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Abstract

Automatic speech recognition (ASR) systems
in the medical domain that focus on transcrib-
ing clinical dictations and doctor-patient con-
versations often pose many challenges due to
the complexity of the domain. ASR output
typically undergoes automatic punctuation to
enable users to speak naturally, without hav-
ing to vocalise awkward and explicit punc-
tuation commands, such as “period”, “add
comma” or “exclamation point”, while true-
casing enhances user readability and improves
the performance of downstream NLP tasks.
This paper proposes a conditional joint mod-
eling framework for prediction of punctuation
and truecasing using pretrained masked lan-
guage models such as BERT, BioBERT and
RoBERTa. We also present techniques for
domain and task specific adaptation by fine-
tuning masked language models with medical
domain data. Finally, we improve the robust-
ness of the model against common errors made
in ASR by performing data augmentation. Ex-
periments performed on dictation and conver-
sational style corpora show that our proposed
model achieves ∼5% absolute improvement
on ground truth text and ∼10% improvement
on ASR outputs over baseline models under F1
metric.

1 Introduction

Medical ASR systems automatically transcribe
medical speech found in a variety of use cases like
physician-dictated notes (Edwards et al., 2017),
telemedicine and even doctor-patient conversations
(Chiu et al., 2017), without any human interven-
tion. These systems ease the burden of long hours
of administrative work and also promote better en-
gagement with patients. However, the generated
ASR outputs are typically devoid of punctuation
and truecasing thereby making it difficult to com-
prehend. Furthermore, their recovery improves

the accuracy of subsequent natural language under-
standing algorithms (Peitz et al., 2011a; Makhoul
et al., 2005) to identify information such as pa-
tient diagnosis, treatments, dosages, symptoms and
signs. Typically, clinicians explicitly dictate the
punctuation commands like “period”, “add comma”
etc., and a postprocessing component takes care
of punctuation restoration. This process is usu-
ally error-prone as the clinicians may struggle with
appropriate punctuation insertion during dictation.
Moreover, doctor-patient conversations lack ex-
plicit vocalization of punctuation marks motivating
the need for automatic prediction of punctuation
and truecasing. In this work, we aim to solve the
problem of automatic punctuation and truecasing
restoration to medical ASR system text outputs.

Most recent approaches to punctuation and true-
casing restoration problem rely on deep learning
(Nguyen et al., 2019a; Salloum et al., 2017). Al-
though it is a well explored problem in the litera-
ture, most of these improvements do not directly
translate to great real world performance in all
settings. For example, unlike general text, it is
a harder problem to solve when applied to the med-
ical domain for various reasons and we illustrate
each of them:

• Large vocabulary: ASR systems in the medi-
cal domain have a large set of domain-specific
vocabulary and several abbreviations. Ow-
ing to the domain specific data set and the
open vocabulary in LVCSR (large-vocabulary
continuous speech recognition) outputs, we
often run into OOV (out of vocabulary) or
rare word problems. Furthermore, a large vo-
cabulary set leads to data sparsity issues. We
address both these problems by using subword
models. Subwords have been shown to work
well in open-vocabulary speech recognition
and several NLP tasks (Sennrich et al., 2015;
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Bodapati et al., 2019). We compare word and
subword models across different architectures
and show that subword models consistently
outperform the former.

• Data scarcity: Data scarcity is one of the ma-
jor bottlenecks in supervised learning. When
it comes to the medical domain, obtaining
data is not as straight-forward as some of
the other domains where abundance of text
is available. On the other hand, obtaining
large amounts of data is a tedious and costly
process; procuring and maintaining it could
be a challenge owing to the strict privacy laws.
We overcome the data scarcity problem, by us-
ing pretrained masked language models like
BERT (Devlin et al., 2018) and its succes-
sors (Liu et al., 2019; Yang et al., 2019) which
have successfully been shown to produce state-
of-the-art results when finetuned for several
downstream tasks like question answering and
language inference. We approach the predic-
tion task as a sequence labeling problem and
jointly learn punctuation and truecasing. We
show that finetuning a pretrained model with a
very small medical dataset (∼500k words) has
∼5% absolute performance improvement in
terms of F1 compared to a model trained from
scratch. We further boost the performance by
first finetuning the masked language model
to the medical speech domain and then to the
downstream task.

• ASR Robustness: Models trained on ground
truth data are not exposed to typical errors in
speech recognition and perform poorly when
evaluated on ASR outputs. Our objective is to
make the punctuation prediction and truecas-
ing more robust to speech recognition errors
and establish a mechanism to test the perfor-
mance of the model quantitatively. To address
this issue, we propose a data augmentation
based approach using n-best lists from ASR.

The contributions of this work are:

• A general post-processing framework for con-
ditional joint labeling of punctuation and true-
casing for medical ASR (clinical dictation and
conversations).

• An analysis comparing different embeddings
that are suitable for the medical domain. An

in-depth analysis of the effectiveness of us-
ing pretrained masked language models like
BERT and its successors to address the data
scarcity problem.

• Techniques for effective domain and task
adaptation using Masked Language Model
(MLM) finetuning of BERT on medical do-
main data to boost the downstream task per-
formance.

• Method for enhancing robustness of the mod-
els via data augmentation with n-best lists
(from ASR output) to the ground truth dur-
ing training to improve performance on ASR
hypothesis at inference time.

The rest of this paper is organized as follows.
Section 2 presents related work on punctuation and
truecasing restoration. Section 3 introduces the
model architecture used in this paper and describes
various techniques for improving accuracy and ro-
bustness. The experimental evaluation and results
are discussed in Section 4 and finally, Section 5
presents the conclusions.

2 Related work

Several researchers have proposed a number of
methodologies such as the use of probabilistic ma-
chine learning models, neural network models, and
the acoustic fusion approaches for punctuation pre-
diction. We review related work in these areas
below.

2.1 Earlier methods
In earlier efforts, punctuation prediction has been
approached by using finite state or hidden Markov
models (Gotoh and Renals, 2000; Christensen et al.,
2001a). Several other approaches addressed it as
a language modeling problem by predicting the
most probable sequence of words with punctuation
marks inserted (Stolcke et al., 1998; Beeferman
et al., 1998; Gravano et al., 2009). Some others
used conditional random fields (CRFs) (Lu and
Ng, 2010; Ueffing et al., 2013) and maximum en-
tropy using n-grams (Huang and Zweig, 2002). The
rise of stronger machine learning techniques such
as deep and/or recurrent neural networks replaced
these conventional models.

2.2 Using acoustic information
Some methods used only acoustic information such
as speech rate, intonation, pause duration etc.,
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(Christensen et al., 2001b; Levy et al., 2012). While
pauses influence in the prediction of Comma, into-
nation helps in disambiguation between punctua-
tion marks like period and exclamation. Although
this seemed to work, the most effective approach is
to combine acoustic information with lexical infor-
mation at word level using force-aligned duration
(Klejch et al., 2017). In this work, we only consid-
ered lexical input and a pretrained lexical encoder
for prediction of punctuation and truecasing. The
use of pretrained acoustic encoder and fusion with
lexical outputs are possible extensions in future
work.

2.3 Neural approaches

Neural approaches for punctuation and truecas-
ing can be classified into two broad categories:
sequence labeling based models and MT-based
seq2seq models. These approaches have proven
to be quite effective in capturing the contextual in-
formation and achieved huge success. While some
approaches considered only punctuation prediction,
some others jointly modeled punctuation and true-
casing.

One set of approaches treated punctuation as
a machine translation problem and used phrase
based statistical machine translation systems to out-
put punctuated and true cased text (Peitz et al.,
2011b; Cho et al., 2012; Driesen et al., 2014). In-
spired by recent end-to-end approaches, (Yi and
Tao, 2019) proposed the use of self-attention based
transformer model to predict punctuation marks as
output sequence for given word sequences. Most
recently, (Nguyen et al., 2019b) proposed joint
modeling of punctuation and truecasing by gen-
erating words with punctuation marks as part of
the decoding. Although seq2seq based approaches
have shown a strong performance, they are inten-
sive, demanding and are not suitable for production
deployment at large scale.

For sequence labeling problem, each word in the
input is tagged with a punctuation. If there is no
punctuation associated with a word, a blank label is
used and is often referred as “no punc”. (Cho et al.,
2015) used a combination of neural networks and
CRFs for joint prediction of punctuation and disflu-
encies. With growing popularity in deep recurrent
neural networks, LSTMs and BLSTMs with atten-
tion mechanism were introduced for punctuation
restoration (Tilk and Alumäe, 2015, 2016). Later,
(Pahuja et al., 2017) proposed joint training of punc-

tuation and truecasing using BLSTM models. This
work addressed joint learning as two correlated
tasks, and predicted punctuation and truecasing as
two independent outputs. Our proposed approach
is similar to this work, but we rather condition
truecasing prediction on punctuation output; this is
discussed in detail in Section 3.

Punctuation and casing restoration for
speech/ASR outputs in the medical domain has
not been explored extensively. Recently, (Salloum
et al., 2017) proposed a sequence labeling model
using bi-directional RNNs with an attention mech-
anism and late fusion for punctuation restoration to
clinical dictation. To our knowledge, there has not
been any work on medical conversations, and we
aim to bridge the gap here with latest advances in
NLP with large-scale pretrained language models.

3 Modeling : Conditional Joint labeling
of Punctuation + Casing

We propose a postprocessing framework for con-
ditional and joint learning of punctuation and true-
casing prediction. Consider an input utterance
x1:T = {x1, x2, ..., xT }, of length T and consist-
ing of words xi. The first step in our modeling pro-
cess involves punctuation prediction as a sequence
tagging task. Once the model predicts a probability
distribution over punctuation, this along with the
input utterance is fed in as input for predicting the
case of a word xi. We consider the punctuation
to be independent of casing and a conditional de-
pendence of the truecase of a word on punctuation
given the learned input representations. Our plausi-
ble reasoning follows from this example sentence –
“She took dance classes. She had no natural grace
or sense of rhythm.”. The word after the period is
capitalized, which implies that punctuation infor-
mation can help in better prediction of casing. A
pair of punctuation and truecasing is assigned per
word:

Pr(p1:T, c1:T|x1:T) =

Pr(p1:T|x1:T)Pr(c1:T|p1:T,x1:T)
(1)

where ci ∈ C, a fixed set of cas-
ing labels {Lower Case, Upper Case, All Caps,
Mixed Case}, and pi ∈ P , a fixed set of punc-
tuation labels {Comma, Period, Question Mark,
No Punct}.

3.1 Pretrained lexical encoder
We propose to use a pretrained model like BERT,
trained on a large text corpus, as a lexical encoder
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Figure 1: Pre-trained BERT encoder for prediction of punctuation and truecasing.

for learning an effective representation of the input
utterance. Figure 1 illustrates our proposed model
architecture.
Subword embeddings Given a sequence of in-
put vectors (x1, x2, ..., xT ), where xi represents
a word wi, we extract the subword embeddings
(s1, s2, ..., sn) using a wordpiece tokenizer (Schus-
ter and Nakajima, 2012). Using subwords is espe-
cially effective in medical domain, as it contains
more compound words with common subwords.
For example consider the six words {hypotension,
hypertension, hypoactive, hyperactive, active, ten-
sion } with four common subwords {hyper, hypo,
active, tension}. In Section 4.2, we provide a
comparative analysis of word and subword models
across different architectures on medical data.
BERT encoder We provide subword embeddings
(s1, s2, ..., sn) as input to the BERT encoder, which
outputs a sequence of hidden states: H = (h1, ..., hn
) at its final layer. The pretrained BERT base
encoder consists of 12 transformer encoder self-
attention layers. For this task, we truncate the
BERT encoder and fine-tune only the first six lay-
ers to reduce the model complexity. Although a
deep encoder might enable us to learn a long mem-
ory context dependent representation of the input
utterance, the performance gain is very minimal
compared to the increased latency1.

For punctuation, we input the last layer represen-
tations of truncated BERT encoder h1, h2, ..., hn
to a linear layer with softmax activation to

1We experimentally found that 12-layer BERT base model
gives ∼1% improvement over 6-layer BERT base model
whereas the inference and training times were double for the
former.

classify over the punctuation labels generating
(p1, p2, ..., pn) as outputs. For casing, we concate-
nate the softmax probabilities of punctuation output
with BERT encoder’s outputs and feed to a linear
layer with softmax activation generating case la-
bels (c1, c2, ..., cn) for the sequence. The softmax
output for punctuation (p̂i) and truecasing (ĉi) is as
follows:

p̂i = softmax(W khi + bk) (2)

ĉi = softmax(W l(p̂i ⊕ hi) + bl) (3)

whereW k, bk denote weights and bias of punctu-
ation linear output layer and W l, bl denote weights
and bias of truecasing linear output layer.
Joint learning objective: We model our learn-
ing objective to maximize the joint probability
Pr(p1:T, c1:T|x1:T). The model is finetuned end-
to-end to minimize the cross-entropy loss between
the assigned distribution and the training data. The
parameters of BERT encoder are shared across
punctuation and casing prediction tasks and are
jointly trained. We compute the losses (Lp, Lc) for
each task using cross entropy loss function. The
final loss L to be optimized is a weighted average
of the task-specific loses:

L = αLp + Lc (4)

where α is a fixed weight optimized for best pre-
dictions across both the tasks. In our experiments,
we explored α values in the range of (0.2-2) and
found 0.6 to be the optimal value.
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3.2 Finetuning using Masked Language
Model with Medical domain data

BERT and its successors have shown great perfor-
mance on downstream NLP tasks. But just like any
other model, these Language Models are biased
by their training data. In particular, they are typi-
cally trained on data that is easily available in large
quantities on the internet e.g. Wikipedia, Common-
Crawl etc. Our domain, Medical ASR Text, is
not “common” and is very under-represented in
the training data for these Language Models. One
way to correct this situation is to perform a few
steps of unsupervised Masked Language Model
finetuning on the BERT models before performing
cross-entropy training using the labeled task data
(Han and Eisenstein, 2019).
Domain adaptation We finetune the pretrained
BERT model for MLM (Masked LM) objective
on medical domain data. 15% of input tokens are
masked randomly before feeding into the BERT
model as proposed by (Devlin et al., 2018). The
main goal is to adapt and learn better representa-
tions of speech data. The domain adapted model
can be further finetuned with an additional layer
to a downstream task like punctuation and casing
prediction.
Domain+Task adaptation Building on the previ-
ous technique, we attempt to finetune the pretrained
model for task adaptation in combination with do-
main adaptation. In this technique, instead of ran-
domly masking 15% of the input tokens, we do
selective masking i.e. 50% of the masked tokens
would be random and the other 50% would be punc-
tuation marks ([“.”, “,”, “?”] in our case). There-
fore, the finetuned model would not only adapt to
speech domain, but would also effectively learn the
placement of punctuation marks in a text based on
the context.

3.3 Robustness to ASR errors

Models trained on ground truth text inputs may
not perform well when tested with ASR output,
especially when the system introduces grammat-
ical errors. To make models more robust against
ASR errors, we perform data augmentation with
ASR outputs for training. For punctuation restora-
tion, we use edit distance measure to align ASR
hypothesis with ground truth punctuated text. Be-
fore computing alignment, we strip all punctuation
from ground truth and lowercase the text. This
helps us find the best alignment between ASR hy-

pothesis and ground truth text. Once the align-
ment is found, we restore the punctuation from
each word in ground truth text to hypothesis. If
there are words that are punctuated in ground truth
but got deleted in ASR hypothesis, we restore the
punctuation to previous word. For truecasing, we
try to match the reference word with hypothesis
word from aligned sequences with a window size
of 5, two words to the left and two words to the
right of current word and restore truecasing only
in the cases where reference word is found. We
performed experiments with data augmentation us-
ing 1-best hypothesis and n-best lists as additional
training data and the results are reported in Section
4.4.

4 Experiments and results

4.1 Data

We evaluate our proposed framework and models
on a subset of two internal medical datasets: dic-
tation and conversational. The dictation corpus
contains 3.7M words and the conversational cor-
pus contains 51M words. The medical data comes
with special tags masking personal identifiable and
patient health information. We also use a general
domain Wikipedia dataset for comparative analysis
with Medical domain data. This data is a subset
of the publicly available release of Wiki dataset
(Sproat and Jaitly, 2016). The corpus contains 35M
words and relatively shorter sentences ranging from
8 to 200 words in length. 90% of the data from
each corpus is used for training, 5% for fine-tuning
and remaining 5% is held-out for testing.

For robustness experiments presented in Section
4.4, we used data from the dictation corpus con-
sisting of 2265 text files and corresponding au-
dio files with an average duration of ∼15 minutes.
The total length of the corpus is 550 hours. For
augmentation with ground-truth transcription, we
transcribed audio files using a speech recognition
system. Restoration of punctuation and truecasing
to transcribed text can be erroneous as the word er-
ror rate(WER) goes up. We therefore discarded the
transcribed text of those audio files whose WER
is more than 25%. We sorted the remaining tran-
scriptions based on WER to make further splits:
hypothesis from top 50 files with best WER is set
as test data, and the next 50 files were chosen as
development and rest of the transcribed text was
used for training. The partition was done this way
to minimize the number of errors that may occur
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Punctuation Truecasing
Model Token No Punc Full stop Comma LC UC CA MC
CNN-Highway word 0.97 0.81 0.71 0.98 0.84 0.95 0.99

subword 0.98 0.83 0.70 0.99 0.87 0.95 0.99
3-LSTM word 0.97 0.82 0.73 0.98 0.84 0.96 0.98

subword 0.98 0.84 0.75 0.99 0.87 0.97 0.99
3-BLSTM word 0.98 0.86 0.75 0.99 0.88 0.97 0.98

subword 0.99 0.87 0.76 0.99 0.90 0.97 1.0
Transformer encoder word 0.97 0.84 0.7 0.98 0.86 0.97 0.98

subword 0.98 0.85 0.72 0.99 0.87 0.97 0.99

Table 1: Dictation corpus: Comparison of F1 scores for punctuation and truecasing across different model archi-
tectures using word and subword tokens (LC: lower case; UC: Upper case; CA: CAPS All; MC: Mixed Case).

Punctuation Truecasing
Model Token No Punc Full stop Comma QM LC UC CA MC
CNN-Highway word 0.96 0.72 0.64 0.60 0.96 0.78 0.99 0.91

subword 0.97 0.74 0.65 0.61 0.97 0.80 0.98 0.99
3-LSTM word 0.96 0.74 0.64 0.65 0.96 0.79 0.99 0.95

subword 0.97 0.75 0.65 0.66 0.97 0.79 0.97 1.0
3-BLSTM word 0.97 0.77 0.68 0.68 0.97 0.82 0.99 0.95

subword 0.98 0.79 0.68 0.69 0.97 0.83 0.99 1.0
Transformer encoder word 0.97 0.77 0.68 0.68 0.97 0.83 0.99 0.92

subword 0.98 0.79 0.69 0.69 0.98 0.83 0.99 1.0

Table 2: Conversational corpus: Comparison of F1 scores for punctuation and truecasing across different model
architectures using word and subword tokens (QM: Question Mark; LC: lower case; UC: Upper case; CA: CAPS
All; MC: Mixed Case).

during restoration.
Preprocessing long-speech transcriptions Con-
versational style speech has long-speech transcripts,
in which the context is spread across multiple seg-
ments. we use an overlapped chunking and merg-
ing component to pre and post process the data.
We use a sliding window approach (Nguyen et al.,
2019a) to split long ASR outputs into chunks of
200 words each with an overlapping window of
50 words each to the left and right. The overlap
helps in preserving the context for all the words
after splitting and ensures accurate prediction of
punctuation and case corresponding to each word.

4.2 Large Vocabulary: Word vs Subword
models

For a fair comparison with BERT, we evaluate vari-
ous recurrent and non-recurrent architectures with
both word and subword embeddings. The two re-
current models include a 3 layer uni-directional
LSTM (3-LSTM) and a 3 layer Bi-directional
LSTM (3-BLSTM). One of the non recurrent en-
coders, implements a CNN-Highway architecture
based on the work proposed by (Kim et al., 2016),

whereas the other one implements a transformer en-
coder based model (Vaswani et al., 2017). We train
all four models on medical data from dictation and
conversation corpus with weights initialized ran-
domly. The vocabulary for word models is derived
by considering all the unique words from training
corpus, with additional tokens for unknown and
padding. This yielded a vocabulary size of 30k
for dictation and 64k for conversational corpus.
Subwords are extracted using a wordpiece model
(Schuster and Nakajima, 2012) and its inventory
is less than half that of word model for conversa-
tion. Tables 1 and 2 summarize our results on dicta-
tion and conversation datasets respectively. We ob-
serve that subword models consistently performed
same or better than word models. On punctuation
task, for Full stop and Comma, we notice an abso-
lute ∼1-2% improvement respectively on dictation
set. Similarly, on the conversation dataset, we no-
tice an absolute ∼1-2% improvement on Full stop,
Comma and Question Mark. For the casing task,
we notice that word and subword models performed
equally well except in dictation dataset where we
see an absolute∼3% improvement for Upper Case.
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Punctuation Truecasing
Model Dataset No Punc Full stop Comma LC UC CA MC
3-BLSTM Wiki 0.95 0.17 0.27 0.95 0.31 0.55 0.19
BERT Wiki 0.96 0.2 0.39 0.95 0.36 0.65 0.2
3-BLSTM Medical 0.99 0.87 0.76 0.99 0.9 0.97 1.0
BERT Medical 0.99 0.9 0.81 0.99 0.93 0.99 1.0
FT-BERT Medical 0.99 0.92 0.82 0.99 0.93 0.99 1.0
PM-BERT Medical 0.99 0.93 0.82 0.99 0.94 0.99 1.0
Bio-BERT Medical 0.99 0.92 0.82 0.99 0.93 0.99 1.0
RoBERTa Medical 0.99 0.92 0.81 0.99 0.94 0.99 1.0

Table 3: Comparison of F1 scores for punctuation and truecasing using BERT and BLSTM when trained on Wiki
data and Medical dictation data (FT-BERT: Finetuned BERT for domain adapation, PM-BERT: Finetuned BERT
by punctuation masking for domain and task adapation).

Punctuation Truecasing
Model Dataset No Punc Full stop Comma QM LC UC CA MC
3-BLSTM Wiki 0.89 0.001 0.25 0.002 0.93 0.13 0.9 0.95
BERT Wiki 0.93 0.004 0.4 0.007 0.93 0.4 0.95 0.95
3-BLSTM Medical 0.98 0.79 0.68 0.69 0.97 0.83 0.99 1.0
BERT Medical 0.98 0.8 0.71 0.72 0.98 0.85 0.99 1.0
FT-BERT Medical 0.98 0.81 0.72 0.73 0.98 0.85 0.99 1.0
PM-BERT Medical 0.98 0.82 0.72 0.74 0.98 0.86 0.99 1.0
Bio-BERT Medical 0.98 0.81 0.71 0.72 0.98 0.85 0.99 1.0
RoBERTa Medical 0.98 0.82 0.73 0.74 0.98 0.86 0.99 1.0

Table 4: Comparison of F1 scores for punctuation and truecasing using BERT and BLSTM when trained on Wiki
data and Medical conversation data (FT-BERT: Finetuned BERT for domain adapation, PM-BERT: Finetuned
BERT by punctuation masking for domain and task adapation).

We hypothesize that medical vocabulary contains
a large set of compound words, which a subword
based model works effectively over word model.
Upon examining few utterances, we noticed that
subword models can learn effective representations
of these compound medical words by tokenizing
them into subwords. On the other hand, word mod-
els often run into rare word or OOV issues.

4.3 Pretrained language models

Significance of in-domain data For analyzing the
importance of in-domain data, we train a baseline
BLSTM model and a pretrained BERT model
on Wiki and Medical data from both dictation
and conversational corpus and tested the models
on Medical held-out data. The first four rows of
Tables 3 and 4 summarize the results. The models
trained on Wiki data performed very poorly when
compared to models trained on Medical data from
either dictation or conversation corpus. Although
dictation corpus (3.7M words) is relatively smaller
than Wiki corpus (35M words), the difference
in accuracy is significantly higher across both

models. Imbalanced classes like Full stop, Comma,
Question Mark were most affected. Another
interesting observation is that the models trained
on Medical data performed better on Full stop
compared to Comma; whereas general domain
models performed better on Comma compared to
Full stop. The degradation in general models might
be due to Wiki sentences being short and ending
with a Full stop unlike lengthy medical transcripts.
Also, the F1 scores are lower on conversation data
across both the tasks, indicating the complexity
involved in modeling conversational data due to
their highly unstructured format. Overall, the
pretrained BERT model consistently outperformed
baseline BLSTM model on both dictation and
conversation data. This motivated us to focus on
adapting the pretrained models for this task.

Finetuning Masked LM We have run two
levels of fine-tuning as explained in Section 3.2.
First, we finetuned BERT with Medical domain
data using random masking (FT-BERT) and for
task adaptation, we performed fine-tuning with
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Punctuation Truecasing
Model n-best No Punc Full stop Comma QM LC UC CA MC
BERT-GT - 0.97 0.58 0.45 0.0 0.98 0.60 0.78 0.90
BERT-ASR 1-best 0.97 0.66 0.56 0.54 0.99 0.72 0.86 1.0

3-best 0.98 0.67 0.57 0.42 0.98 0.69 0.79 0.84
5-best 0.97 0.61 0.5 0.35 0.98 0.65 0.79 0.83

Table 5: Comparison of F1 scores for punctuation and truecasing with ground truth and ASR augmented data.
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Figure 2: Difference in F1 scores between Bio-BERT
and BLSTM for varying data sizes.

punctuation based masking (PM-BERT). For both
experiments, we used the same data as we have
used for finetuning the downstream task. From the
results presented in Table 3 and 4, we infer that
finetuning boosts the performance of punctuation
and truecasing (an absolute improvement of
∼1-2%). From both the datasets, it is clear that
task specific masking helps better than simple
random masking. For dictation dataset, Full
stop improved by an absolute 3% by performing
punctuation specific masking, suggesting that
finetuning MLM can give higher benefits when the
amount of data is low.
Variants of BERT We compare three pretrained
models namely, BERT and its successor RoBERTa
(Liu et al., 2019) and Bio-BERT (Lee et al., 2020)
which was trained on large scale Biomedical cor-
pora. The results are summarized in last two rows
of Table 3 and 4. First, we observe that both
Bio-BERT and RoBERTa outperformed the initial
BERT model and has shown an absolute∼3-5% im-
provement over the baseline 3-BSLTM. To further
validate this, we extended our experiments to under-
stand how the performance of our best model(Bio-
BERT) varies across different training dataset sizes
compared to the baseline. From Figure 2, we ob-
serve that the difference increases significantly as
we move towards smaller datasets. For the smallest
data set size of 500k words (1k transcripts), there

is an absolute improvement of 6-17% over the base-
line in accuracy in terms of F1. This shows that
pretraining on a large dataset helps to overcome
data scarcity issue effectively.

4.4 Robustness

For testing robustness, we performed experiments
with augmentation of ASR data from n-best lists
(BERT-ASR). We considered top-1, top-3 and top-
5 hypotheses for n-best lists augmentation with
ground truth text and the results are presented in
Table 5. Additionally, the best BERT model trained
using only ground truth text inputs (BERT-GT)
from Table 3 is also evaluated on ASR outputs.
To compute F1 scores on held-out test set, we first
aligned the ASR hypothesis with ground truth data
and restored the punctuation and truecasing as de-
scribed in Section 3.3. From the results presented
in Table 5, we infer that adding ASR hypothesis to
the training data helped improve the performance
of both punctuation and truecasing. In punctua-
tion, both Full stop and Comma have seen an ab-
solute 10% improvement in F1 score. Although
the number of question marks is less in test data,
the augmented systems performed really well com-
pared to the system trained purely on ground truth
text. However, we found that using n-best lists with
n > 1 did not help much compared to the 1-best
list. This may be due to sub-optimal restoration of
punctuation and truecasing as the WER with n-best
lists is likely to go up as n increases.

5 Conclusion

In this paper, we have presented a framework for
conditional joint modeling of punctuation and true-
casing in medical transcriptions using pretrained
language models such as BERT. We also demon-
strated the benefit from MLM objective finetuning
of the pretrained model with task specific masking.
We further improved the robustness of punctuation
and truecasing on ASR outputs by data augmen-
tation during training. Experiments performed on
both dictation and conversation corpora show the
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effectiveness of the proposed approach. Future
work includes the use of either pretrained acoustic
features or pretrained acoustic encoder to perform
fusion with pretrained linguistic encoder to further
boost the performance of punctuation.
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