair and turn dependency Unlike many other
types of discourse, conversation is interactive in
nature. Thus, turns in conversation cannot be un-
derstood alone. Instead, each turn should be under-
stood regarding whether they set up an expectation
for a next turn or fulfill the expectation set up by a
prior turn. Pairs of turns which are linked by con-
ditional relevance is referred to as adjacency pairs
and considered the building block of conversation
(Sacks et al., 1974; Schegloff, 2007).

Based on this idea, turns are annotated with re-
spect to which turn they are connected to, and
within a pair, a first pair part is distinguished from
its second part (e.g., question vs. answer, request
vs. grant, greeting vs. return greeting, etc.).

This type of dependency relationship between
two turns in conversation has been attended to
in related work such as the SWBD-DAMSL
coding scheme (forward-communicative-function
and backward-communication-function) (Jurafsky
et al., 1997; Core and Allen, 1997). It has demon-
strated significant value for NLP tasks such as dia-
log act modeling (Stolcke et al., 2000).

Sequence and pair dependency As mentioned
above, adjacency pair is considered the most basic
unit of conversation (Sacks et al., 1974; Schegloff,
2007) . It is also considered as the minimal form
of sequence in conversation. In the most ideal sce-
nario, a sequence is complete with one base pair
(e.g., a question gets its answer, an invitation gets
its acceptance), as shown in Ex 2. But more com-
monly, pairs are expanded to accommodate various
types of contingencies in interaction (e.g., repair-
ing a problem of hearing, checking understanding)
(Schegloff, 1980, 1992, 1997) , as shown in Ex 3.

In these cases, several pairs cluster into a co-
herent sequence, with one base pair and multiple
expansion pairs dependent on it. Based on the se-
quential position of the base pair and the expansion
pairs, there are pre-expansions, insert-expansions,
and post-expansions (Schegloff, 2007) .

Based on this idea, the COSTA scheme marks
up the dependency relationship between pairs and
distinguishes the base pairs from the expansion
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pairs. In Figure 1, we illustrate a sequence with an
insert-expansion pair in phase n-1, and a sequence
with a pre-expansion pair in phase n+1 .

In sum, the hierarchical annotation scheme of
the COSTA describes the deep structure of medical
conversation. It thus allows for systematic study of
conversation at multi-level granularity, including
phases, sequences, pairs, and turns.

4.2 Application-dependent labels

According to researchers’ specific research inter-
ests and application scenarios, additional labels
can be created and added to any particular level
of conversation (e.g., phase, sequence, pair, turn).
Systematic analyses of the labeled data in the med-
ical conversation corpus can help provide answers
to various kind of research questions.

In this study, we ask the following questions: (1)
How does a medical conversation start? (2) Where
do communication problems tend to occur? (3)
How do physicians close a conversation?

To answer question (1), we examine the labels
of the initial phase of the medical conversation.
If a conversation is opened with physicians and
patient caregivers identifying and greeting each
other, it is annotated as (P0) Opening phase; if the
opening involves physician asking and/or patient
presenting health problems, it is marked as (P1)
Problem presentation.

To answer question (2), we examine the orga-
nization of sequence. Sequences that consist of
only one base pair without any expansions are con-
sidered as produced with less difficulty. This is
compared with sequences that consist of multiple
pairs, with the base pair expanded with several de-
pendent pairs. Communication problems tend to
occur in phases where there are more expanded
sequences.

To answer question (3), we create labels to dis-
tinguish different types of physicians’ closure initi-
ation actions. Based on past research on closing in
medical conversation (West, 2006) and preliminary
analysis of our data, physicians’ closure initiation
actions can be classified into three types: (a) mak-
ing future arrangement, (b) summarizing treatment
plans, and (c) announcing closures. Examples of
the three types of action are in Ex 4-6.

Item Number
Number of Visits 187
Number of Hospitals 5
Number of Physicians 9
Number of Patients 187
Average length of a visit 4.9 minutes

Table 1: Meta information of the subset in this study.

Item Total Average per visit
Characters 275,303 1472.2
Words 158,798 849.2
Turns 23,060 123.3
Pairs 11,833 63.3
Sequences 5,359 28.7

Table 2: Statistics of the subset in this study. Total number of
visits in this subset is 187.

5 Results

5.1 Corpus Statistics

As it is an ongoing project, here we present some
statistics based on a subset of acute visits in the
corpus. Table 1 shows the meta data of the subset.
Table 2 shows the statistics of the transcribed data
of this subset. All the experimental results in this
section are based on this subset.

5.2 How does medical conversation start?

Since medical conversation is both a social en-
counter where relationship is built and a task-
oriented activity organized with a clear goal, we
find that medical conversation in our corpus start
with either the (P0) Opening phase or the (P1)
Problem presentation phase. Table 3 describes the
distribution of the two types of conversation open-
ing in our dataset. As shown in the table, a majority
of the conversation starts with participants going
directly to discuss the health problem of patients.

This is compared with ordinary conversation, in
which the initial exchanges almost always involve
a summons-answer sequence (SA sequence) (Sche-
gloff, 1968). Typical SA sequences include tele-
phone ring–hello, Johnny?–Yes, Bill–looks up, etc.
After the channel for communication is established
through the SA sequence, the conversationalists
then proceed to the reason for the talk.

When comparing with the findings on conver-
sation opening in the American primary care, we
find that there is a small variance in the distribution
of the two types of opening. In the American pri-
mary care conversation, it is reported that less than
10% of the cases are opened with the (P0) Open-
ing phase (Heritage and Robinson, 2006; Robinson
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Conversational opening type Count %
(P0) Opening phase 62 33
(P1) Problem presentation phase 125 67
Total 187 100

Table 3: Distribution of the two types of conversational open-
ing in the subset.

Phase type Seq # Turn #
per phase per seq

(P0) Opening phase 1.67 2.15
(P1) Problem presentation phase 3.11 3.95
(P2) History-taking phase 6.50 4.71
(P3) Physical examination phase 3.03 3.21
(P4) Diagnosis phase 2.12 4.49
(P5) Treatment phase 5.32 6.63
(P6) Lifeworld discussion phase 3.18 3.01
(P7) Closing phase 2.14 3.72
(P8) Additional problem phase 0.83 4.13

Table 4: Average number of sequences in each phase of
medical conversation and average number of turns in each
sequence in those phases. The total number of conversation
is 187. (P9) Unrelated activities phase is not included in this
table, as they do not directly contribute to the understanding
or progressivity of the conversation.

and Heritage, 2005). However, in the Chinese med-
ical conversation, 33% of the cases are opened with
(P0) (see Table 3). Thus, in a greater proportion
of the Chinese medical conversation, the partici-
pants do engage in social activities, such as identity
confirmation, greetings, or even ‘intimacy ploy’.

It should be noted that although the findings
from the Chinese pediatric primary care are not
directly comparable to that in the American pri-
mary care setting, this distributional variance in
conversational opening highlights the difference in
the norms and service procedures of medical inter-
action in two cultures. Specifically, while patients
in the American primary care are normally received
by nurses or medical assistants first in their medical
visits, patients are directly seen by their physicians
in the Chinese consultation room. The higher pro-
portion of the opening phase in the Chinese corpus
thus can be explained by the practical constraints
that physicians have to confirm patients’ identity at
the beginning of the medical consultation.

5.3 Where do problems tend to occur?

When examining the process and overall organi-
zation of the medical conversation, we find that
there are considerable variances in the shape of
various phases. Table 4 shows the average number
of sequences and turns in each type of phase in the
subset of the corpus.

Among all the phases, the treatment recommen-

dation phase is where sequences are most likely to
be expanded. Specifically, a sequence in the treat-
ment recommendation phase takes an average of
6.63 turns to complete. In comparison, the average
number of turns for a sequence in the problem pre-
sentation take 3.95 turns; and that number is the
lowest in the opening phase, averaging 2.15 turns.

Looking into the sequences in the treatment rec-
ommendation phase, it is observed that physicians’
treatment recommendations are not always immedi-
ately accepted by patient caregivers in the next turn.
In face of such patient resistance, physicians must
to pursue caregivers’ acceptance, and the sequence
continues to expand until the patients’ explicit ac-
ceptance is displayed (as shown in Ex 3).

In addition, in our prior work, we labeled and
analyzed the caregivers’ actions that they use to
overtly advocate for antibiotic treatment in the
treatment recommendation phase. The results
showed that, when caregivers use one or more of
the following actions a) explicit requests for an-
tibiotics, b) statements of desire for antibiotics, c)
inquiries about antibiotics, and d) evaluations of
treatment effectiveness, the likelihoods of them re-
ceiving antibiotic prescriptions from the physicians
increased by over 9 times (Odds Ratio = 9.23, 95%
Confidence Interval = 3.30-33.08) (Wang et al.,
2018). This finding corroborates the fact that an-
tibiotic over-prescription is prevalent in the Chi-
nese pediatric primary care (Li et al., 2012), and
parental pressure on physicians in medical conver-
sation plays a significant role in antibiotic over-
prescription (Stivers et al., 2003; Mangione-Smith
et al., 1999).

5.4 How do physicians close a conversation?

Closing a medical conversation is a delicate mat-
ter, as physicians and patients may have conflicting
agendas. While patients may still have unmen-
tioned concerns, physicians may have to terminate
the conversation so as to move to the next patient.

To deal with such practical challenge, we find
that physicians use several types of actions to ini-
tiate the closure of medical conversation. These
actions include: a) making arrangement for future
activities, b) summarizing the topic-in-progress,
and c) announcing closures. Table 5 illustrates the
relative distribution of these three types of action
design in our corpus. Examples of the three types
of actions are shown in Ex 4-6 in Section 3.

Compared with closing in ordinary conversation,
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Closure initiation actions Count %
(a) Making future arrangements 78 52
(b) Summarizing treatment plans 57 38
(c) Announcing closures 15 10
Total 150 100

Table 5: Closure initiation actions and their distributions in
the Chinese medical conversation. The total number of cases
in this table is 150. In the remaining 37 cases, closures are
initiated by caregivers and are excluded from the analysis.

the range of actions that physicians use to initiate
medical conversation closures are highly similar.
After the topical closure attempts are accepted by
the caregiver or the patient, participants move on
to the pre-closing sequence, in which they pass the
floor to one another and confirm there is nothing
more to talk about. Once the warrant to terminate
is established, they move on to the termination se-
quence, in which they exchange farewell (bye–bye),
display appreciation (thanks–you’re welcome), or
acknowledge the closure of the conversation (ok–
ok) (Sacks and Schegloff, 1973).

When comparing our findings with related find-
ings in the American primary care, we find that
there exist some important variances. Besides the
three types of actions that the Chinese physicians
use, there is another type of action observed in the
US data: checking patients’ unmet concerns (e.g.,

‘Do you have some other problems that you want to
talk about?’) (West, 2006).

Again, although the findings from the Chinese
pediatric primary care are not directly comparable
to that in the American primary care, this differ-
ence in the range of action designs that the physi-
cians use highlights the practical problems and con-
straints that exist in the Chinese pediatric setting.
In the Chinese medical setting, and urban tertiary
hospitals in particular, physicians are commonly
overloaded (Hu and Zhang, 2016). In a day, a
physician could see as many as 100 patients, and
the length of the medical conversation tend to be
very short, averaging 4.9 minutes for each conver-
sation in our corpus. Absence of this action (i.e.,
checking patients’ unmet concerns) in the Chinese
corpus can be partially attributable to this.

6 Discussion

In this section, we discuss several potential use
cases of this study.

6.1 Facilitating conversational understanding

One reason that conversation understanding is dif-
ficult is because the meaning of utterances often

depends on the context. For instance, the word
yeah as a response to a yes-no question is doing
the action of agreeing. In contrast, the word yeah
uttered by a speaker when another speaker is in the
middle of a long stretch of talk may indicate that
the former is listening to the latter; it does not mean
that the former agrees with the latter.

Moreover, if we treat the conversation sim-
ply as a sequence of turns without internal struc-
ture, multi-turn understanding may not be easily
achieved. The idea of internal structure is that turns
in conversation are not like beads on a string; in-
stead, they are organized in coherent clusters. As
a result, the two turns within an adjacency pair are
not always adjacent. For instance, in Ex 3, Lines 1
and 4 form an adjacency pair, with the word Okay
in Line 4 responding to the treatment recommenda-
tion made in Line 1. Lines 2-3 in between form an-
other adjacency pair, which is an insert-expansion
pair of the base pair. These dependent pairs form
up one coherent sequence, and sequences of similar
kind form up a coherent phase in conversation.

Thus, the whole conversation is represented as a
tree structure, similar to dependency structure for a
sentence. Compared with treating the conversation
as a sequence of turns, having such tree structure
information would make it much easier to infer that
the word Okay in Line 4 indicates the acceptance
of the recommendation in Line 1. In this sense, the
conversational structural information helps multi-
turn conversational understanding.

Manually annotating such a tree structure is la-
bor intensive and time consuming, but once such a
corpus is created, automatic tools can be trained on
the corpus, the same way that dependency parsers
are trained on treebanks. The tools can then be
used to process new conversations. Our corpus
thus is the first conversation treebank annotated
with conversational structures and actions accord-
ing to the COSTA scheme. In the scheme, the
label set (e.g., phase labels and action labels) is
application-dependent, whereas the structure levels
(e.g., phase, sequence, pair, turn) should remain
mostly the same for many applications.

6.2 Extracting information from medical
conversation

Due to the nature of medical conversation, there
are often natural correspondences between phases
in medical conversation and sections in Electronic
Health Record (EHR). For example, problem pre-
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sentation phase in the medical conversation corre-
sponds to symptom section in the EHR; treatment
phase in the medical conversation corresponds to
prescription section in the EHR, etc. Therefore,
the medical conversation structures and labels (e.g.,
phase types) could provide valuable cues when
building NLP systems for tasks such as informa-
tion extraction. For instance, prescribed medication
is more likely to appear in the treatment phase of
medical conversation, rather than opening or clos-
ing phase. While the history-taking phase may
also contain medication names, such medication
concerns primarily with the medication history of
the patient, rather than the medication prescribed
during the current visit.

Apart from information extraction, the struc-
tural representation of medical conversation can
help other NLP tasks such as automatic summariza-
tion of patient medical visit. Building high-quality
BioNLP systems for such tasks has great potential
to reduce physicians’ workload and increase the
time they spend on treating patients.

6.3 Conducting more communication-related
research with automatically processed
data

Our current study looks at some of the major issues
in medical communication. For future work, we
plan to apply the same methodology to other issues
in medical communication and conversations in
other domains.

While the current study relies on manual anno-
tation of the conversation, once NLP tools have
been trained on annotated data (as described above),
we can use the tools to analyze a large amount of
new conversations automatically, and significantly
speed up the analytical process of conversation.

7 Conclusion

In this paper, we introduced some of the major is-
sues that existing medical conversation research
has focused on; we described the data that we use
for conducting medical conversation research. To
analyze medical conversation more systematically,
we proposed an annotation scheme, which can cap-
ture the hierarchical structure of the medical con-
versation and be extended to include application-
specific labels. Based on a subset of the annotated
data, we report findings regarding how medical
conversation is opened and closed in the Chinese
pediatric consultations and how one can identify

places that problems tend to occur.
This study makes several contributions to medi-

cal conversation research. First, to our best knowl-
edge, the corpus that we are constructing is the
first medical conversation dataset with structural
annotation. It is a valuable resource for conducting
medical communication research, and can also be
used to train NLP systems such as a conversation
parser. Second, COSTA is a general scheme for
annotating conversational structures and actions.
The annotation facilitates systematic analysis of
medical conversation and there are other potential
use cases as outlined in the previous section. While
we use the scheme to build a Chinese corpus con-
sisting of medical conversations, COSTA can be
applied to conversation in other domains or in other
languages.

For future work, we will finish annotations of
the corpus and release it to the public. We will
start training NLP tools in order to evaluate the use-
fulness of the corpus for the use cases mentioned
above.
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Abstract

We discuss automatic creation of medical re-
ports from ASR-generated patient-doctor con-
versational transcripts using an end-to-end
neural summarization approach. We ex-
plore both recurrent neural network (RNN)
and Transformer-based sequence-to-sequence
architectures for summarizing medical con-
versations. We have incorporated enhance-
ments to these architectures, such as the
pointer-generator network that facilitates copy-
ing parts of the conversations to the reports,
and a hierarchical RNN encoder that makes
RNN training three times faster with long
inputs. A comparison of the relative im-
provements from the different model architec-
tures over an oracle extractive baseline is pro-
vided on a dataset of 800k orthopedic encoun-
ters. Consistent with observations in literature
for machine translation and related tasks, we
find the Transformer models outperform RNN
in accuracy, while taking less than half the
time to train. Significantly large wins over a
strong oracle baseline indicate that sequence-
to-sequence modeling is a promising approach
for automatic generation of medical reports, in
the presence of data at scale.

1 Introduction

There has been an increase in medical documen-
tation requirements over the years owing to in-
creased regulatory requirements, compliance for
insurance reimbursement, caution over litigation
risk, and more recently towards increased patient
participation. According to a study on 57 U.S.
physicians, for every hour with a patient, a physi-
cian takes an additional hour of personal time do-
ing clerical work (Sinsky et al., 2016). Increased
documentation burden has been identified as one
of the main contributing factors for physician
burnout (Wright and Katz, 2018). In another, larger
study, U.S. physicians who used electronic health

records (EHRs) or computerized physician order
entry (CPOE) were found to be less satisfied with
the time spent on administrative work (Shanafelt
et al., 2016).

Increased physician burnout not only affects the
health and well-being of the physicians, it can
also lead to increased medical errors, increased job
turnover, reduced productivity, and reduced qual-
ity of patient care (Panagioti et al., 2017). Factors
related to physician burnout and its consequences
have been studied in detail in the literature (Patel
et al., 2018b).

Use of automatic speech recognition (ASR) to
dictate medical documentation has contributed sig-
nificantly to the efficiency of physicians in creating
narrative reports (Payne et al., 2018). However the
content of the report has already been discussed
with the patient during the encounter. Medication
list and orders entered into the EHRs are also dis-
cussed with the patient. In other words, creation
of medical documentation by the physician may be
viewed as a redundant task given that the content
is already discussed with the patient.

There has been a surge in research on automatic
creation of medical documentation from patient-
doctor conversations. A lot of it is focused on
extracting medical information and facts from the
patient-doctor conversation (Happe et al., 2003;
Quiroz et al., 2019). This could involve extracting
clinical standard codes (Leroy et al., 2018), clin-
ical entities such as symptoms, medications, and
their properties (Du et al., 2019a,b), or medical reg-
imen (Selvaraj and Konam, 2020). This extracted
information could then be used to generate a re-
port (Finley et al., 2018a,b). Such information
extraction systems require creating an annotated
conversation corpus (Patel et al., 2018a; Shafran
et al., 2020).

For example, the NLP pipeline described by Fin-
ley et al. (2018a) first extracts knowledge from an
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ASR transcript and then generates the report. The
knowledge extraction consists of tagging speaker
turns and sentences with certain classes using RNN-
based models, and using techniques such as string
matching, regular expressions, and data-driven su-
pervised and unsupervised approaches to extract
information from the tagged sentences. This is
followed by data-driven templates and finite state
grammars for report generation.

We take a different approach where the problem
is cast as translation (source language is conversa-
tional in nature and target language is clinical) and
summarization (input contains redundant and irrele-
vant information, and target is a concise and precise
note) at the same time. Given recent advances in
neural transduction technology (Bahdanau et al.,
2015; See et al., 2017; Vaswani et al., 2017), we ex-
plore the end-to-end paradigm for generating medi-
cal reports from ASR transcripts. This eliminates
the need for annotated corpora that are required for
training intermediate processing steps. As a result
this approach is scalable across various medical
specialties.

Sequence-to-sequence models have been used
for summarizing radiology notes into the short Im-
pressions section, possibly incorporating also other
domain-specific information (Zhang et al., 2018;
MacAvaney et al., 2019). In contrast, our system
creates a report directly from the conversation tran-
script. Disadvantages of the end-to-end approach
include that it limits the ability to inject prior knowl-
edge and audit system output, and may potentially
result in inferior performance.

2 Dataset

We use data consisting of ambulatory orthopedic
surgery encounters. Speaker-diarized conversation
transcripts corresponding to the audio files were ob-
tained using an automatic speech recognizer. The
reports for orthopedic surgery are organized un-
der four sections—history of present illness (HPI),
physical examination (PE), assessment and plan
(AP), and diagnostic imaging results (RES). The
HPI section captures the reason for visit, and the
relevant clinical and social history. The PE section
captures both normal and abnormal findings from
a physical examination. The RES section outlines
impressions from diagnostics images such as X-ray
and CT scans. Finally, the AP section captures the
assessment by the doctor and treatment plan e.g.
medications, physical therapy etc.

Size Source Target
Avg Max Avg Max

Ortho HPI 802k 961 7,008 116 2,920
Ortho RES 444k 993 6,873 48 878
Ortho PE 769k 970 7,008 128 1,456
Ortho AP 811k 967 7,008 160 2,639
CNN&DM 287k 681 2,496 48 1,248
XSum 204k 431 33,161 23 432

Table 1: Statistics of our orthopedic report creation
task and two other summarization tasks. Number of
training examples and average and maximum number
of tokens in the source and target sequence.

Experimental results are reported on a dataset
that consists of around 800k encounters from 280
doctors. The dataset is partitioned chronologically
(date of collection) into train, validation and evalu-
ation partitions. The evaluation partition includes
4,000 encounters from 80 doctors. The doctors
present in the evaluation set are present in the train
set. Since the models do not require supervision
outside the workflow, this paradigm is scalable,
though future work will assess generalization to
unseen doctors. We only use non-empty examples
for training and evaluation. The RES section is
empty in about 50 % of the examples.

Table 1 shows more detailed statistics of our
dataset in terms of the number of training exam-
ples and source and target sequence lengths. The
table also shows corresponding statistics for two
prominent datasets for abstractive summarization
that were not used in this study: CNN and Daily
Mail, as processed by Nallapati et al. (2016), and
XSum (Narayan et al., 2018). As shown in the table
both the source and target sequences in our data are
significantly longer than in the standard databases.

3 Modeling

We use neural sequence-to-sequence models for
summarizing the doctor-patient conversations. The
input to the model is a sequence of tokens gener-
ated by the speech recognizer. The medical reports
consist of four sections, and we produce each sec-
tion using a separate sequence-to-sequence model.

The task closely resembles machine translation,
so we use models that are similar to neural machine
translation models. There are, however, several
differences from a typical machine translation task:

1. The source and target sequences are in the
same language, thus we can use the same vo-
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cabulary for input and output.

2. Report generation may require reasoning over
a long span of sentences. The sequences, espe-
cially the source sequences, are significantly
longer, since we cannot translate sentences
separately.

3. Information may be incomplete (patient ges-
turing where it hurts), redundant (patient or
doctor repeating information), or irrelevant
conversation. In translation the semantic con-
tent in both the source and the target sequence
is the same.

The models that we use are based on the encoder-
decoder architecture that is well known from neural
machine translation (Sutskever et al., 2014). All the
models rely on attention (Bahdanau et al., 2015).
The encoder creates context-dependent representa-
tions of the input tokens, and the decoder produces
the next-token probability from those representa-
tions. During inference the output is generated
autoregressively using the next-token probabilities.

Very long sequences increase the memory usage
and training time, and make it more difficult to
learn the model parameters. We truncate the source
sequences to 2,000 tokens and the target sequences
to 500 tokens during training. 10 % of the source
sequences and 0.1 % of the target sequences were
above this threshold. During inference we truncate
the inputs to 3,000 tokens. Only 4 % of the test
examples were originally longer than this limit.

In this work we compare models that are based
on recurrent neural networks and models based on
Transformer (Vaswani et al., 2017). The following
sections describe these models and the enhance-
ments that we have implemented.

3.1 RNN with Attention
The RNN sequence-to-sequence model with atten-
tion was introduced by Bahdanau et al. (2015). The
encoder creates context-dependent input represen-
tations using a bidirectional RNN. The decoder
produces the next-token probability using a uni-
directional RNN, since future information is not
available. We used LSTM (Hochreiter and Schmid-
huber, 1997) as the recurrency mechanism.

We included in the model some of the enhance-
ments from the RNMT+ model (Chen et al., 2018)—
dropout, residual connections, layer normalization,
and label smoothing. We also increased the number
of encoder and decoder layers to two, but further

increasing the number of layers did not give any
benefit. We did not see significant benefit from
using multi-head attention.

3.2 Hierarchical Encoder

Training the RNN model is slow due to their in-
herently sequential form precluding parallelization
within the long input and output sequences. With
longer input sequences it also becomes increasingly
difficult for the model to learn to attend to relevant
parts of the input.

Inspired by Cohan et al. (2018), we split the
input sequence into 8 equal-length segments that
are encoded independently. The segments can be
processed in parallel, speeding up training consid-
erably. The final LSTM hidden state from forward
and backward directions of each segment are con-
catenated and projected into a segment embedding.
After a stack of segment encoders, one more bidi-
rectional LSTM runs over the segment embeddings
of the previous layer (see Figure 1). The attention
distribution is computed using both the token-level
(second layer) and segment-level (third layer) out-
puts similar to Cohan et al. (2018)—the token-level
scores are weighted by the normalized segment-
level scores.

The hierarchical encoder sped up training by
a factor of three with little to no impact on the
summarization accuracy.

3.3 Pointer-Generator

To facilitate effective copying of parts of conver-
sations to the output we implemented the pointer-
generator network from See et al. (2017). It reuses
the encoder-decoder attention distribution as a
pointer for the copy mechanism. The same at-
tention distribution is still used for computing the
context vector and a probability distribution over
the output vocabulary. The attention distribution
is taken as a probability distribution over the in-
put tokens and interpolated with the vocabulary
distribution. The interpolation coefficient is learnt
from the context vector, decoder LSTM state, and
decoder input embedding. This mechanism also
enables handling of words that are not present in
the decoder vocabulary.

The pointer-generator network is illustrated in
Figure 1. The context vector from attention is fed
into a linear layer with the decoder state to produce
the vocabulary distribution. The attention distribu-
tion is interpolated with the vocabulary distribution,
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BLSTM BLSTM BLSTM

BLSTM BLSTM BLSTM

BLSTM
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Figure 1: Illustration of the RNN sequence-to-
sequence model with hierarchical encoder and pointer-
generator copy mechanism. Segments of source con-
versation are encoded independently using two bidirec-
tional LSTM layers, and a third layer runs over the final
segment embeddings. The attention distribution is com-
puted using both the token-level and segment-level out-
puts. The final distribution is interpolated from the at-
tention distribution and the vocabulary distribution us-
ing a predicted coefficient.

although the connections for predicting the interpo-
lation coefficient have been omitted from the figure
for clarity.

The authors also introduce a coverage loss for
training. They define coverage as the sum of at-
tention weights over previous decoding steps. The
coverage loss penalizes for attending to positions
where the coverage is already high. The purpose
is to encourage the model to attend to all input
positions while decoding a sequence, and reduce
repetition. We found the coverage loss to be some-
what helpful with a small weight (0.001).

3.4 Transformer

Transformer uses self-attention (Vaswani et al.,
2017) in the encoder and decoder to create context-
dependent representations of the inputs. In our
experiments both encoder and decoder consist of
six layers of self-attention. Each decoder layer
attends to the top of the encoder stack after the
self-attention. Additionally each encoder and de-
coder layer contains a position-wise feed-forward
or convolutional network that consists of two trans-
formations and a ReLU activation in between. The

Source Conversation

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Summary

Self-Attention

Encoder Attention

FFN FFN FFN

Self-Attention

Encoder Attention

FFN FFN FFN

Self-Attention

Encoder Attention

FFN FFN FFN

Vocabulary Distribution

+

Final Distribution

Figure 2: Illustration of the Transformer sequence-to-
sequence model with pointer-generator copy mecha-
nism. Each encoder layer consists of self-attention and
a position-wise feed-forward network. Decoder layers
also attend to the top of the encoder stack. We take
one attention distribution from the penultimate decoder
layer and interpolate it with the vocabulary distribution
using a predicted coefficient. The final distribution in-
cludes the vocabulary tokens and the present source to-
kens. Layer normalization and residual connections are
omitted for clarity.

fact that these layers can be computed in parallel
for every position makes training more efficient
than training RNN models.

Following Vaswani et al. (2017), we use the base
model size, i.e. 8 attention heads with a total of
512 outputs and a 2048-dimensional feed-forward
network. Following Domhan (2018), we apply
layer normalization (Ba et al., 2016) before the self-
attention and feed-forward sub-layers. This greatly
stabilizes training and speeds up convergence with
long inputs, confirming observations earlier made
with deep networks (Wang et al., 2019).

Since the output of attention is independent
of the order of the inputs, we inject position-
dependent information into the inputs. In the origi-
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ROUGE-L RERR Fact F1 RERR
HPI RES PE AP HPI RES PE AP

RNN 4.5 38.8 50.1 18.7 27.5 44.6 64.9 24.2
Hierarchical RNN 9.2 43.3 56.3 21.4 29.7 49.7 68.4 26.8
Hierarchical RNN + PG 9.2 45.4 53.7 22.3 30.8 51.3 67.1 29.2
Transformer 18.6 49.6 65.4 40.2 39.1 55.0 74.6 46.8
Transformer + PG 19.2 51.0 65.4 42.0 39.5 56.7 74.2 49.4

Table 2: Relative error rate reductions calculated from ROUGE-L and fact extractor F1 scores. The scores are
relative to an oracle baseline model that produces the longest common subsequence between the input and the
reference output. The models labeled with PG use the pointer mechanism and coverage training loss.

nal paper, Vaswani et al. (2017) added sinusoidal
position information before the first layer. We
use relative position representations (Shaw et al.,
2018) that are added inside the attention mecha-
nism, which we found to work slightly better.

We also implemented a pointing mechanism in
the Transformer model, similar to the RNN pointer-
generator. For pointing we can use any distribution
over the source tokens. The Transformer model
creates several encoder-decoder attention distribu-
tions, one for each attention head in each layer. In
principle any single head or the average of heads
could be used for pointing. We argue that dedi-
cating a single attention head should be sufficient,
since the parameters of that head will be trained
to attend to the tokens that are good candidates for
copying. In this case the rest of the attention heads
will not be affected and will perform their usual
function, unlike when averaging over the attention
heads. The penultimate layer seems to naturally
learn alignments (Garg et al., 2019), so we use
its first attention head for pointing. A simplified
picture of the model is in Figure 2.

HPI RES PE AP
RNN 168 168 168 168
Hierarchical RNN 168 117 168 168
Hierarchical RNN + PG 168 131 168 168
Transformer 68 26 68 64
Transformer + PG 69 26 70 66

Table 3: Training time in hours on the four report sec-
tions for the various model architectures. Training time
was restricted to one week, causing most RNN jobs to
stop before reaching the maximum number of training
steps.

4 Experiments

We train the models on Azure cloud using NVIDIA
V100 GPUs. Each training job is distributed to 8
GPUs. We use data-parallel training, i.e. each GPU
processes their share of the mini-batch and then the
gradients are averaged over the GPU devices. The
batch size is set to a maximum of 7,000 source
tokens per GPU. NVIDIA NCCL library is used to
perform the communication efficiently.

We use a vocabulary consisting of the 10k most
frequent words. The same vocabulary is shared
between the source and target tokens.

We use Nesterov’s Accelerated Gradient (Nes-
terov, 1983) with the RNN models, while
Adam (Kingma and Ba, 2015) is found to perform
better with the Transformer models. We train the
models a maximum of 400k steps, excepting RES
section models, which are trained until 200k steps
due to their fewer examples and shorter targets.
This corresponds to approximately 25 epochs on
RES section and 30 epochs on other sections. Dur-
ing this time we observe that training has practi-
cally converged and training longer would not pro-
vide significant benefit. We also limit individual
model training to one week as a cost control.

Improved performance is obtained via averaging
model parameter from 8 checkpoints, with interval
length as a function of total training steps. Where
helpful, we use a cyclical learning rate schedule,
with the cycle length set to the checkpoint sav-
ing interval, so that the saved checkpoints would
correspond to the minimums of the learning rate
schedule (Izmailov et al., 2018).

4.1 Results

ROUGE (Lin, 2004) is a collection of metrics de-
signed for evaluation of summaries. We calculate
ROUGE-L, which is an F1 score that is based on
the lengths of the longest common subsequences
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Partial ASR Transcript

[doctor]: we’ll do a celebrex refill let me see
you back four to six months earlier if needed
okay hey good to see you good to see you
[patient]: thank you thank you thank you

Reference Output

i have refilled her celebrex to have available.
the patient will follow up in four to six months
or earlier if needed.

Baseline Model Output

celebrex four to six months earlier if needed

Transformer PG Model Output

i have provided the patient with a refill of cele-
brex. the patient will follow up in 4-6 months
or sooner if needed.

Figure 3: An excerpt of a speaker-diarized ASR tran-
script, its reference AP section output, the baseline
model output, and partial output of the Transformer
pointer-generator model (all lower-cased, without for-
matting). The baseline model produces the longest
common subsequence between the transcript and the
reference output.

between the reference and hypothesis sentences.
We have noticed that it measures the fluency of the
language well. However, we are also interested in
assessing factual correctness. For this we utilize
a proprietary machine-learning-based clinical fact
extractor. It is capable of extracting medical facts
such as conditions and medications, as well as their
attributes such as body part, severity, or dosage.
We extract facts from the model output and the
ground-truth report, and compute the F1 score from
these two sets.

We publish our scores relative to an oracle base-
line model, which extracts the longest common
subsequence between the input conversation and
the reference output. An example of such output
is in Figure 3. Table 2 shows the relative error
rate reduction (RERR) from ROUGE-L and fact
extractor F1 scores. We define the error rate as the
complement (1− s) of the original score.

The Transformer models clearly obtain better
scores than any of the RNN models. Partly this is
because most RNN experiments are limited by the

HPI RES PE AP
RNN 12.1 0.4 3.8 19.9
Hierarchical RNN 2.0 0.2 1.2 15.8
Hierarchical RNN + PG 3.6 0.1 1.3 16.9
Transformer 2.0 0.1 1.2 0.3
Transformer + PG 1.7 1.0 0.8 0.3

Table 4: Percentage of model output considered part
of a repetition. We define repetition as a sentence that
occurs at least four times in the same report, or an n-
gram of at least 16 tokens that repeats consecutively.

maximum training time. In the RES section both
hierarchical RNN and Transformer models reached
200k training steps, but Transformer performance
is still superior. An example output generated by
the Transformer pointer-generator model is shown
in Figure 3.

The training times are shown in Table 3. All
but one of the RNN experiments were stopped af-
ter reaching the one week limit. Normal RNN
training was terminated after approximately 50k
steps, while hierarchical RNN progressed 160k–
230k steps over the same duration. Performance
was similar at an equal number of steps, but given
fixed practical time and cost constraints, the hierar-
chical encoder yields improved results.

The pointer mechanism generally provided a
small performance boost, with the largest improve-
ments in RES and AP section quality. Interestingly,
the pointer mechanism can even hurt performance
in PE section. This is exaggerated with the RNN
models by the fact that the pointer-generator model
is slower to train and progressed only 175k steps,
while the same model without the pointer mecha-
nism and coverage loss progressed 225k steps in
the time limit. Generally the ROUGE-L and fact
F1 scores seem correlated, displaying similar dif-
ferences across models.

4.2 Repetition

By visual inspection of generated reports we no-
ticed that some models suffer from an excessive
amount of repetitions. We identified two main cat-
egories: sentences that occur multiple times in the
same report and consecutively repeating n-grams.
We try to assess the amount of repetition in model
output by detecting these two types of patterns. Not
all occurrences of such patterns are mistakes, how-
ever, and even the reference targets contain such
patterns. We limit to sentences that occur at least
4 times and repeating n-grams that are at least 16
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tokens long. Table 4 shows the repetition rates in
model outputs as the percentage of tokens that fall
into either of these categories. The table shows that
the problem diminishes when training longer.

In the reference reports there are only a few in-
stances of tokens that we consider repetitive, and
these appear to be mistakes by the writer of the
report. We should then aim at 0 % repetition rate.
Note that the purpose of this metric is not to de-
tect language where for example the same frequent
words are used more often than in natural language.
We rather wanted to assess how widely the models
suffer from artificial and clearly erroneous repeti-
tion of word sequences.

5 Conclusions

In this paper we compared RNN and Transformer-
based sequence-to-sequence architectures for med-
ical report generation from patient-doctor conver-
sations. This study demonstrates the ability of
sequence-to-sequence models, in particular Trans-
former, to not only extract relevant clinical conver-
sation excerpts, but abstractively summarize in a
relatively fluent and factually correct medical re-
port. Especially when working within compute and
time budgets, Transformer is superior to traditional
RNN-based models, and scalable to large datasets.

Visual inspection showed that commonly occur-
ring problems in the generated reports included
repeated sentences and hallucinated clinically con-
sistent sentences unfounded by the conversations.
Minimally a human would need to be in the loop
to verify or correct these machine-generated re-
ports. Future work includes comparing end-to-end
approaches with a pipeline of clinical information
extraction and natural language generation meth-
ods.
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Abstract

HIV (human immunodeficiency virus) can
damage a human’s immune system and
cause Acquired Immunodeficiency Syndrome
(AIDS) which could lead to severe outcomes,
including death. While HIV infections have
decreased over the last decade, there is still a
significant population where the infection per-
meates. PrEP and PEP are two proven pre-
ventive measures introduced that involve pe-
riodic dosage to stop the onset of HIV infec-
tion. However, the adherence rates for this
medication is low in part due to the lack of
information about the medication. There ex-
ist several communication barriers that prevent
patient-provider communication from happen-
ing. In this work, we present our ontology-
based method for automating the communica-
tion of this medication that can be deployed
for live conversational agents for PrEP and
PEP. This method facilitates a model of auto-
mated conversation between the machine and
user can also answer relevant questions.

1 Introduction

HIV can cause a dangerous infection that can lead
to AIDS, a disease that can lead to severe immuno-
logical symptoms and eventual death. Common
modes of infection include sexual contact, blood
transfusion, or the sharing of drug paraphernalia.
While the rates have dropped over the last few
decades, HIV infection is not uncommon. For
example, there is an infection rate of 2 million
globally (World Health Organization, 2017) and
39,782 within the United States (Hess et al., 2018).
In addition, a segment of the American population
with HIV are unaware of the HIV status (Centers
for Disease Control and Prevention, 2016), and
therefore at risk of spreading the disease to other
individuals.

Advances in medication introduced PrEP and
PEP. PEP refers to the use of antiretroviral drugs

for people who are HIV-negative after a single high-
risk exposure to stop HIV infection, while PrEP
is a prevention method for people who are HIV-
negative and have high risks of HIV infection. Both
of these treatments require consistent adherence
to the dosage in order to be fully effective, but
adherence is an issue for patients subscribed to
it. Providers in particular are concerned about the
consistent adherence to PrEP (Wood et al., 2018;
Blackstock et al., 2017; Clement et al., 2018).

It has been reported that if PrEP adherence is
high, rates of HIV infection will be sizeably re-
duced (Smith et al., 2015). However, adherence
to PrEP is no different than other challenges with
medications, such as the patient comprehending the
administration of the medication and remembering
to take it (American Medical Association, 2016).
On top of that, the Centers for Disease and Control
(CDC) specifically prescribes periodic counseling,
and coordinating with patients on a one-on-one ba-
sis (Centers for Disease Control and Prevention,
2014). But time burdens and manpower to conduct
counseling pose another challenge (Krakower et al.,
2014).

In a previous study, Amith et al. (2019a) uti-
lized an ontology-based method to model the dia-
logue for the counseling of the HPV vaccine. In
this study, we tailor the method for PrEP and PEP
counseling with the intent that this could be em-
ployed in portable tools for drug users to use. A
benefit of using an ontology approach, other than
exploiting network-based model for dialogue, is
the potential to link the ontology to representations
of health behavior models (like the transtheoreti-
cal model). Systems that leverage health behav-
ior models, according to Kennedy et al. (2012),
have demonstrated to be more impactful on affect-
ing health behaviors of users. Also, an ontology
that models dialogue can yield standardization and
sharing. Amith et al. (2019b) noted from their
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literature review on PubMed that there is limited
ontology-centric studies for health-based dialogue
management. Amith et al. (2020) simulation stud-
ies have also shown evidence that automated coun-
seling, specifically conversational agents for vac-
cines, could impact the health attitudes and beliefs
that can lead to improved uptake with perceived
high usability.

Ontologies are artifacts that represent and en-
code domain knowledge for machines to under-
stand a domain and their physical environment.
According to one school of thought, if machines
have symbolic understanding of their domain and
environment, it could potentially provide near-
autonomous operation of tasks. Imbuing software
with autonomous task of dialogue interaction re-
quires some measure of intelligence. Intelligent
agents are defined as having reactive, proactive
and social ability features (Wooldridge and Jen-
nings, 1995). Reactive refers to the software ability
for timely response to the environment. Proactive
refers to the initiative driven aspect of the software
to accomplish tasks, and social ability involves
the software handling external interaction with the
environment (virtual or physical). How these qual-
ities manifest vary by the architectural approach
(reactive agents, reasoning agents, etc.) which is
beyond the scope of discussion.

Researchers mention the use of internal data
models within the architecture of the agents
(Wooldridge, 2009). The models’ role in the sys-
tem is to provide the agent with decision making
capabilities to perform autonomously in the envi-
ronment. This would include 1) representing the
domain knowledge for the agent, 2) providing in-
formation of the surrounding environment of the
agent, and 3) cataloging the previous actions of
the agent (e.g., for the agent to learn). Accord-
ing to Hadzic and colleagues, these models could
be manifested as a group of ontologies (Hadzic
et al., 2009). Furthermore, they state some inherit
benefits such as producing shared communication
models between agents and systems, information
retrieval, organization of the agent’s task, and an-
alytical and reasoning of the knowledge (Hadzic
et al., 2009).

The ontology-based solution also attempts to
solve some of the issues with reasoning agents
like the transduction problem and the representa-
tion/reasoning problem (Wooldridge, 2009). The
Transduction problem is how to translate the world

or domain that the agent is embodied in into sym-
bolic representations. The representation and rea-
soning problem pertains to the challenge of manip-
ulating the symbolic representations and applying
reasoning for the agent. With ontologies, we can
model a domain space or the environment using
predicate logic that is syntactically encoded into a
machine-readable artifact. Within the context of
this work, this method maps utterances of the user
and the machine to concepts represented in our
ontological model. Also, with the availability of
reasoners, like Pellet (Sirin et al., 2007) or HermiT
(Glimm et al., 2014; Shearer et al., 2008), we can
perform reasoning based on the encoded model to
generate inferred dialogue context information.

From a natural language processing (NLP) stand-
point, dialogue is essentially a sequence of utter-
ances between multiple agents. Our work utilizes
a finite state transition network to model the dia-
logue (Allen, 1995; Jurafsky and Martin, 2000),
and then encodes this sequence model of the utter-
ances within the ontology. We also employ some
lightweight NLP methods to help the agent discern
participant utterances, alongside with the reason-
ing capacities of the agent. For the design of the
dialogue system, we utilize a deterministic and
planned approach to automate the counseling ver-
sus a generative approach in order to cover certain
main points to communicate to the drug user. This
gives us the control needed to ensure the conver-
sational agent delivers the appropriate counseling.
The dialogue will center around a closed world do-
main – specific to only PrEP and PEP, and HIV
infection. The following sections will cover the
development of the conversational agent and dis-
cussion through results of a Trindi Tick assessment
for dialogue system evaluation and future steps
with our work.

2 Methods

2.1 Ontology Models

We developed a series of ontologies to provide the
software agent with interaction abilities – to model
patient-level information and the dialogue flow for
the agent to coordinate the interaction with the user.

Ontology of PrEP and PEP (OPP) For the
PrEP and PEP information source we created the
Ontology of PrEP and PEP (OPP), using patient-
level sources (brochures and websites). The OPP
describes basic dosing, benefit and harms, cost, po-
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tential users, and other pertinent information that
patients would like to know. This ontology pro-
vides a knowledge base for atomic facts for the
dialogue flow ontology, PHIDO. This early version
of OPP has 152 classes, 57 object properties, 23
data properties, and 10 instance individuals.

Figure 1: UML diagram of the Utterance class in
PHIDO. System and Participant are subclasses of Ut-
terance.

Patient Health Information Ontology Dialogue
(PHIDO) The Patient Health Information Ontol-
ogy Dialogue is an ontology developed in the pre-
vious study to model a chain of utterances between
the machine (utterances of the system) and the user
speaking directly with the machine (utterance of
the participant). Figure 1 displays the Utterance
class in PHIDO. The parent Utterance class has sev-
eral data properties that are used to help facilitate
the flow the machine’s conversation and are linked
together using “precedes” or “follows” to indicate
precedence of the utterances. PHIDO’s TBox level
metrics contain 86 classes, 9 object properties, and
5 data properties. Details of the ontology is dis-
cussed in the authors’ previous study (Amith et al.,
2019b).

Essentially, each triple (i.e. predicate) from OPP
is utilized by PHIDO to communicate statements
about PrEP or PEP (Figure 2). Within PHIDO, an
utterance data (instance) is linked to each predicate
for the machine to either speak or to help discern
utterances spoken by the user.

Figure 3 shows the meta-level description of the
dialogue that starts with basic introduction and ac-
climation of the user with the machine and closing
out the counseling. The core goals of the dialogue
is to communicate facts (Health Information) and
to handle questions at any time for the user (Ques-
tion Answering). The flow of communication for
health information is facilitated by a sub-goal we

call Discuss Health Topic (DHT) which is modeled
in the PHIDO and allows for population of utter-
ance data that aligns with the concepts in DHT.

2.2 Dialogue System

From a previous study we developed a software en-
gine that uses the aforementioned ontology models
(Amith et al., 2019a). The software engine also
supports question answering if the ontology model
infers a question based on the context of the dia-
logue flow (e.g., an answer follows a question, a
question precedes a point of confusion in the con-
versation, etc.).

On Figure 4, we demonstrate the execution of
the engine using the PHIDO to model the communi-
cation of patient-level information to the user. Here
the system evokes each patient-level health fact
(Health Information) about PrEP, sourced from the
OPP. Any question recognized by the engine will
attempt to answer the question using an ontology-
based question answering (QA) sub-system of the
engine. Once the utterance of the user is identified
as a question, the type of question, the nouns, and
verb phrases are analyzed against the OPP predi-
cates. After selection, ranking, and filtering, the
answer is evoked by the system. Details about
the implementation is described in (Amith et al.,
2019a), and Figure 5 shows an example demonstra-
tion with a question and a response from the QA
system.

2.2.1 NLP-based Slave Functions
Aside from the finite-state diagram approach for the
engine, we also employed some NLP methods as
slave functions for the engine to operate - discern-
ing the type of participant utterance for the main
dialogue system and comparing the question data
with ontology triples for the question-answering
subsystem.

Discerning Participant Utterances When cap-
turing input from the user, the engine will need
to distinguish the type of user utterance to direct
the flow of the dialogue. Each utterance concept
was annotated to a set of examples that were rep-
resentative of its type. For example, the Utterance
class of Question has string examples of “could
you tell me”, “how many”, “list”, and the Discon-
firmation class has examples such as “negative”,
“never”, “none”, etc. Using the inputted utterance
of the user, the text is compared to the string ex-
amples using Monge-Elkan (Monge et al., 1996;
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Figure 2: Triples (Predicates) are extracted from the Ontology of PrEP and PEP and used by PHIDO.

Figure 3: Dialogue flow plan for basic counseling for PrEP and PEP information.

Figure 4: Demonstration of the dialogue engine communicating PrEP information to the user.

Monge and Elkan, 1997) (default implementation
from Korstanje (2019)), and a default threshold
of 0.85. Matches that do not meet the threshold
will fallback to exact string matches based on the
beginning of the string.

Definition 2.1 (Participant utterance & examples).

Every participant utterance PU expected by the
system contains example data EUn. EUn has a
number of string text TTn that are a set of tokens
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Figure 5: Demonstration of the a PrEP-related question asked with corresponding answers provided. The ranking
scores are provided for supplement.

tn.

∀PUn 3 EUn
n

EUn
n ∈





TTn, where

TT = {t1t2 · · · tn}
t is a string token

Definition 2.2 (User utterance). User utterance
UU for the dialogue system is a set of string tokens
tn

∀UU = {t1t2 · · · tn}
Definition 2.3 (Identifying the participant utter-
ance). To find the exactly identified PUn the di-
alogue system attains a comparison s(x) that is
the maximum and the greater than a defined thresh-
old TH among all of the example utterances EUn

within each expected utterance PUn.

PUn ⇒ Tscore = max(s(x)) > TH

s(x) =





EUn
n ∩ UU,

where

EUn
n = te1t

e
2 · · · ten

Defintion 2.3.1 (Identifying the participant utter-
ance). Assuming that Definition 2.3 fails to find the
expected participant utterance PUn, the dialogue
system resorts to finding exact match of the begin-
ning string tokens EU

′
and UU

′
from example

utterances EUn
n and the user utterance UU .

PUn ⇒ Tscore = b(x)

b(x) = {EUn
n ≈ UU ⇒ EU

′
n = UU

′},
where

EU
′
n ∈ EUn

n =

{
EU

′
n = {te1te2 · · · ten−m}

EUn
n = {te1te2 · · · ten}

UU
′ ∈ UU =

{
UU

′
= {t1t2 · · · tn−m}

UU = {t1t2 · · · tn}

Comparing Question Data and Ontology
Triples For the question answering subsystem,
the system utilized off the shelf NLP tools like
Stanford Core (Manning et al., 2014) to extract
data from the question. To preform the matching
described in (Amith et al., 2019a), we also
utilized a combination of either word embedding
using Numberbatch vector model (Speer and
Lowry-Duda, 2017) (with Semantic Vectors
(Widdows and Cohen, 2010) as the interface layer)
or the string similarity methods discussed earlier,
and extJWNL (Autayeu, 2016) where we assign
a score to each triple from the knowledge base
(OPP). For brevity, we applied various rules and
thresholds to select and filter triples to present an
answer.

Definition 2.4 (Primary Question Data). Given a
question Q, there are a subset of elements NPn

and V Pn (noun phrases and verb phrases) that are
essential data Q

′
for the subsystem.

Q
′ ∈ {NPn, V Pn}

Definition 2.5 (Triple Assertion). Within an ontol-
ogy O, there are assertion triples (ABox) that are
composed of elements of subject sn, predicate pn,
and object on to form an assertion triple spon.

spo = {s, p, o}

Definition 2.6 (Essential Ontology Triples). Given
an target ontology O, there are a subset of triple
assertion types spoo, spod, spoc (object property
assertions, data property assertions, and class as-
sertions) that are needed O′ for the subsystem.

O
′ ∈ {spoon, spodn, spocn}

Definition 2.7 (Assign Score From Comparison).
A similarity score TS is assigned from comparing
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the similarity of question data D
′

with a triple as-
sertion spo

{o,d,c}
n from O’. TS is derived from the

mean of computing similarity between NPn with
s
{o,d,c}
n and o

{o,d,c}
n , and from V Pn with p

{o,d,c}
n .

Q
′ ≈ spo{o,d,c}n := TS

TS





sim(s
{o,d,c}
n , NPn) = Ssn

n

sim(o
{o,d,c}
n , NPn) = Son

n

sim(p
{o,d,c}
n , V Pn) = Spv

n

TS = mean(Ssn
n , Son

n , Spv
n )

3 Results

We utilized the Trindi Tick list to ascertain the com-
prehensive functionality of the dialogue engine’s
ability (Bickmore et al., 2018; Bos et al., 1999).
With the exception for the classic Trindi Tick list,
according to Bickmore et al. (2018), there is lim-
ited formalized standard evaluations for dialogue
systems. The Trindi Tick list covers 12 criteria per-
taining to handling quality and quantity of user re-
sponses, sub-dialogue flows, intelligible responses,
etc.

3.1 Is utterance interpretation sensitive to
context

No, specifically pertaining to personal contextual
information of the user. For example, personal
contextual information that is tailored to specific
demographic based on behavior or demographic.
Another case is a repeat of information that has
already been resolved. For example, a user asked a
question about side effects of PrEP and then later
on the system communicated side effects of PrEP.
Ideally it would preferable to skip over the side
effect of PrEP if the user had asked the question
already.

3.2 Can the system deal with answers to
questions that give more information
than was requested

Partially yes. This criterion is based on the cov-
erage of the ontology, as the system will attempt
to match every predicate that is associated with
entities and relationship from a user question.

3.3 Can the system deal with answers to
questions that give different information
than was actually requested

and

3.4 Can the system deal with answers to
questions that give less information than
was requested?

Yes, for example, a user can ask a question at any
point which will activate the question-answering
subroutine. Generally, the system overall is indis-
criminate about the amount of information said by
the user and will react.

3.5 Can the system deal with ambiguous
designators

Partially yes. Similar to criterion 3.2, this is based
on the coverage of the ontology and the similarity
measurements.

3.6 Can the system deal with negatively
specified information

No, not intentionally. We presume that this crite-
rion refers to non-explicit negative responses that
compliment the designators, other than stating no
or similar negative utterances. With the former, the
negated tokens are ignored when the system ana-
lyzes the utterance. With the latter, if expected, the
system can deal with those responses (e.g., “nah”,
“negatory”, etc.).

System:PrEP may cause weight loss,
serum creatinine increase, headaches,
kidney issues, mild nausea, and bone
mineral density issues. Following me so
far?

Participant: nope
System: Hmmm. maybe you have a

question. If you do what is the question?

3.7 Can the system deal with no answer to a
question at all

No. The system will wait for a response by the user.

3.8 Can the system deal with noisy input
Yes, by “noisy” we refer to utterances that might be
indistinguishable if mis-transcribed or garbled text
input.

System: Great! moving on to the
next thing. PrEP may cause weight loss,
serum creatinine increase, headaches,
kidney issues, mild nausea, and bone
mineral density issues. Following me so
far?

Participant: super calif ragilistic ex-
pialido cious
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System: I am sorry. would you mind
repeating what you said?

Participant: Yes, I follow.
System: Great! moving on to the

next thing...

3.9 Can the system deal with “help”
sub-dialogs initiated by the user

Yes. A relevant “help” example is when the system
facilitates any repeat of information.

System: headache, mild nausea, and
weight loss are mild reactions. Following
me so far?

Participant: say that again
System: headache, mild nausea, and

weight loss are mild reactions. Following
me so far?

3.10 Can the system deal with “non-help”
sub-dialogs initiated by the user

Yes, a “non-help” sub-dialogue example in our sys-
tem is whenever a user has additional question that
is related to the topic discussed.

System: PrEP is an antivirual drug,
and it also known as Pre-exposure pro-
phylaxis. Following me so far?

User: What are some payment op-
tions to cover PrEP?

System: That is a great question. I
would recommend discussing it with your
doctor for confirmation. If you have an-
other question, I can help you further.
Ask away. (System did not have an an-
swer and provides one of the default re-
sponses.)

User: no further questions
System: Great! moving on to the

next thing. PrEP may cause weight loss,
serum creatinine increase, headaches,
kidney issues, mild nausea, and bone
mineral density issues. Following me?

3.11 Does the system only ask appropriate
follow-up questions

Yes. After each segment, the system inquires to the
user if they have any follow-up responses to what
they heard about PrEP. Example in 3.10 demon-
strates this.

3.12 Can the system deal with inconsistent
information

Partially yes. The system relies on example of ex-
pected utterances to identify the type of utterance
using string metric similarity. This may result in
misidentifying the utterance and directing the dia-
logue flow in unintended direction.

4 Discussion

The apparent limitations of the system is high-
lighted by criterion 3.1, 3.6, and 3.7. The limi-
tation with respect to context is primarily due to
lack of a mechanism to handle personalized infor-
mation. One of the benefits of using ontologies
demonstrated by health researchers was the po-
tential to tailor information if we were to capture
user information (Bickmore et al., 2011). Previous
studies have demonstrated the use of user context
ontologies to reason with user data. We assume that
this component could be integrated to support per-
sonalized contextual information based on group
identification or past previous behavior of the user.

Another limitation is the negatively specified in-
formation, where if a user were to ask “What if I
do not have insurance to pay for PrEP?” Techni-
cally the system would not analyze the negative
token “not” and focus on the more salient entities
of the response. However, a response can be gener-
ated by the system, but whether it would accurately
respond to the question is unknown, and is deter-
mined by the scope of the ontology.

In regards to dealing with no answer, the system
awaits for the response of the participant. The
reasonable solution is to implement a software code
subroutine either on the dialogue system level or on
the interface level that times out whenever the user
does not provide a timely response. Nonetheless,
exploring how this can be done on the ontology-
level would need to be investigated and engineered
into the ontology.

Other aspects highlighted by our preliminary
Trindi Tick assessment underline adherence to crite-
ria regarding handling indistinguishable responses,
sub-dialogue branches, and the quality and quan-
tity of information. Also, the quality of the system
responsiveness, we theorize, would be dependent
on the scope of the knowledge encoded in the on-
tology.
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5 Conclusion

In this paper we present our ontology-based system
for handling dialogue for PrEP and PEP counseling.
This system also handles questions that are queried
from a knowledge base, called the Ontology of
PrEP and PEP (OPP). Overall the objective of this
work is to demonstrate the feasibility of using an
ontology-driven approach to manage automated
counseling for PrEP and PEP through a computer-
based agent.

Figure 6 shows overall deployment on how the
engine will interface with external natural language
clients whether they are mobile or terminals (desk-
tops or kiosks). Our eventual goal is to develop a
deterministic, planned-based approach within the
domain of PrEP and PEP medication adherence
(closed domain) and test our approach with live
participants.

Figure 6: Deployment of a conversational agent client
as a mobile application.

Previous research (Amith et al., 2019b) has
found limited use of ontologies for medical-based
dialogue agents. Solutions addressing PrEP or
PEP adherence that researchers have examined in-
clude social networks (Kuhns et al., 2017; Gar-
cia et al., 2016) and telehealth solutions (Klausner
and CFAR Development Core, 2018; Stekler et al.,
2018; Youth Tech Health, 2018). With the former,
there has not been any evidence that shows that so-
cial networks can address adherence or awareness
(Ezennia et al., 2019), and with the latter, telehealth
solutions are limited to the availability of a profes-
sional and may not be cost effective (Touger and
Wood, 2019). Having an automated agent that can
provide real-time and high availability to counsel
and inform patients may offer an alternative, but
further research is needed to foresee this possibility.

Limitations and Future Direction The ontolo-
gies that drive the system are currently in draft
format and additional work is needed to expand
them to include more personalized content, such
as where PrEP and PEP can be obtained and infor-
mation for nonprofit organizations that can provide
support, etc. Researchers have conducted simu-
lations to fine tune a formal plan to counsel in-
dividuals on the HPV vaccine. Our future work
would need to model standard practices for medi-
cation counseling adherence that typically happen
between patients and providers. This would in-
clude conducting simulation studies and working
with providers to develop, and then model the coun-
seling flow using the PHIDO framework. Also,
from the sample dialogue of the simulation, we can
parse out potential questions that can be used to
test the question answering component. Lastly, the
demonstration of our work is based on text-based
modality, and we are working towards interfacing
the system to a voice interface to capture the user
utterances and evoke the utterance of the machine.
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Abstract

Heart failure is a global epidemic with debili-
tating effects. People with heart failure need
to actively participate in home self-care regi-
mens to maintain good health. However, these
regimens are not as effective as they could be
and are influenced by a variety of factors. Pa-
tients from minority communities like African
American (AA) and Hispanic/Latino (H/L), of-
ten have poor outcomes compared to the aver-
age Caucasian population. In this paper, we
lay the groundwork to develop an interactive
dialogue agent that can assist AA and H/L pa-
tients in a culturally sensitive and linguistically
accurate manner with their heart health care
needs. This will be achieved by extracting
relevant educational concepts from the inter-
actions between health educators and patients.
Thus far we have recorded and transcribed 20
such interactions. In this paper, we describe
our data collection process, thematic and ini-
tiative analysis of the interactions, and outline
our future steps.

1 Introduction

Heart failure (HF) is defined as “a complex clini-
cal syndrome that can result from any structural or
functional cardiac disorder that impairs the ability
of the ventricle to fill or eject blood” (Hunt et al.,
2009). Approximately 5 million Americans cur-
rently live with this condition. In the United States,
minority communities have a higher mortality rate
than Caucasians (Roger, 2013; Toukhsati et al.,
2019). This has been attributed to multiple factors
like genetic variations, access to quality healthcare,
socioeconomic conditions, health behavior, lower
health literacy among others. However, some of
these risk factors can be mitigated (Der Ananian
et al., 2018; Tucker et al., 2011). For example, a
patient with access to personalized educational ma-
terial is better equipped to identify and address his
self-care needs resulting in increased compliance

and better health outcomes (Alberti and Nannini,
2013).

Self-care is “a naturalistic decision-making pro-
cess by which individuals make choices about be-
haviors that maintain physiologic stability and the
response to symptoms when they occur.” (Riegel
et al., 2004) However, this process can be rendered
ineffective when the patient has a limited under-
standing of the disease. Furthermore, most self-
care materials available outside the hospital are
catered towards the White Caucasian educated pop-
ulation, and thus lack cultural nuances to assist
patients from minority communities (Barrett et al.,
2019; Hughes and Granger, 2014; Lee et al., 2011).
This has resulted in poor heart self-care regimen in
minority communities (Howie-Esquivel, 2014).

Therefore, we intend to develop a dialogue agent
that can provide medically reliable and cultur-
ally sensitive self-care information to discharged
African American and Hispanic/Latino HF patients,
and help mitigate the health disparities observed
among them. In this paper, we talk about our first
step towards building the agent i.e. collecting the
data (since there is no publicly available dataset)
and analyzing it. We used topic modeling to iden-
tify core educational concepts and analyzed the
data for initiative, i.e., who takes the conversational
lead. Not surprisingly, educators take more initia-
tive, however the portions in which the patient has
control are more important to uncover what patients
may ask of a dialogue agent.

We also tried to evaluate the interactions for cul-
tural competency. However, existing tools such as
Cross-cultural counseling inventory (LaFromboise
et al., 1991) and the Multicultural counseling inven-
tory (Sodowsky et al., 1994) focus on provider’s
knowledge and do not evaluate patient educational
materials. Therefore, with the help of content ex-
perts in our team, fundamental concepts of cross-
cultural care (empathy, respect, and curiosity), and
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focus groups (Bobo et al., 1991; González-Lee and
Simon, 1987), we will manually identify cultur-
ally relevant topics and model the dialogue agent
accordingly as part of our future work.

2 Related Work

In the 1960s, ELIZA was the first Natural Language
Processing (NLP) based chatbot which facilitated
a dialogue between humans and machines. Since
then, multiple advances have been made in artifi-
cial intelligence and NLP resulting in the evolution
of dialogue agents. They have transitioned from
accepting very restricted user input (answers to
multiple-choice questions only) to processing full
sentences and providing medically reliable infor-
mation (Laranjo et al., 2018).

Multiple randomized control trials have estab-
lished the efficacy of dialogue agents in health-
care settings as well (Bickmore et al., 2013a,b;
Lovell et al., 2017). They have been successfully
used to promote a healthy lifestyle, increase ad-
herence, or provide adjunct psychotherapy among
other uses (Laranjo et al., 2018). Technology-based
interventions have been used to assist HF failure
patients for quite some time. Most of these inter-
ventions are catered towards remote monitoring
and medication management (Hughes and Granger,
2014). CARDIAC (Computer Assistant for Ro-
bust Dialogue Interaction and Care), a conversation
assistant for chronic HF patients was designed to
collect both objective and subjective information
from the patients (Ferguson et al., 2009). Sim-
ilarly, DIL, another conversation agent was de-
signed to help HF patients to transition from hos-
pital to their homes by motivating them to follow
a healthy lifestyle and maintaining medication ad-
herence (Moulik, 2019). To our knowledge, there
is no existing culturally sensitive dialogue agent
designed to assist minority communities with their
heart failure self-care needs.

3 Data Collection

We recruited three health educators to conduct HF
education of AA and H/L patients in both the in-
patient and outpatient clinics of our university. We
plan to collect 40 HF education sessions, half with
AA patients and half with H/L patients. We have
recorded 20 interactions so far, 18 with AA patients
and two with H/L patients; of these 20 patients, 8
are males and 12 females. One of the barriers to
recruiting H/L patients is how our hospital iden-

Patient: Yeah, I don’t, I don’t do the frozen meal.
Educator: Okay.
Patient: I was basically doing the uh, vegetables.
Educator: Okay.
Patient: Frozen vegetables,
Educator: They should be fine.
Patient: Yeah.
Educator: But. . . but, but I do want you to start looking at
those nutrition labels.
Patient: Okay.
Educator: And look for something that says less than 5%.
Patient: Okay.
Educator: So, the other thing we always want you to do is,
um, of course take all your medicines like you’re supposed to.
Patient: Which I didn’t do last night.
Educator: Okay.

Figure 1: Excerpt from a conversation

20 transcripts
turns sentences words

Educator 116.90 205.45 2281.10
Patient 108.40 131.20 849.50
Total 225.30 336.65 3130.60

Table 1: Distributional analysis of the conversations

tifies them; additionally, since at the moment we
focus on English as the language of interaction, we
exclude H/L patients if the interaction is conducted
in Spanish. Lastly, H/L patients comprise only 20%
of our hospital population; this is less than half of
the AA patients (45%). The remaining 35% com-
prises 10% Asian American, and 25% Caucasian
and others.

All the 20 recordings were transcribed by a
professional transcription service. An excerpt is
shown in Figure 1. We should note that in some
cases, a third person (a caregiver, like a spouse)
is present, and the conversation may involve both
patient and caregiver, or be mostly between the
educator and the caregiver. While transcribers did
a good job, they failed to capture linguistic prac-
tices and choices of patients (vernacular speech)
and converted it to standard English: for example,
‘gonna’ was transcribed as ‘going to’. Given our
focus is on cultural sensitivity, such linguistic prac-
tices are of great importance to us, and therefore,
the transcripts were revised again to make sure that
exactly what was said is recorded.

The average length of an interaction is about
15 minutes. Table 1 presents the average number
of turns, sentences, and words per conversation
over these 20 HF education sessions. A turn refers
to a complete unit of speech and can consist of
multiple sentences. Therefore, it makes sense that
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Figure 2: Word cloud of common nouns: both educators and patients, the patients, and the educators (left to right)

Interpretation Example words from
top 10

1 low salt diet food, sodium, label, meat
2 symptoms pill, fluid, weight, swell
3 explaining heart fail-

ure
pump, failure, blood,
body

4 medication and follow-
up appointment

appointment, medication,
hospital, doctor

Table 2: Interpretation of LDA topics

patients educators
eating, cooking, restaurant,
health, liquid, ocean, sailing,
water, children, speaking,
negative emotion, medi-
cal emergency, shopping,
party, communication
(same count as healing)

eating, health, cooking, liq-
uid, sailing, ocean, water,
speaking, restaurant, com-
munication, healing, giving,
medical emergency, busi-
ness, cleaning

Table 3: Most common categories in order of frequency

both the educator and patient had a similar number
of turns except the cases where the caregiver did
some of the talking. However, there is a noticeable
difference in the number of sentences and words
between the two. The educator spoke 2.5 times
more words than the patient. This indicates that the
educator did most of the talking during the inter-
views. Figure 2 shows the most common nouns in
the conversations as word clouds. The frequency
of words provides some indication of the topics of
conversation, but we now turn to a deeper analysis
of these interactions.

4 Data Analysis

In this section, we will look at two types of analysis:
thematic analysis and initiative analysis.

Thematic analysis looks at the most common
topics of discussion related to HF education. The
educators aimed to provide comprehensive informa-
tion about HF to the patients so that they can take
care of themselves upon discharge. The educators
covered topics such as what HF is, the role of med-
ications such as the “water pill” (a diuretic), the im-
portance of a low sodium diet, the benefits of phys-
ical activity, daily checks to recognize symptoms,

and the value of follow-up appointments. The top-
ics were motivated by the standard HF education
information that should be given to a HF patient.
However, it is the discussion that arises from these
topics that varies based on culture and even per-
son to person. Therefore, we used existing topic
modeling tools to further analyze the transcripts.

We first performed topic modeling using Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). We
used the Gensim library consisting of python wrap-
per for LDA from MALLET, the java topic mod-
eling toolkit. We tried topic modeling for both the
educator and the patient turns together and sepa-
rately. Since the educators did most of the talking,
and almost 50% of patient turns involved filler sen-
tences such as ‘okay’, ‘umm’, the patient turns in
themselves weren’t sufficient to learn separate top-
ics. The remaining 50% of patient turns focused
mostly on salt/food which was one of the recurring
topic words during the experiments. Therefore, we
decided to model the educator turns exclusively.
After experimenting with a different number of top-
ics and alpha parameters (Dirichlet prior on the
per-document topic distributions), we found the
coherence score was the highest for topics counts =
4 and alpha = 0.01. We show the output in Table 2.

We then used Empath to identify the difference
in topics between the patients and the educators
(Fast et al., 2016). Empath is a text analysis tool
that can help identify various topical and emotional
categories present in a text. It consists of 200 built-
in categories and allows to create more categories
on demand. We analyzed both educator and patient
turns separately using the built-in categories and
show the topmost common 15 categories in Table 3.
We used the raw counts for categories in empath.
The categories in bold indicate categories different
between the educators and the patients. One can
notice that 11 of the categories are the same and
the most common is eating. This is consistent with
the word clouds where salt and food were two of
the most common nouns.

However, it is interesting to notice that patients
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Control: Patient
Patient: Yeah, I don’t, I don’t do the frozen meal. (asser-
tion/command)
Educator: Okay. (prompt)
Patient: I was basically doing the uh, vegetables. (asser-
tion/command)
Educator: Okay. (prompt)
Patient: Frozen vegetables, (assertion/command)

Control: Educator
Educator: They should be fine. (assertion/command)
Patient: Yeah. (prompt)
Educator: But. . . but, but I do want you to start looking at
those nutrition labels. (assertion/command)
Patient: Okay. (prompt)
Educator: And look for something that says less than 5%.
(assertion/command)
Patient: Okay. (prompt)
Educator: So, the other thing we always want you to do is,
um, of course take all your medicines like you’re supposed
to. (assertion/command)

Control: Patient
Patient: Which I didn’t do last night. (assertion/command)
Educator: Okay. (prompt)

Figure 3: Example conversation showing utterance
type and control transfer.

prioritized children in their discussion (family was
also in the top 20 categories), whereas for educators
neither of them were even in the top 25 categories.
negative emotion, shopping, and party were in the
top 20 of educator categories, therefore can be con-
sidered similar to patient categories where they are
in top 15. Lastly, giving, business, and cleaning
categories were more common in educators. This
is because giving relates to the term ‘give’ which
educators used frequently to provide information
such as ‘give you a followup appointment’, ‘give
you a phone number to call’, ‘give you medicine’.
Business relates to terms such as ‘need’, ‘work’,
and ‘company’, which, similarly to giving, was
used to inform patients about different companies
offering low sodium salt, what they need to do upon
discharge, and to educate them about how medi-
cations work. Cleaning is in the top categories
because it relates to the term ‘water’ which can be
considered a partial duplicate of category water.

Initiative analysis focuses on the distribution
of turns based on the person taking the lead in the
conversation. A person takes the lead/initiative
when he/she contributes to the conversation (e.g.,
by asking a question) instead of only answering the
questions or responding with fillers (such as ‘okay’,
‘umm’). In turn, when a speaker takes initiative, the
control of the conversation transfers to that speaker
and remains with the same speaker until the other
speaker takes initiative.

We classified a given turn as a question, prompt,
or assertion/command where: a question tries to
elicit information, a prompt doesn’t express any
propositional content, an assertion states facts, and
a command intends to instigate action (Walker and
Whittaker, 1990). We used the rules below to auto-
matically annotate the turns:

• Question: if the turn ends with a question
mark (?)

• Prompt: if a turn consists only of words
‘uhhuh’, ‘okay’, ‘ok’, ‘yeah’, ‘umhmm’,
‘right’, ‘oh’, ‘umm’, ‘uh’, ‘hmm’, ‘umumm’,
‘ummm’, ‘alright’

• Assertion/Command: everything else

We didn’t separately annotate command and as-
sertion as we were more interested in the number
of questions and prompts by the educators and pa-
tients; additionally, it would be hard to distinguish
them using simple rules.

The rules for control transfer used by us are
shown below (Turn type: Controller):

• Assertion/Command or Question: speaker un-
less response to a question

• prompt: hearer

Figure 3 shows the excerpt from Figure 1 marked
with utterance type and control transfer. The ut-
terances with type assertion/command indicate
speaker initiative. On analyzing the transcripts,
we found that on an average per conversation, ed-
ucators asked 26 questions and produced 17 utter-
ances with prompts as compared to 3 questions and
39 prompt utterances by the patients. As a conse-
quence, an educator held the initiative for about
95 turns per conversation, whereas the patient did
for 51 turns; the control lasted for about 5 turns
on average in the case of an educator as compared
to patients who only held control for 2 turns on
average. These observations about patient/educator
interactions have also been confirmed by an expert
we have consulted with, Dr. Kishonna Gray from
Department of Communication and Gender and
Women’s Studies at University of Illinois Chicago.

We hypothesize that, even if few, the turns where
the patient takes control are important for the devel-
opment of the dialogue agent: in fact, we envision
this dialogue agent as an assistant that the patient
will have to interact with on their initiative, rather

44



than a system that operates as a health educator
per se. Next, we will extract the topics from the
turns where the patients have control since those
are probable topics of discussion. We also plan to
conduct focus groups with 10 self-identified AA
and 10 H/L patients to gain insight into their lives
post HF diagnosis and evaluate the acceptability of
a dialogue agent to discuss HF. We believe talking
to individuals with HF outside the hospital environ-
ment can help solicit questions that do not appear
in the recordings or existing literature.

5 Conclusions and Future Work

In this paper, we discussed our data collection
process for heart failure education conversations
between educators and African American or His-
panic/Latino patients. We analyzed 20 transcribed
recordings and found that the most common topic
of discussion was food. Patients also discussed
family and children frequently. Though mostly ed-
ucators took the lead, we will extract topics where
patients take control to build a dialogue agent that
can answer patient queries effectively. We will
also use insights from these interactions to inform
the questions for the focus groups which we will
conduct in the future.
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Abstract
We investigate the utility of audiovisual dia-
log systems combined with speech and video
analytics for real-time remote monitoring of
depression at scale in uncontrolled environ-
ment settings. We collected audiovisual con-
versational data from participants who inter-
acted with a cloud-based multimodal dialog
system, and automatically extracted a large set
of speech and vision metrics based on the rich
existing literature of laboratory studies. We
report on the efficacy of various audio and
video metrics in differentiating people with
mild, moderate and severe depression, and dis-
cuss the implications of these results for the
deployment of such technologies in real-world
neurological diagnosis and monitoring applica-
tions.

1 Introduction

Diagnosis, detection and monitoring of neurologi-
cal and mental health in patients remain a critical
need today. This necessitates the development of
technologies that improve individuals’ health and
well-being by continuously monitoring their status,
rapidly diagnosing medical conditions, recogniz-
ing pathological behaviors, and delivering just-in-
time interventions, all in the user’s natural informa-
tion technology environment (Kumar et al., 2012).
However, early detection or progress monitoring of
neurological or mental health conditions, such as
clinical depression, Amyotrophic Lateral Sclerosis
(ALS), Alzheimer’s disease, dementia, etc., is of-
ten challenging for patients due to multiple reasons,
including, but not limited to: (i) lack of access to
neurologists or psychiatrists; (ii) lack of awareness
of a given condition and the need to see a special-
ist; (iii) lack of an effective standardized diagnostic
or endpoint for many of these health conditions;
(iv) substantial transportation and cost involved in
conventional or traditional solutions; and in some
cases, (v) shortage of medical specialists in these
fields to begin with (Steven and Steinhubl, 2013).

We developed NEMSI (Suendermann-Oeft et al.,
2019), or the NEurological and Mental health
Screening Instrument, to bridge this gap. NEMSI
is a cloud-based multimodal dialog system that
conducts automated screening interviews over the
phone or web browser to elicit evidence required
for detection or progress monitoring of the afore-
mentioned conditions, among others. While in-
telligent virtual agents have been proposed in ear-
lier work for such diagnosis and monitoring pur-
poses, NEMSI makes novel contributions along
three significant directions: First, NEMSI makes
use of devices available to everyone everywhere
(web browser, mobile app, or regular phone), as op-
posed to dedicated, locally administered hardware,
like cameras, servers, audio devices, etc. Second,
NEMSI’s backend is deployed in an automatically
scalable cloud environment allowing it to serve an
arbitrary number of end users at a small cost per
interaction. Thirdly, the NEMSI system is natively
equipped with real-time speech and video analyt-
ics modules that extract a variety of features of
direct relevance to clinicians in the neurological
and mental spaces.

A number of recent papers have investigated au-
tomated speech and machine vision features for
predicting severity of depression (see for exam-
ple France et al., 2000; Joshi et al., 2013; Meng
et al., 2013; Jain et al., 2014; Kaya et al., 2014;
Nasir et al., 2016; Pampouchidou et al., 2016; Yang
et al., 2017). These include speaking rate, duration,
amplitude, and voice source/spectral features (fun-
damental frequency (F0), amplitude modulation,
formants, and energy/power spectrum, among oth-
ers) computed from the speech signal, and facial
dynamics (for instance, landmark/facial action unit
motions, global head motion, and eye blinks) and
statistically derived features from emotions, action
units, gaze, and pose derived from the video sig-
nal. We use these studies to inform our choices of
speech and video metrics computed in real time,

47

https://doi.org/10.18653/v1/P17


allowing clinicians to obtain useful analytics for
their patients moments after they have interacted
with the NEMSI dialog system.

We need to factor in additional considerations
while deploying analytics modules as part of scal-
able real-time cloud-based systems in practice.
Many of the studies above analyzed data recorded
either offline or in laboratory conditions, implicitly
assuming signal conditions which may hold differ-
ently or not at all during real world use. These con-
siderations include, but are not limited to: (i) wide
range of acoustic environments and lighting con-
ditions resulting in variable background noise and
choppy/blocky video at the user’s end1, (ii) limita-
tions on a given user’s network connection band-
width and speed; (iii) the quantum of server traffic
(or the number of patients/users trying to access the
system simultaneously); and (iv) device calibration
issues, given the wide range of user devices. This
paper investigates the utility of a subset of audio
and video biomarkers for depression collected us-
ing the NEMSI dialog system in such real-world
conditions.

The rest of this paper is organized as follows:
Sections 2 and 3 first present the NEMSI dialog
system and the data collected and analyzed. Sec-
tion 4 then details the speech and video feature
extraction process. Section 5 presents statistical
analyses of different groups of depression cohorts
as determined by the reported PHQ-8 score, before
Section 6 rounds out the paper, discussing the im-
plications of our observations for real-world mental
health monitoring systems.

2 System

2.1 NEMSI dialog ecosystem
NEMSI (NEurological and Mental health Screen-
ing Instrument) is a cloud-based multimodal dialog
system. Refer to Suendermann-Oeft et al. (2019)
for details regarding the system architecture and
various software modules.

NEMSI end users are provided with a website
link to the secure screening portal as well as lo-
gin credentials by their caregiver or study liaison
(physician or clinic). Once appropriate microphone
and camera checks that the captured audio and
video are of sufficient quality are complete, users
hear the dialog agent’s voice and are prompted to
start a conversation with the agent, whose virtual

1Such conditions often arise despite explicit instructions
to the contrary.

image also appears in a web window. Users are
also able to see their own video, if so needed, in
a small window in the upper right corner of the
screen. The virtual agent then engages with users in
a conversation using a mixture of structured speak-
ing exercises and open-ended questions to elicit
speech and facial behaviors relevant for the type of
condition being screened for.

Analytics modules extract multiple speech (for
instance, speaking rate, duration measures, F0, etc.)
and video features (such as range and speed of
movement of various facial landmarks) and store
them in a database, along with information about
the interaction itself such as the captured user
responses, call duration, completion status, etc.
All this information can be accessed by the clini-
cians after the interaction is completed through an
easy-to-use dashboard which provides a high-level
overview of the various aspects of the interaction
(including the video thereof and analytic measures
computed), as well as a detailed breakdown of the
individual sessions and the underlying interaction
turns.

3 Data

Depending on the health condition to be monitored
and on the clinician’s needs, different protocols
can easily be employed in the NEMSI system. For
the present study, we designed a protocol target-
ing the assessment of depression severity, based
on (Mundt et al., 2007). The protocol elicits five
different types of speech samples from participants
that are consistently highlighted in the literature:
(a) free speech (open-ended questions about sub-
jects’ emotional and physical state), (b) automated
speech (counting up from 1), (c) read speech, (d)
sustained vowels, and (e) measure of diadochoki-
netic rate (rapidly repeating the syllables /pa ta ka/).

After dialog completion, participants are asked
to answer the Patient Health Questionnaire eight-
item depression scale (PHQ-8), a standard scoring
system for depression assessment (Kroenke et al.,
2009). The self-reported PHQ-8 score serves as a
reference point for our analysis. Further, we ask
for information about age, sex, primary language
and residence.

In total, we collected data from 307 interactions.
After automatic data cleaning2, 208 sessions re-

2We removed interactions for which PHQ-8 answers or
relevant speech metrics were missing and sessions for which
no face was detected in the video
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mained for analysis. From those 208 participants,
98 were females, 97 were males and 13 did not
specify. Mean participant age is 36.5 (SD = 12.1).
184 participants specified English as their primary
language, 9 other languages and 15 did not spec-
ify. 176 participants were located in the US, 8 in
the UK, 5 in Canada, 4 in other countries and 15
did not specify. Figure 1 shows the distribution of
PHQ-8 scores among women and men.

Figure 1: Distribution of PHQ-8 scores by gender.

4 Signal Processing and Metrics
Extraction

4.1 Speech Metrics

For the speech analysis, we focus on timing mea-
sures, such as speaking rate and percentage of
pause duration, frequency domain measures, such
as fundamental frequency (F0) and jitter, and
energy-related measures, such as volume and shim-
mer. We have selected commonly established
speech metrics for clinical voice analysis (France
et al., 2000; Mundt et al., 2012, 2007).

As described in Section 3, there are different
types of speech samples, e.g. free speech and sus-
tained vowels. Not all acoustic measures are mean-
ingful for each type of stimuli. Table 2 presents all
extracted metrics for the particular speech sample
types.

All metrics are extracted with Praat (Boersma
and Van Heuven, 2001). For the following mea-
sures, heuristics have been used to ignore ob-
vious outliers in the analysis: articulation rate
(excluded >350 words/min), speaking rate (ex-
cluded >250 words/min), percent pause time (ex-
cluded >80%).

Cutpoint Free speech Held Vowels
(group sizes)
5 (127/81) Percent pause Volume (a,f), HNR (m),

time (a,f) Mean F0 (m)
10 (168/40) - Jitter (f)
15 (193/15) Volume (a,f,m) Mean F0 (a),

Volume (f)

Table 1: Speech metrics for which a statistically signifi-
cant (p < 0.05) difference between sample populations
is observed. In parentheses: f - females, m - males,
a - all.

Free Read Auto- Held DDK
speech speech mated vowels

SpRate !

ArtRate !

SylRate !

PPT ! ! !

Mean F0 !

Jitter !

HNR !

Volume ! ! ! ! !

Shimmer !

Table 2: Speech metrics for each type of speech sample.
SpRate = speaking rate, ArtRate = articulation rate, Syl-
Rate = syllable rate, PPT = percent pause time, DDK =
dysdiadochokinesia.

4.2 Visual Metrics

For each utterance, 14 facial metrics were calcu-
lated in three steps: (i) face detection, (ii) facial
landmark extraction, and (iii) facial metrics calcula-
tion. For face detection, the Dlib3 face detector was
employed, which uses 5 histograms of oriented gra-
dients to determine the (x, y)-coordinates of one or
more faces for every input frame (Dalal and Triggs,
2005). For facial landmark detection the Dlib facial
landmark detector was employed, which uses an
ensemble of regression trees proposed by Kazemi
and Sullivan (2014), to extract 68 facial landmarks
according to MultiPIE (Gross et al., 2010). Fig-
ure 2 illustrates the 14 facial landmarks: RB (right
eyebrow), URER (right eye, upper right), RERC
(right eye, right corner), LRER (right eye, lower
right), LB (left eyebrow), ULEL (left eye, upper
left), LELC (left eye, left corner), LLEL (left eye,
lower left), NT (nose tip), UL (upper lip center),
RC (right corner of mouth), LC (left corner of
mouth), LL (lower lip center), and JC (jaw cen-
ter). These are then used to calculate the following
facial metrics:

3http://dlib.net/
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Cutpoint Gender Free speech Read speech

5
All width, vJC, S R, S ratio, utter dur S R

Female S ratio, utter dur eye blinks
Male S ratio, eyebrow vpos, eye open, eye blinks

10
All S ratio, utter dur S R

Female open, width, LL path, JC path, S, S R, S L, eyebrow vpos, eye open
Male open, width, LL path, JC path, S, S R, S L, S ratio, eyebrow vpos, eye open, eye blinks open, width, S, S R, S L, eyebrow vpos

15
All vLL, vJC vLL, S ratio

Female width, vLL, vJC, S ratio vLL, S ratio
Male width, S, S L, eyebrow vpos, eye open, eye blinks eyebrow vpos

Table 3: Facial metrics for which a statistically significant (p < 0.05) difference between sample populations is
observed. For gender All not only female and male samples, but also samples for which no gender was reported
are used.

• Movement measures: Average lips opening
and width (open, width) were calculated as
the Euclidean distances between UL and LL,
and RC and LC, respectively. Average dis-
placement of LL and JC (LL path, JC path)
were calculated as the module of the vector
between the origin and LL and JC. Average
eye opening (eye open) was calculated as
the Euclidean distances between URER and
LRER, and ULEL and LLEL. Average ver-
tical eyebrow displacement (eyebrow vpos)
was calculated as the difference between
the vertical positions of RB and NT, and
LB and NT. All measures were computed in
millimeters.

• Velocity measures: The average velocity of
LL and JC (vLL, vJC) in mm/s was calculated
as the first derivative of LL path and JC path
with time.

• Surface measures: The average total mouth
surface (S) in mm2 was calculated as the
sum of the surfaces of the two triangles with
vertices RC, UL, LL (S R) and LC, UL,
LL (S L). Additionally, the mean symmetry
ratio (S ratio avg) between S R and S L was
determined.

• Duration measures: Utterance duration
(utter dur) in seconds.

• Eye blink measures: The number of eye
blinks (eye blinks) in blinks per second cal-
culated using the eye aspect ratio as proposed
by Soukupová and Čech (2016).

5 Analyses and Observations

The central research question of this study is the
following: for a given metric, is there a statistically

Figure 2: Illustration of the 68 obtained and 14 used
facial landmarks.

significant difference between participant cohorts
with and without depression of a given severity
(i.e., above and below a certain cut-point PHQ-
8 score)? The PHQ-8 has established cutpoints
above which the probability of a major depression
increases substantially (Kroenke and Spitzer, 2002).
Ten is commonly recommended as cutpoint for
defining current depression (see (Kroenke et al.,
2009) for a comprehensive overview). For our anal-
ysis, we use the cutpoints 5, 10, and 15 which align
with the PHQ-8 score intervals of mild, moderate
and moderately severe depression. Concretely, for
each metric and cutpoint, we divide the data into
two sample populations: (a) PHQ-8 score below
and (b) PHQ-8 equal or above the cutpoint. We
conducted a non-parametric Kruskal-Wallis test
for every combination to find out whether certain
obtained metrics show a statistically significant dif-
ference between cohorts.4

4We decided to exclude the /pa ta ka/ exercise (measure of
diadochokineic rate) from the analysis, because we observed
that many participants did not execute it correctly (e.g. making
pauses between repetitions).
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5.1 Analysis of Speech Metrics
Table 1 presents the acoustic measures and speech
sample types, for which a significant difference
between sample populations was observed (p <
0.05). For read speech, there is no significant dif-
ference for any of the metrics. For free speech,
percentage of pause time and volume are indicators
to distinguish groups. For sustained vowels, we
observe significant differences for volume, mean
fundamental frequency, harmonics-to-noise ratio
and jitter. There are differences between females
and males, as indicated in the table.

5.2 Analysis of Visual Metrics
Table 3 shows the visual metrics for which a signif-
icant difference between sample populations was
observed (p < 0.05) for free and read speech. Vi-
sual metrics are only analyzed for free speech and
read speech because only limited movement of fa-
cial muscles can be observed for automated speech
and sustained vowels. For read speech only, a few
metrics show significant differences independent of
the cutpoint and gender, while the number of met-
rics for free speech depends on both cutpoint and
gender. For males, the measures that involve the
eyes, i.e. eye open, eyebrow vpos and eye blinks,
show significant differences independent of the em-
ployed cutpoint. In contrast, when considering
all samples, independent of the reported gender,
and females, the metrics for which significant dif-
ferences are observed depend on the cutpoint and
speech sample. Cutpoint 5 mostly includes eye,
surface and duration measures, while cutpoint 10
also includes movement measures. For cutpoint
15, significant differences can be observed for the
velocity of the lower lip and jaw center for both
free and read speech, when considering all samples
or females.

6 Conclusion and Outlook

We investigated whether various audio and video
metrics extracted from audiovisual conversational
data obtained through a cloud-based multimodal
dialog system exhibit statistically significant differ-
ences between depressed and non-depressed popu-
lations. For several of the investigated metrics such
differences were observed indicating that the em-
ployed audiovisual dialog system has a potential to
be used for remote monitoring of depression. How-
ever, more detailed investigations on the nature of
value distributions of metrics, their dependency on
subject age or native language, the quality of input

signals or used devices, among other studies, are
necessary to to see to which degree the results are
generalizable. Additionally, the used PHQ-scores
were self-reported and might therefore be less ac-
curate than scores obtained under the supervision
of a clinician. In future work, we will also col-
lect additional interactions from larger and more
diverse populations. Furthermore, we will perform
additional analysis on the obtained data, such as re-
gression analysis. Finally, we will extend the set of
investigated metrics and investigate their efficacy
for other neurological or mental health conditions.
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Abstract

Automatic speech recognition (ASR) systems
in the medical domain that focus on transcrib-
ing clinical dictations and doctor-patient con-
versations often pose many challenges due to
the complexity of the domain. ASR output
typically undergoes automatic punctuation to
enable users to speak naturally, without hav-
ing to vocalise awkward and explicit punc-
tuation commands, such as “period”, “add
comma” or “exclamation point”, while true-
casing enhances user readability and improves
the performance of downstream NLP tasks.
This paper proposes a conditional joint mod-
eling framework for prediction of punctuation
and truecasing using pretrained masked lan-
guage models such as BERT, BioBERT and
RoBERTa. We also present techniques for
domain and task specific adaptation by fine-
tuning masked language models with medical
domain data. Finally, we improve the robust-
ness of the model against common errors made
in ASR by performing data augmentation. Ex-
periments performed on dictation and conver-
sational style corpora show that our proposed
model achieves ∼5% absolute improvement
on ground truth text and ∼10% improvement
on ASR outputs over baseline models under F1
metric.

1 Introduction

Medical ASR systems automatically transcribe
medical speech found in a variety of use cases like
physician-dictated notes (Edwards et al., 2017),
telemedicine and even doctor-patient conversations
(Chiu et al., 2017), without any human interven-
tion. These systems ease the burden of long hours
of administrative work and also promote better en-
gagement with patients. However, the generated
ASR outputs are typically devoid of punctuation
and truecasing thereby making it difficult to com-
prehend. Furthermore, their recovery improves

the accuracy of subsequent natural language under-
standing algorithms (Peitz et al., 2011a; Makhoul
et al., 2005) to identify information such as pa-
tient diagnosis, treatments, dosages, symptoms and
signs. Typically, clinicians explicitly dictate the
punctuation commands like “period”, “add comma”
etc., and a postprocessing component takes care
of punctuation restoration. This process is usu-
ally error-prone as the clinicians may struggle with
appropriate punctuation insertion during dictation.
Moreover, doctor-patient conversations lack ex-
plicit vocalization of punctuation marks motivating
the need for automatic prediction of punctuation
and truecasing. In this work, we aim to solve the
problem of automatic punctuation and truecasing
restoration to medical ASR system text outputs.

Most recent approaches to punctuation and true-
casing restoration problem rely on deep learning
(Nguyen et al., 2019a; Salloum et al., 2017). Al-
though it is a well explored problem in the litera-
ture, most of these improvements do not directly
translate to great real world performance in all
settings. For example, unlike general text, it is
a harder problem to solve when applied to the med-
ical domain for various reasons and we illustrate
each of them:

• Large vocabulary: ASR systems in the medi-
cal domain have a large set of domain-specific
vocabulary and several abbreviations. Ow-
ing to the domain specific data set and the
open vocabulary in LVCSR (large-vocabulary
continuous speech recognition) outputs, we
often run into OOV (out of vocabulary) or
rare word problems. Furthermore, a large vo-
cabulary set leads to data sparsity issues. We
address both these problems by using subword
models. Subwords have been shown to work
well in open-vocabulary speech recognition
and several NLP tasks (Sennrich et al., 2015;
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Bodapati et al., 2019). We compare word and
subword models across different architectures
and show that subword models consistently
outperform the former.

• Data scarcity: Data scarcity is one of the ma-
jor bottlenecks in supervised learning. When
it comes to the medical domain, obtaining
data is not as straight-forward as some of
the other domains where abundance of text
is available. On the other hand, obtaining
large amounts of data is a tedious and costly
process; procuring and maintaining it could
be a challenge owing to the strict privacy laws.
We overcome the data scarcity problem, by us-
ing pretrained masked language models like
BERT (Devlin et al., 2018) and its succes-
sors (Liu et al., 2019; Yang et al., 2019) which
have successfully been shown to produce state-
of-the-art results when finetuned for several
downstream tasks like question answering and
language inference. We approach the predic-
tion task as a sequence labeling problem and
jointly learn punctuation and truecasing. We
show that finetuning a pretrained model with a
very small medical dataset (∼500k words) has
∼5% absolute performance improvement in
terms of F1 compared to a model trained from
scratch. We further boost the performance by
first finetuning the masked language model
to the medical speech domain and then to the
downstream task.

• ASR Robustness: Models trained on ground
truth data are not exposed to typical errors in
speech recognition and perform poorly when
evaluated on ASR outputs. Our objective is to
make the punctuation prediction and truecas-
ing more robust to speech recognition errors
and establish a mechanism to test the perfor-
mance of the model quantitatively. To address
this issue, we propose a data augmentation
based approach using n-best lists from ASR.

The contributions of this work are:

• A general post-processing framework for con-
ditional joint labeling of punctuation and true-
casing for medical ASR (clinical dictation and
conversations).

• An analysis comparing different embeddings
that are suitable for the medical domain. An

in-depth analysis of the effectiveness of us-
ing pretrained masked language models like
BERT and its successors to address the data
scarcity problem.

• Techniques for effective domain and task
adaptation using Masked Language Model
(MLM) finetuning of BERT on medical do-
main data to boost the downstream task per-
formance.

• Method for enhancing robustness of the mod-
els via data augmentation with n-best lists
(from ASR output) to the ground truth dur-
ing training to improve performance on ASR
hypothesis at inference time.

The rest of this paper is organized as follows.
Section 2 presents related work on punctuation and
truecasing restoration. Section 3 introduces the
model architecture used in this paper and describes
various techniques for improving accuracy and ro-
bustness. The experimental evaluation and results
are discussed in Section 4 and finally, Section 5
presents the conclusions.

2 Related work

Several researchers have proposed a number of
methodologies such as the use of probabilistic ma-
chine learning models, neural network models, and
the acoustic fusion approaches for punctuation pre-
diction. We review related work in these areas
below.

2.1 Earlier methods
In earlier efforts, punctuation prediction has been
approached by using finite state or hidden Markov
models (Gotoh and Renals, 2000; Christensen et al.,
2001a). Several other approaches addressed it as
a language modeling problem by predicting the
most probable sequence of words with punctuation
marks inserted (Stolcke et al., 1998; Beeferman
et al., 1998; Gravano et al., 2009). Some others
used conditional random fields (CRFs) (Lu and
Ng, 2010; Ueffing et al., 2013) and maximum en-
tropy using n-grams (Huang and Zweig, 2002). The
rise of stronger machine learning techniques such
as deep and/or recurrent neural networks replaced
these conventional models.

2.2 Using acoustic information
Some methods used only acoustic information such
as speech rate, intonation, pause duration etc.,
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(Christensen et al., 2001b; Levy et al., 2012). While
pauses influence in the prediction of Comma, into-
nation helps in disambiguation between punctua-
tion marks like period and exclamation. Although
this seemed to work, the most effective approach is
to combine acoustic information with lexical infor-
mation at word level using force-aligned duration
(Klejch et al., 2017). In this work, we only consid-
ered lexical input and a pretrained lexical encoder
for prediction of punctuation and truecasing. The
use of pretrained acoustic encoder and fusion with
lexical outputs are possible extensions in future
work.

2.3 Neural approaches

Neural approaches for punctuation and truecas-
ing can be classified into two broad categories:
sequence labeling based models and MT-based
seq2seq models. These approaches have proven
to be quite effective in capturing the contextual in-
formation and achieved huge success. While some
approaches considered only punctuation prediction,
some others jointly modeled punctuation and true-
casing.

One set of approaches treated punctuation as
a machine translation problem and used phrase
based statistical machine translation systems to out-
put punctuated and true cased text (Peitz et al.,
2011b; Cho et al., 2012; Driesen et al., 2014). In-
spired by recent end-to-end approaches, (Yi and
Tao, 2019) proposed the use of self-attention based
transformer model to predict punctuation marks as
output sequence for given word sequences. Most
recently, (Nguyen et al., 2019b) proposed joint
modeling of punctuation and truecasing by gen-
erating words with punctuation marks as part of
the decoding. Although seq2seq based approaches
have shown a strong performance, they are inten-
sive, demanding and are not suitable for production
deployment at large scale.

For sequence labeling problem, each word in the
input is tagged with a punctuation. If there is no
punctuation associated with a word, a blank label is
used and is often referred as “no punc”. (Cho et al.,
2015) used a combination of neural networks and
CRFs for joint prediction of punctuation and disflu-
encies. With growing popularity in deep recurrent
neural networks, LSTMs and BLSTMs with atten-
tion mechanism were introduced for punctuation
restoration (Tilk and Alumäe, 2015, 2016). Later,
(Pahuja et al., 2017) proposed joint training of punc-

tuation and truecasing using BLSTM models. This
work addressed joint learning as two correlated
tasks, and predicted punctuation and truecasing as
two independent outputs. Our proposed approach
is similar to this work, but we rather condition
truecasing prediction on punctuation output; this is
discussed in detail in Section 3.

Punctuation and casing restoration for
speech/ASR outputs in the medical domain has
not been explored extensively. Recently, (Salloum
et al., 2017) proposed a sequence labeling model
using bi-directional RNNs with an attention mech-
anism and late fusion for punctuation restoration to
clinical dictation. To our knowledge, there has not
been any work on medical conversations, and we
aim to bridge the gap here with latest advances in
NLP with large-scale pretrained language models.

3 Modeling : Conditional Joint labeling
of Punctuation + Casing

We propose a postprocessing framework for con-
ditional and joint learning of punctuation and true-
casing prediction. Consider an input utterance
x1:T = {x1, x2, ..., xT }, of length T and consist-
ing of words xi. The first step in our modeling pro-
cess involves punctuation prediction as a sequence
tagging task. Once the model predicts a probability
distribution over punctuation, this along with the
input utterance is fed in as input for predicting the
case of a word xi. We consider the punctuation
to be independent of casing and a conditional de-
pendence of the truecase of a word on punctuation
given the learned input representations. Our plausi-
ble reasoning follows from this example sentence –
“She took dance classes. She had no natural grace
or sense of rhythm.”. The word after the period is
capitalized, which implies that punctuation infor-
mation can help in better prediction of casing. A
pair of punctuation and truecasing is assigned per
word:

Pr(p1:T, c1:T|x1:T) =

Pr(p1:T|x1:T)Pr(c1:T|p1:T,x1:T)
(1)

where ci ∈ C, a fixed set of cas-
ing labels {Lower Case, Upper Case, All Caps,
Mixed Case}, and pi ∈ P , a fixed set of punc-
tuation labels {Comma, Period, Question Mark,
No Punct}.

3.1 Pretrained lexical encoder
We propose to use a pretrained model like BERT,
trained on a large text corpus, as a lexical encoder
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Figure 1: Pre-trained BERT encoder for prediction of punctuation and truecasing.

for learning an effective representation of the input
utterance. Figure 1 illustrates our proposed model
architecture.
Subword embeddings Given a sequence of in-
put vectors (x1, x2, ..., xT ), where xi represents
a word wi, we extract the subword embeddings
(s1, s2, ..., sn) using a wordpiece tokenizer (Schus-
ter and Nakajima, 2012). Using subwords is espe-
cially effective in medical domain, as it contains
more compound words with common subwords.
For example consider the six words {hypotension,
hypertension, hypoactive, hyperactive, active, ten-
sion } with four common subwords {hyper, hypo,
active, tension}. In Section 4.2, we provide a
comparative analysis of word and subword models
across different architectures on medical data.
BERT encoder We provide subword embeddings
(s1, s2, ..., sn) as input to the BERT encoder, which
outputs a sequence of hidden states: H = (h1, ..., hn
) at its final layer. The pretrained BERT base
encoder consists of 12 transformer encoder self-
attention layers. For this task, we truncate the
BERT encoder and fine-tune only the first six lay-
ers to reduce the model complexity. Although a
deep encoder might enable us to learn a long mem-
ory context dependent representation of the input
utterance, the performance gain is very minimal
compared to the increased latency1.

For punctuation, we input the last layer represen-
tations of truncated BERT encoder h1, h2, ..., hn
to a linear layer with softmax activation to

1We experimentally found that 12-layer BERT base model
gives ∼1% improvement over 6-layer BERT base model
whereas the inference and training times were double for the
former.

classify over the punctuation labels generating
(p1, p2, ..., pn) as outputs. For casing, we concate-
nate the softmax probabilities of punctuation output
with BERT encoder’s outputs and feed to a linear
layer with softmax activation generating case la-
bels (c1, c2, ..., cn) for the sequence. The softmax
output for punctuation (p̂i) and truecasing (ĉi) is as
follows:

p̂i = softmax(W khi + bk) (2)

ĉi = softmax(W l(p̂i ⊕ hi) + bl) (3)

whereW k, bk denote weights and bias of punctu-
ation linear output layer and W l, bl denote weights
and bias of truecasing linear output layer.
Joint learning objective: We model our learn-
ing objective to maximize the joint probability
Pr(p1:T, c1:T|x1:T). The model is finetuned end-
to-end to minimize the cross-entropy loss between
the assigned distribution and the training data. The
parameters of BERT encoder are shared across
punctuation and casing prediction tasks and are
jointly trained. We compute the losses (Lp, Lc) for
each task using cross entropy loss function. The
final loss L to be optimized is a weighted average
of the task-specific loses:

L = αLp + Lc (4)

where α is a fixed weight optimized for best pre-
dictions across both the tasks. In our experiments,
we explored α values in the range of (0.2-2) and
found 0.6 to be the optimal value.
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3.2 Finetuning using Masked Language
Model with Medical domain data

BERT and its successors have shown great perfor-
mance on downstream NLP tasks. But just like any
other model, these Language Models are biased
by their training data. In particular, they are typi-
cally trained on data that is easily available in large
quantities on the internet e.g. Wikipedia, Common-
Crawl etc. Our domain, Medical ASR Text, is
not “common” and is very under-represented in
the training data for these Language Models. One
way to correct this situation is to perform a few
steps of unsupervised Masked Language Model
finetuning on the BERT models before performing
cross-entropy training using the labeled task data
(Han and Eisenstein, 2019).
Domain adaptation We finetune the pretrained
BERT model for MLM (Masked LM) objective
on medical domain data. 15% of input tokens are
masked randomly before feeding into the BERT
model as proposed by (Devlin et al., 2018). The
main goal is to adapt and learn better representa-
tions of speech data. The domain adapted model
can be further finetuned with an additional layer
to a downstream task like punctuation and casing
prediction.
Domain+Task adaptation Building on the previ-
ous technique, we attempt to finetune the pretrained
model for task adaptation in combination with do-
main adaptation. In this technique, instead of ran-
domly masking 15% of the input tokens, we do
selective masking i.e. 50% of the masked tokens
would be random and the other 50% would be punc-
tuation marks ([“.”, “,”, “?”] in our case). There-
fore, the finetuned model would not only adapt to
speech domain, but would also effectively learn the
placement of punctuation marks in a text based on
the context.

3.3 Robustness to ASR errors

Models trained on ground truth text inputs may
not perform well when tested with ASR output,
especially when the system introduces grammat-
ical errors. To make models more robust against
ASR errors, we perform data augmentation with
ASR outputs for training. For punctuation restora-
tion, we use edit distance measure to align ASR
hypothesis with ground truth punctuated text. Be-
fore computing alignment, we strip all punctuation
from ground truth and lowercase the text. This
helps us find the best alignment between ASR hy-

pothesis and ground truth text. Once the align-
ment is found, we restore the punctuation from
each word in ground truth text to hypothesis. If
there are words that are punctuated in ground truth
but got deleted in ASR hypothesis, we restore the
punctuation to previous word. For truecasing, we
try to match the reference word with hypothesis
word from aligned sequences with a window size
of 5, two words to the left and two words to the
right of current word and restore truecasing only
in the cases where reference word is found. We
performed experiments with data augmentation us-
ing 1-best hypothesis and n-best lists as additional
training data and the results are reported in Section
4.4.

4 Experiments and results

4.1 Data

We evaluate our proposed framework and models
on a subset of two internal medical datasets: dic-
tation and conversational. The dictation corpus
contains 3.7M words and the conversational cor-
pus contains 51M words. The medical data comes
with special tags masking personal identifiable and
patient health information. We also use a general
domain Wikipedia dataset for comparative analysis
with Medical domain data. This data is a subset
of the publicly available release of Wiki dataset
(Sproat and Jaitly, 2016). The corpus contains 35M
words and relatively shorter sentences ranging from
8 to 200 words in length. 90% of the data from
each corpus is used for training, 5% for fine-tuning
and remaining 5% is held-out for testing.

For robustness experiments presented in Section
4.4, we used data from the dictation corpus con-
sisting of 2265 text files and corresponding au-
dio files with an average duration of ∼15 minutes.
The total length of the corpus is 550 hours. For
augmentation with ground-truth transcription, we
transcribed audio files using a speech recognition
system. Restoration of punctuation and truecasing
to transcribed text can be erroneous as the word er-
ror rate(WER) goes up. We therefore discarded the
transcribed text of those audio files whose WER
is more than 25%. We sorted the remaining tran-
scriptions based on WER to make further splits:
hypothesis from top 50 files with best WER is set
as test data, and the next 50 files were chosen as
development and rest of the transcribed text was
used for training. The partition was done this way
to minimize the number of errors that may occur
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Punctuation Truecasing
Model Token No Punc Full stop Comma LC UC CA MC
CNN-Highway word 0.97 0.81 0.71 0.98 0.84 0.95 0.99

subword 0.98 0.83 0.70 0.99 0.87 0.95 0.99
3-LSTM word 0.97 0.82 0.73 0.98 0.84 0.96 0.98

subword 0.98 0.84 0.75 0.99 0.87 0.97 0.99
3-BLSTM word 0.98 0.86 0.75 0.99 0.88 0.97 0.98

subword 0.99 0.87 0.76 0.99 0.90 0.97 1.0
Transformer encoder word 0.97 0.84 0.7 0.98 0.86 0.97 0.98

subword 0.98 0.85 0.72 0.99 0.87 0.97 0.99

Table 1: Dictation corpus: Comparison of F1 scores for punctuation and truecasing across different model archi-
tectures using word and subword tokens (LC: lower case; UC: Upper case; CA: CAPS All; MC: Mixed Case).

Punctuation Truecasing
Model Token No Punc Full stop Comma QM LC UC CA MC
CNN-Highway word 0.96 0.72 0.64 0.60 0.96 0.78 0.99 0.91

subword 0.97 0.74 0.65 0.61 0.97 0.80 0.98 0.99
3-LSTM word 0.96 0.74 0.64 0.65 0.96 0.79 0.99 0.95

subword 0.97 0.75 0.65 0.66 0.97 0.79 0.97 1.0
3-BLSTM word 0.97 0.77 0.68 0.68 0.97 0.82 0.99 0.95

subword 0.98 0.79 0.68 0.69 0.97 0.83 0.99 1.0
Transformer encoder word 0.97 0.77 0.68 0.68 0.97 0.83 0.99 0.92

subword 0.98 0.79 0.69 0.69 0.98 0.83 0.99 1.0

Table 2: Conversational corpus: Comparison of F1 scores for punctuation and truecasing across different model
architectures using word and subword tokens (QM: Question Mark; LC: lower case; UC: Upper case; CA: CAPS
All; MC: Mixed Case).

during restoration.
Preprocessing long-speech transcriptions Con-
versational style speech has long-speech transcripts,
in which the context is spread across multiple seg-
ments. we use an overlapped chunking and merg-
ing component to pre and post process the data.
We use a sliding window approach (Nguyen et al.,
2019a) to split long ASR outputs into chunks of
200 words each with an overlapping window of
50 words each to the left and right. The overlap
helps in preserving the context for all the words
after splitting and ensures accurate prediction of
punctuation and case corresponding to each word.

4.2 Large Vocabulary: Word vs Subword
models

For a fair comparison with BERT, we evaluate vari-
ous recurrent and non-recurrent architectures with
both word and subword embeddings. The two re-
current models include a 3 layer uni-directional
LSTM (3-LSTM) and a 3 layer Bi-directional
LSTM (3-BLSTM). One of the non recurrent en-
coders, implements a CNN-Highway architecture
based on the work proposed by (Kim et al., 2016),

whereas the other one implements a transformer en-
coder based model (Vaswani et al., 2017). We train
all four models on medical data from dictation and
conversation corpus with weights initialized ran-
domly. The vocabulary for word models is derived
by considering all the unique words from training
corpus, with additional tokens for unknown and
padding. This yielded a vocabulary size of 30k
for dictation and 64k for conversational corpus.
Subwords are extracted using a wordpiece model
(Schuster and Nakajima, 2012) and its inventory
is less than half that of word model for conversa-
tion. Tables 1 and 2 summarize our results on dicta-
tion and conversation datasets respectively. We ob-
serve that subword models consistently performed
same or better than word models. On punctuation
task, for Full stop and Comma, we notice an abso-
lute ∼1-2% improvement respectively on dictation
set. Similarly, on the conversation dataset, we no-
tice an absolute ∼1-2% improvement on Full stop,
Comma and Question Mark. For the casing task,
we notice that word and subword models performed
equally well except in dictation dataset where we
see an absolute∼3% improvement for Upper Case.
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Punctuation Truecasing
Model Dataset No Punc Full stop Comma LC UC CA MC
3-BLSTM Wiki 0.95 0.17 0.27 0.95 0.31 0.55 0.19
BERT Wiki 0.96 0.2 0.39 0.95 0.36 0.65 0.2
3-BLSTM Medical 0.99 0.87 0.76 0.99 0.9 0.97 1.0
BERT Medical 0.99 0.9 0.81 0.99 0.93 0.99 1.0
FT-BERT Medical 0.99 0.92 0.82 0.99 0.93 0.99 1.0
PM-BERT Medical 0.99 0.93 0.82 0.99 0.94 0.99 1.0
Bio-BERT Medical 0.99 0.92 0.82 0.99 0.93 0.99 1.0
RoBERTa Medical 0.99 0.92 0.81 0.99 0.94 0.99 1.0

Table 3: Comparison of F1 scores for punctuation and truecasing using BERT and BLSTM when trained on Wiki
data and Medical dictation data (FT-BERT: Finetuned BERT for domain adapation, PM-BERT: Finetuned BERT
by punctuation masking for domain and task adapation).

Punctuation Truecasing
Model Dataset No Punc Full stop Comma QM LC UC CA MC
3-BLSTM Wiki 0.89 0.001 0.25 0.002 0.93 0.13 0.9 0.95
BERT Wiki 0.93 0.004 0.4 0.007 0.93 0.4 0.95 0.95
3-BLSTM Medical 0.98 0.79 0.68 0.69 0.97 0.83 0.99 1.0
BERT Medical 0.98 0.8 0.71 0.72 0.98 0.85 0.99 1.0
FT-BERT Medical 0.98 0.81 0.72 0.73 0.98 0.85 0.99 1.0
PM-BERT Medical 0.98 0.82 0.72 0.74 0.98 0.86 0.99 1.0
Bio-BERT Medical 0.98 0.81 0.71 0.72 0.98 0.85 0.99 1.0
RoBERTa Medical 0.98 0.82 0.73 0.74 0.98 0.86 0.99 1.0

Table 4: Comparison of F1 scores for punctuation and truecasing using BERT and BLSTM when trained on Wiki
data and Medical conversation data (FT-BERT: Finetuned BERT for domain adapation, PM-BERT: Finetuned
BERT by punctuation masking for domain and task adapation).

We hypothesize that medical vocabulary contains
a large set of compound words, which a subword
based model works effectively over word model.
Upon examining few utterances, we noticed that
subword models can learn effective representations
of these compound medical words by tokenizing
them into subwords. On the other hand, word mod-
els often run into rare word or OOV issues.

4.3 Pretrained language models

Significance of in-domain data For analyzing the
importance of in-domain data, we train a baseline
BLSTM model and a pretrained BERT model
on Wiki and Medical data from both dictation
and conversational corpus and tested the models
on Medical held-out data. The first four rows of
Tables 3 and 4 summarize the results. The models
trained on Wiki data performed very poorly when
compared to models trained on Medical data from
either dictation or conversation corpus. Although
dictation corpus (3.7M words) is relatively smaller
than Wiki corpus (35M words), the difference
in accuracy is significantly higher across both

models. Imbalanced classes like Full stop, Comma,
Question Mark were most affected. Another
interesting observation is that the models trained
on Medical data performed better on Full stop
compared to Comma; whereas general domain
models performed better on Comma compared to
Full stop. The degradation in general models might
be due to Wiki sentences being short and ending
with a Full stop unlike lengthy medical transcripts.
Also, the F1 scores are lower on conversation data
across both the tasks, indicating the complexity
involved in modeling conversational data due to
their highly unstructured format. Overall, the
pretrained BERT model consistently outperformed
baseline BLSTM model on both dictation and
conversation data. This motivated us to focus on
adapting the pretrained models for this task.

Finetuning Masked LM We have run two
levels of fine-tuning as explained in Section 3.2.
First, we finetuned BERT with Medical domain
data using random masking (FT-BERT) and for
task adaptation, we performed fine-tuning with
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Punctuation Truecasing
Model n-best No Punc Full stop Comma QM LC UC CA MC
BERT-GT - 0.97 0.58 0.45 0.0 0.98 0.60 0.78 0.90
BERT-ASR 1-best 0.97 0.66 0.56 0.54 0.99 0.72 0.86 1.0

3-best 0.98 0.67 0.57 0.42 0.98 0.69 0.79 0.84
5-best 0.97 0.61 0.5 0.35 0.98 0.65 0.79 0.83

Table 5: Comparison of F1 scores for punctuation and truecasing with ground truth and ASR augmented data.
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Figure 2: Difference in F1 scores between Bio-BERT
and BLSTM for varying data sizes.

punctuation based masking (PM-BERT). For both
experiments, we used the same data as we have
used for finetuning the downstream task. From the
results presented in Table 3 and 4, we infer that
finetuning boosts the performance of punctuation
and truecasing (an absolute improvement of
∼1-2%). From both the datasets, it is clear that
task specific masking helps better than simple
random masking. For dictation dataset, Full
stop improved by an absolute 3% by performing
punctuation specific masking, suggesting that
finetuning MLM can give higher benefits when the
amount of data is low.
Variants of BERT We compare three pretrained
models namely, BERT and its successor RoBERTa
(Liu et al., 2019) and Bio-BERT (Lee et al., 2020)
which was trained on large scale Biomedical cor-
pora. The results are summarized in last two rows
of Table 3 and 4. First, we observe that both
Bio-BERT and RoBERTa outperformed the initial
BERT model and has shown an absolute∼3-5% im-
provement over the baseline 3-BSLTM. To further
validate this, we extended our experiments to under-
stand how the performance of our best model(Bio-
BERT) varies across different training dataset sizes
compared to the baseline. From Figure 2, we ob-
serve that the difference increases significantly as
we move towards smaller datasets. For the smallest
data set size of 500k words (1k transcripts), there

is an absolute improvement of 6-17% over the base-
line in accuracy in terms of F1. This shows that
pretraining on a large dataset helps to overcome
data scarcity issue effectively.

4.4 Robustness

For testing robustness, we performed experiments
with augmentation of ASR data from n-best lists
(BERT-ASR). We considered top-1, top-3 and top-
5 hypotheses for n-best lists augmentation with
ground truth text and the results are presented in
Table 5. Additionally, the best BERT model trained
using only ground truth text inputs (BERT-GT)
from Table 3 is also evaluated on ASR outputs.
To compute F1 scores on held-out test set, we first
aligned the ASR hypothesis with ground truth data
and restored the punctuation and truecasing as de-
scribed in Section 3.3. From the results presented
in Table 5, we infer that adding ASR hypothesis to
the training data helped improve the performance
of both punctuation and truecasing. In punctua-
tion, both Full stop and Comma have seen an ab-
solute 10% improvement in F1 score. Although
the number of question marks is less in test data,
the augmented systems performed really well com-
pared to the system trained purely on ground truth
text. However, we found that using n-best lists with
n > 1 did not help much compared to the 1-best
list. This may be due to sub-optimal restoration of
punctuation and truecasing as the WER with n-best
lists is likely to go up as n increases.

5 Conclusion

In this paper, we have presented a framework for
conditional joint modeling of punctuation and true-
casing in medical transcriptions using pretrained
language models such as BERT. We also demon-
strated the benefit from MLM objective finetuning
of the pretrained model with task specific masking.
We further improved the robustness of punctuation
and truecasing on ASR outputs by data augmen-
tation during training. Experiments performed on
both dictation and conversation corpora show the
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effectiveness of the proposed approach. Future
work includes the use of either pretrained acoustic
features or pretrained acoustic encoder to perform
fusion with pretrained linguistic encoder to further
boost the performance of punctuation.
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Abstract

Conversation is a complex cognitive task that
engages multiple aspects of cognitive func-
tions to remember the discussed topics, mon-
itor the semantic and linguistic elements, and
recognize others’ emotions. In this paper,
we propose a computational method based
on the lexical coherence of consecutive utter-
ances to quantify topical variations in semi-
structured conversations of older adults with
cognitive impairments. Extracting the lexical
knowledge of conversational utterances, our
method generates a set of novel conversational
measures that indicate underlying cognitive
deficits among subjects with mild cognitive im-
pairment (MCI). Our preliminary results verify
the utility of the proposed conversation-based
measures in distinguishing MCI from healthy
controls.

1 Introduction

Speech and language characteristics are known to
be effective social behavioral markers that could po-
tentially serve to facilitate the identification of mea-
sured “markers” reflecting early cognitive changes
in at-risk older adults. Recent advances on nat-
ural language processing (NLP) algorithms have
given the researchers the opportunity to explore
subtleties of spoken language samples and extract
a wider range of clinically useful measures. Lever-
aging an NLP-based method, our objective in this
study is to characterize the ongoing dynamics of
topics over the course of everyday conversation
between an interviewer and an older adult with
or without cognitive impairment. Our proposed
method translates its analysis of conversation into a
set of quantifiable measures that can be used in clin-
ical trials for early detection of a cognitive deficit.
Our cohort includes a professionally transcribed
dataset of 30-minute audio recordings collected
from conversation-based social interactions carried

out between standardized interviewers and partic-
ipants with either normal cognition or MCI (clin-
icaltirals.gov: NCT02871921). We evaluate the
utility of proposed conversation-based measures in
detecting MCI incidence. To the best of our knowl-
edge, analysis of exchanged topics in conversations
have not been used to examine the cognitive status
of older adults.

1.1 Conversational Speech and Cognitive
Impairment

Recent studies have attempted to leverage natu-
ral language processing (NLP) algorithms to au-
tomatically characterize atypical language char-
acteristics observed in age-related cognitive de-
cline(Roark et al., 2011; Asgari et al., 2017; Shi-
bata et al., 2016; Mueller et al., 2016). With a
few exceptions, most of these studies have used
elicited speech paradigms to generate speech sam-
ples, for example, using traditional neuropsycho-
logical language tests such as the verbal fluency
test (citing names from a semantic category such
as animals or fruits within a short amount of time)
or the story recall test (recalling specific stories
subjects are exposed to during a testing session).
As a result, their assessment of language charac-
teristics is constrained by the nature of language
tests. Alternatively, everyday conversations have
been recently explored to gain insight about the
consequences of a cognitive deficit on a patient’s
speech and language characteristics (Khodabakhsh
et al., 2015; López-de Ipina et al., 2015; Hoffmann
et al., 2010). Semi-structured conversations (i.e.,
talk about pre-specified topics) more closely resem-
ble to naturalistic speech than elicited speech tasks
(e.g., verbal fluency tests, picture naming tests) and
provide a rich source of information allowing us
to correlate various aspects of spoken language to
cognitive functioning. Conversation is a complex
cognitive task that engages multiple domains of
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cognitive functions including executive functions,
attention, working memory, memory, and inhibi-
tion to control the train of thoughts, and to monitor
semantic and linguistic elements of the discourse.
It also involves social cognition to understand oth-
ers’ intentions and feelings (Ybarra, 2012; Ybarra
et al., 2008). Quantifying atypical topic variations
in prodromal Alzheimer’s disease represents an
important, and yet under-examined area that may
reveal underlying cognitive processes of patients
with MCI.

1.2 Topic Segmentation

A key problem in our conversation analysis is divid-
ing the consecutive utterances into segments that
are topically coherent. This is a prerequisite step
for our higher-level analysis of conversations in-
volving representation of entire conversation by a
set of quantifiable measures. Topic segmentation
methods first segment the sequence of utterances
into a set of finite topics, representing utterances
as vectors in a semantic space. Next, they mea-
sure the correlation between two adjacent encoded
utterances, and finally predict the topic boundary
according to a pre-specified threshold value com-
pared to calculated correlations. Based upon the
criteria they adopt for quantifying the cohesion
among a pair of consecutive utterances, they can
be broadly categorized into two models. Assuming
the topic shifting is strongly correlated to the term
shifting, lexicon cohesion models rely on similar
terms of each utterance; that is, topically coher-
ent utterances share some common terms within a
short window of spoken words. They are learned
in an unsupervised fashion and do not require la-
beled data. Widely used algorithms such as TextTil-
ing (Hearst, 1997) and LCSeg (Galley et al., 2003)
are examples of lexical based methods for topic
segmentation. In contrast to lexical based methods,
contextual cohesion models exploit the semantic
knowledge from the entire utterance rather than key
terms. These context-dependent models assume
that utterances with a similar semantic distribution
share the same topic. More recent methods lever-
age the deep architectures, such as recurrent neural
networks (RNNs) (Sehikh et al., 2017) and con-
volutional neural networks (CNNs) (Wang et al.,
2016) to semantically encode the utterance into a
vector space. Treating the topic segmentation as a
sequence labeling problem, labels (i.e., topics) are
then assigned to every utterance. Context depen-

dent models assume that, if two documents share
the same topic, the word distribution of these two
should also be similar. Despite the potential bene-
fits of extracting the knowledge from the content,
there exist several barriers to taking advantage of
them in clinical conversations. Successful deep ar-
chitectures are trained on large amounts of training
examples, typically obtained from structured writ-
ten text such as medical textbooks or Wikipedia.
These models perform well in highly structured
data; however, their performance degrades once
used in unstructured samples, such as social con-
versations, due to mismatch between the charac-
teristics of testing and training examples. Topic
segmentation in conversational text is more chal-
lenging than the written text as it is less structured
and typically include shorter utterances (e.g., ac-
knowledgements) and disfluencies (e.g., “um” and
“hmm”).

2 Data collection and participants

For this preliminary work, we used a collec-
tion of semi-structured conversations collected
randomized controlled clinical trial entitled I-
CONECT (https://www.i-conect.org/; ClincialTri-
als.gov: NCT02871921) conducted at Oregon
health Science University (OHSU), University
of Michigan, and Wayne State University. In I-
CONECT study, participants engage in a 30-minute
video chat 4 times per week for 6 months (exper-
iment group) followed by 2 times per week for
an additional 6 months (control group). Conver-
sations are semi-structured, in which participants
freely talk about a predefined topic such as leisure
time, science, etc. with trained interviewers. In-
terviewers were asked to engage participants into
a conversation by showing picture prompts, share
facts, and ask questions related to predefined top-
ics such as leisure time and science. Interviewers
were also instructed to minimally contribute to the
conversation (less than 30% of total conversation
time) and let participants freely talk about daily
selected topics. Our analysis includes a total of
45 older adults, 23 with MCI and 22 healthy con-
trols. Table 1 reports their baseline characteristics.
Upon completion of Montreal Cognitive Assess-
ment (MoCA) (Nasreddine et al., 2005), a cognitive
screening tool to identify MCI, the test results were
evaluated at consensus meeting to clinically deter-
mine MCI or normal (i.e., clinicians’ consensus
based-determination).
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Variable Intact MCI
n=22 n=23

Age 80.82 (4.87) 84.06 (5.43)
Gender (% Women) 86.36% 68.22%
Years of Education 16.05 (2.70) 15.17 (2.85)
MoCA 26.14 (2.46) 22.00 (2.84)

Table 1: Baseline characteristics of MCI and cogni-
tively intact participants. Montreal Cognitive Assess-
ment (MoCA) score, ranged from 0 to 30, is used as a
screening tool and it is lower in MCI subjects.

3 Methods

In our recent study, we presented a method for au-
tomatically identifying individuals with MCI based
on the count of individuals’ spoken words taken
from the semi-structured conversations between in-
terviewers and participating older adults (H Dodge
et al., 2015; Asgari et al., 2017). We showed that
individuals with MCI talk more than healthy con-
trols in these conversations (H Dodge et al., 2015),
as they may need to substitute words in the conver-
sation to convey their thoughts. Also, we showed
that their lexical pattern, obtained by counting the
frequency of words picked from a particular word
category such as verbs and fillers, is different from
healthy controls (Asgari et al., 2017). The main
limitation of our prior works on linguistic analysis
of conversations is ignoring sentence structure and
other contextual information relying entirely on
word-level features. Enhancing our automatic anal-
ysis of clinical conversation, we aim to characterize
the relationship among the sequence of sentences,
presented in the course of conversation, in order to
track the exchanged topics. Our central hypothesis
in this work is that patients with MCI may have sub-
tle difficulties with executive and self-monitoring
conversation consistency relative to those with nor-
mal cognition resulting in more disruptive pattern
of exchanged topics within the conversation.

3.1 Utterance Representation

Given the limited amounts of text data in this
study, it is difficult to employ deep architectures
for learning semantic models. Instead, we adopt
LCseg (Galley et al., 2003) algorithm to divide ut-
terances into semantically related clusters. LCseg
uses word repetitions to build lexical chains that
are consequently used to identify and weight the
key terms. A lexical chain is a set of semantically
related words inside a window of utterances that

Figure 1: LC (top) and sharpness (bottom) scores of
two MCI and NC subjects as a function of utterance
index.

capture the lexical cohesion followed within the
window. From the lexical chains, it then computes
lexical cohesion (LC) score among two adjacent
analysis windows utterances.

To predict a topic boundary, LCseg tracks the
fluctuation of LC scores and estimates an occur-
rence of a topic change according to a sharpness
measure calculated on surrounding left and right
neighbors of the ith center window as :

Si =
1

2
[LCi−1 + LCi+1 − 2 ∗ LCi] (1)

Assuming that sharp changes in sharpness score
co-occur with a change in the topic, LCseg locates
the topic boundaries where the sharpness score ex-
ceeds a pre-specified threshold value. LCseg was
originally designed to analyze transcription of mul-
tiparty oral meetings that typically include six to
eight participants. Similar to our semi-structured
conversations, ungrammatical sentences are com-
mon in such meetings.

3.2 Automatic Measures of Conversation
The top plot in Figure (1) depicts the lexical cohe-
sion scores calculated across the sequence of utter-
ances chopped from conversation recordings of two
MCI and normal control (NC) participants. The
horizontal axis represents the utterance index that
spans from the beginning to the end of the conver-
sation, and the vertical axis represents the lexical
cohesion score. As it is seen in these plots, the LC
scores of the normal control (NC) participant are
smoother with less frequent sharp changes com-

65



model ROC AUC Sensitivity Specificity Accuracy
SVM 83.82% (13.39%) 80.77% (19.57%) 77.36% (18.25%) 79.15% (12.44%)

Table 2: Classification results (with standard deviations) for distinguishing 23 MCI from 22 normal controls.

pared to participants with MCI, suggesting a struc-
tural difference in the pattern of their discussed
topics across the conversation. To measure the vari-
ations of the LC score across the utterances, we
use Shannon’s entropy, an appropriate metric to
measure the level of organization in random vari-
ables (Renevey and Drygajlo, 2001) and measure
the entropy of harmonic coefficients. The bottom
plot in Figure (1) depicts the sharpness score calcu-
lated on LC score of two MCI and NC participants
(top plot) according to Equation 1. The more fre-
quent and yet abrupt changes in sharpness score of
MCI subject indicates the higher likelihood of topi-
cal changes in the sequence of utterance compare to
the NC subject. To capture the frequency of these
changes, we adopt the zero-crossing rate (ZCR), a
measure that quantifies the number of times a signal
crosses the zero line within a window of the signal.
ZCR is a common measure in speech processing
algorithms for differentiating speech from noise
segments (Bachu et al., 2010). Prior to compute
the ZCR, we normalize the sharpness score such
that it becomes a zero-mean signal. Dividing the
entire signal into finite number of fixed-length win-
dows, we compute the ZCR for every window and
ultimately summarize the computed ZCRs across
the entire conversation using mean and summation
statistical functions.

4 Experiments

4.1 Pre-processing and Feature Extraction

Removing the interviewer’s speech, we narrow our
focus on the analysis of the participant’s side of the
conversation. For pre-processing of the transcrip-
tions (e.g, removing the punctuation), we adopt
an open-source library, SpaCy (Honnibal and Mon-
tani, 2017), with its default settings. We also set the
minimum number of words per utterance to three
words and exclude the shorter utterances. We also
trimmed out fillers (e.g., “hmm”, “mm-hmm”, and
“you know”) from the transcriptions. Pre-processed
transcription of conversations are then fed into LC-
seg algorithm where from its output, LC score, we
compute the sharpness score. Next, we calculate
the entropy of the LC score as well as ZCR of both
LC score and sharpness score as described at 3.2.

4.2 Results
Representing a conversation using four measures
selected by RFECV (sum and mean of ZCR on
LC score, the entropy of LC score as well as the
sum and mean of ZCR on sharpness scores), we
trained a linear support vector machine (SVM) clas-
sifier from the open-source Scikit-learn toolkit (Pe-
dregosa et al., 2011) to validate the utility of pro-
posed conversation measures in distinguishing MCI
from NC participants. We used cross-validation
(CV) techniques in which the train and test sets are
rotated over the entire data set. We shuffle the data
and repeat 5-fold cross-validation 100 times. Our
results, reported in Table ( 2), present the mean and
standard deviation of four classification metrics: 1)
sensitivity, 2) specificity, 3) area under the curve
of receiver operating characteristics (AUC ROC),
and 4) classification accuracy. Our results indicates
that our proposed measures are useful in detecting
subjects with MCI.

5 Conclusion

In our clinically oriented study, conversations be-
tween the interviewer and the participant provide
an opportunity to analyze potential differences in
the conversational output of persons with MCI and
cognitively intact adults. With the aim of gaining
insight about the underlying cognitive processing
among patients with MCI, we proposed a compu-
tational approach to capture atypical variations ob-
served in the sequence of topics discussed through-
out the course of conversation. Our method rep-
resents the entire conversation with a set of quan-
tifiable measures that are useful in early detection
of cognitive impairment. Despite this promise, a
current important limitation to this approach is that
the analysis relies on high-fidelity transcription of
the conversations which is labor intensive. Further-
more, when applying this approach in clinical trials
or to the general population, one would typically
add other potentially predictive features to the clas-
sification model such as age, gender, education,
and family history of dementia. Future studies will
need to examine larger and more diverse popula-
tions over time and explore the possible cognitive
bases behind the findings of the present study.
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