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Abstract
Dialog State Tracking (DST) is a problem
space in which the effective vocabulary is prac-
tically limitless. For example, the domain of
possible movie titles or restaurant names is
bound only by the limits of language. As
such, DST systems often encounter out-of-
vocabulary words at inference time that were
never encountered during training. To combat
this issue, we present a targeted data augmenta-
tion process, by which a practitioner observes
the types of errors made on held-out evalua-
tion data, and then modifies the training data
with additional corpora to increase the vocab-
ulary size at training time. Using this with a
RoBERTa-based Transformer architecture, we
achieve state-of-the-art results in comparison
to systems that only mask trouble slots with
special tokens. Additionally, we present a data-
representation scheme for seamlessly retarget-
ing DST architectures to new domains.

1 Introduction

Dialog State Tracking (DST) is a common problem
for modern task-oriented dialog systems that need
to be capable of tracking user requests. Commonly,
there is an ontology that defines slots that must
be filled according to a user’s utterances – e.g., a
restaurant slot that is filled in with a restaurant
name given by the user. A key problem for DSTs is
that the values that fill a slot at inference may have
never been encountered at training time (consider
that the set of all possible restaurant names is bound
only by the limits of language).

In this work, we address the problems of training
on a domain with effectively limitless possible vo-
cabulary, and aim to create a DST system capable
of scaling to unseen vocabulary at inference. We
do this by first utilizing a language model (LM)
based Transformer that is capable of handling any
possible input and output in a textual manner, let-
ting the same exact architecture scale to new intents,

slots, and slot values, with no modifications needed.
Additionally, we present a practical data augmenta-
tion procedure for analyzing and addressing issues
in the development of a DST system, leading to
state-of-the-art performance.

2 Related Work

Work in DST has taken a number of different ap-
proaches. The annual DST Challenge (DSTC)
has undergone eight iterations (although from the
sixth competition on, it has been the more broad
Dialog System Technology Challenge) (Williams
et al., 2013; Henderson et al., 2014a,b). The
M2M:Simulated Dialogue (Shah et al., 2018)
dataset for dialog state tracking has been addressed
by a number of different approaches. Rastogi et al.
(2017) used a bi-directional GRU (Chung et al.,
2014) along with an oracle delexicalizer to gener-
ate a candidate list for slot filling. Rastogi et al.
(2018) later used a bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997) without the oracle
delexicalization to generate candidate lists for slot
filling. Liu et al. (2018) use two bi-directional
LSTMs – one at the utterance level, the other at the
dialog level – to perform the dialog state tracking.
However, this work is only tested on the simulated
dataset Sim-GEN, meaning there is no comparison
with the more challenging human crafted utterances
contained in Sim-R and Sim-M.

The closest approach to the one detailed in this
paper is that of Chao and Lane (2019). They used
a system based off of BERT (Devlin et al., 2019),
but removed the language-model head and instead
used two specialized heads: one that does per-slot
utterance level classification to determine whether
a given slot is active in the utterance or is the spe-
cial dontcare token, and another per-slot head
that predicts whether a token represents the begin-
ning or end of the span for that type of slot. Our
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Figure 1: A depiction of the language model based Transformer architecture used in this work. For each token
in the user utterance (light blue), the model predicts what slot it belongs to (green or purple), if any, else other
(white). A token for each of the slots is concatenated to the end of the user utterance (orange) and the model predicts
whether that slot is active in the utterance (pink), not active (white), or should be set to the special dontcare
token (not in this example).

model differs in that we do not need to alter the
architecture of the model with specialized heads,
and instead fine-tune the existing language model
head. In their experimentation, they adjusted the
level of slot-specific dropout using targeted fea-
ture dropout, first used by Xu and Sarikaya (2014),
where slots are replaced with a special [UNK] to-
ken. Our approach also differs in that instead of
simply dropping out slots, we use the more nuanced
method of targeted data augmentation.

Finally, data augmentation has been widely
used for improving the robustness of dia-
log systems. Hou et al. (2018) used a
LSTM-based sequence-to-sequence network to
map from generic utterances (e.g., “show me
the <distance> <poitype>”) to a variety
of different utterances (e.g., “where is the
<distance> <poitype>” and “can you find
the <distance> <poitype> to me”). This
approach requires delexicalization and only alters
grammatical structure, which is quite different from
our approach which leaves grammatical structure
alone, instead altering the non-delexicalized slot
values. Quan and Xiong (2019) perform data aug-
mentation via four different approaches: (1) replace
words (excluding proper nouns, qualifiers, personal
pronouns, and modal verbs) with their synonyms,
(2) remove all stop words, (3) use existing neural
machine-translation technology to translate from
the source language to another and back again (sim-
ilar to that of Hou et al. (2018), except they do not
train their own seq2seq network), and (4) use an
existing paraphraser to paraphrase the utterance.

3 Method

Our goal in this work is to to create a robust, read-
ily extensible Dialog State Tracking system that
requires minimal to no alteration of network ar-
chitecture if the schema and/or domain of the dia-

log task changes. For instance, imagine a system
that is being developed for the restaurant domain
under a schema in which a set of slots are spec-
ified: cuisine, price, location. Now imagine that
later it becomes necessary to add a new slot: kid-
friendliness. Instead of changing the architecture
and retraining from scratch, we would prefer to
be able to fine-tune the existing model with the
new slot now present. Additionally, we incorporate
targeted data augmentation to combat over-fitting
when a domain has limited vocabulary.

3.1 Language Model Based Transformer

To produce such a versatile DST system, we re-
formulate our data such that the problem is fully
encoded textually, with no reliance on specialized
output heads. Specifically, we carry out:

1. Utterance-level slot activation. Is the slot ac-
tive in the current utterance? If it is, does
the slot map to the special dontcare token?
That is, for each slot we predict one of slot,
none, or dontcare.

2. Token-level slot filling. For each token in the
input, is it used in a slot or is it other?

To achieve (1), we modify the input utterance
with an additional sequence. The additional se-
quence contains all of the slots present in the dia-
log schema. For instance, the sentence “5 tickets
to Transformers: Age of Extinction please.” is con-
catenated with “movie time theater date number”.
Adding a new slot(s) is handled by simply concate-
nating to the list – e.g., if the above movie domain
was extended to add restaurants “cuisine restaurant
location” could be concatenated to the list of slots.

For (2), at the output level a slot is predicted
for every token in the original utterance and
a slot intent is predicted for every schema
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token that is concatenated to that utterance:
“5[number] tickets to Transformers:[movie]
Age[movie] of [movie] Extinction[movie]
please. <s>movie[slot] time[none] theater[
none] date[none] number[slot]’ See Figure
1 for a more detailed illustration. Despite the
two objectives, the loss is simply the Categorical
Cross-Entropy loss over the entire (combined)
sequence.

The model aims to track the joint goal at each
turn in the dialog, represented as all the slot values
accumulated to that point. Rather than estimating
the entire joint goal each turn, we predict changes
to it – additions of slots, modifications to slot values
– and maintain the joint goal by applying these
changes.

4 Data Augmentation

There are a number of common issues in the
datasets for these dialog tasks, including:

1. Small datasets. It is tedious and time-
consuming to annotate, gather, or hand-
modify believable dialogs.

2. Open classes. Given the open-ended nature of
many of these tasks, training data cannot pro-
vide coverage of open classes (e.g., restaurant
names or movie titles).

To counteract these issues, researchers have pro-
posed a number of different data augmentation
schemes (see Section 2). At the outset of our study,
we tried the 10% slot-specific dropout used by
Chao and Lane (2019), but our model still over-
fit to the training set. To combat this, we devised
the following procedure:

1. Determine problem slots. Examine the in-
correct predictions on the held-out evaluation
set to determine whether there is a certain slot
or intent that is not being predicted well.

2. Augment for problem slots. Find a corpus
of values for that slot, and randomly insert a
value from that corpus at training time.

In our work, we were using the Sim-R and Sim-
M datasets (Shah et al., 2018), which are concerned
with restaurant reservations and movie tickets re-
spectively. We noticed that our system was nearly
perfectly able to handle requests related to time,
date, and number of people – slots whose values

come from small structured sets – but was having
difficulty with movie titles, restaurant names, and
locations, even with the targeted 10% dropout.

We found corpora for movie names (42,306
movie titles found on Wikipedia as of 2013 (Bam-
man et al., 2013)), restaurant names (1445 humor-
ous restaurant names (Samuel et al., 2016)), and
locations (2067 US settlement names from 1880
to 2010 (Samuel et al., 2016)) which we then used
to randomly replace the respective slots at training
time at a rate of 50%.

We note that our replacement has two major ef-
fects. (1) By randomly replacing with real values
instead of simply masking, the model is capable
of learning a wider variety of slot values and value
structures, instead of simply relying on syntactic in-
formation surrounding the names. (2) By randomly
replacing values, the dialog becomes more difficult
to follow – akin to a user who is prone to changing
their mind – and this forces the system to learn to
track a user’s (fickle) goals better.

5 Experiments

As previously mentioned, we used the Sim-R and
Sim-M datasets (Shah et al., 2018). This is because
we found them to be of high quality (but with room
for improvement), and there was a recent state-of-
the-art approach that used a similar Transformer-
based architecture to compare against (Chao and
Lane, 2019). To assess the performance of the
models, we use joint goal accuracy (Henderson
et al., 2014a), the standard metric for assessing
DST systems. At each turn of dialog, the ground
truth must be perfectly matched.

For this specific work, we fine-tuned the
RoBERTa masked language model of Liu et al.
(2019); specifically, we used the Huggingface
Transformers library (Wolf et al., 2019). All mod-
els were trained with the ADAM optimizer with an
initial learning rate of 5e− 5, epsilon of 1e− 8, a
linear learning rate schedule over 20 epochs, and
an attention mask rate of 15%.

We compare three approaches in the experiment.
(1) RoBERTa-LM, the RoBERTa LM architec-
ture with 10% slot-specific dropout; (2) RoBERTa-
Separate, the RoBERTa LM architecture with 50%
slot-specific replacement, with separate models
trained on the Sim-M and Sim-R datasets; and (3)
RoBERTa-Combined, the RoBERTa LM archi-
tecture with 50% slot-specific replacement, with a
single model trained on the combined Sim-M and
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DST Model Sim-M Sim-R Sim-M + Sim-R
DST+Oracle 96.8% 94.4% 95.2%
DST+LU 50.4% 87.1% 76.7%
BERT-DST 80.1% 89.6% 86.9%
RoBERTa-LM 71.1% 84.5% 80.8%
RoBERTa-Separate 84.2% * 92.5% * 90.2% *
RoBERTa-Combined 86.5% * 93.1% * 91.2% *

Table 1: Comparison of our approaches with prior work. * indicates that the approach is statistically significantly
better than BERT-DST (Fisher’s exact test with p < 0.01).

Sim-R datasets.

5.1 Baselines

To assess our model, we compare against three
previous systems. The first work by Rastogi et al.
(2017) uses a bi-directional GRU along with an
oracle delexicalizer to generate a candidate list for
slot filling (DST+Oracle). The follow-on work of
Rastogi et al. (2018) uses a bi-directional LSTM to
build a set of candidates without delexicalization
(DST+LU). Finally, the most recent approach, by
Chao and Lane (2019), builds off of the BERT
Transformer architecture which achieved state-of-
the-art results (BERT-DST).

5.2 Evaluation Results

A summary of the results can be seen in Table 1.
We draw attention to the following results. (1) The
language model based version of RoBERTa with-
out data augmentation performs relatively poorly:
it beats the non-Transformer based DST+LU at
Sim-M but is worse at Sim-R, and is worse at both
than BERT-DST. We did not perform a compre-
hensive hyperparameter search, so we are unable
to discern if it is a critical failing of the model, or
whether it was a result of our chosen hyperparame-
ters. (2) The RoBERTa language model with data
augmentation performed much better than the pre-
vious state-of-the-art – with 4.1% and 3.1% point
gains respectively on Sim-M and Sim-R. (3) Fi-
nally, we note that the language model that was
trained jointly on both the movie and restaurant
data is significantly better than the models trained
separately. In part, we believe that this is because
the datasets have a lot of overlap – e.g., request-
ing dates, times, etc. We also believe that due to
the relatively small sizes of the datasets, the in-
crease in the size helps combat overfitting in the
model – the Sim-M is a smaller dataset than Sim-R
(1364 turns vs. 3416) and commensurately, while

there is a small gain in Sim-R performance, Sim-M
performance is drastically improved (significant at
p < 0.00001 with Fisher’s exact test).

5.3 Discussion
We note that while we have achieved state-of-the-
art performance on the Sim-M and Sim-R datasets,
there is certainly a possibility that a better choice of
augmenting corpora could help the generality of the
final model. For instance, the corpus of restaurant
names was focused mostly on humorous names,
such as “A Brisket a Tasket” and “Et Tu New Brew.”
It will take further experimentation to determine if
these names are more of a help (the model must
be capable of handling a variety of names) or a
hindrance (these names are not representative of
most restaurant names).

Furthermore, we note the US-centric bias found
in the training and evaluation datasets for the lo-
cation names, and the corresponding bias in our
chosen corpus. Similarly, it is an open question as
to whether a wider – less US-focused – corpus of
location names would help. Certainly, for a sys-
tem deployed in the world, a wider corpus would
likely be of use, but for the purpose of achieving
state-of-the-art test accuracy, it is unknown.

6 Conclusions and Future Work

In this paper, we make two contributions. First, we
introduce a process for a) examining the source of
errors in Dialog State Tracking on held-out eval-
uation data, and b) correspondingly augmenting
the dataset with corpora to vastly increase the vo-
cabulary at training time. Like earlier work that
selectively masked slot values, this prevents the
system from overfitting to specific values found in
the training data. Furthermore, however, it forces
the system to learn a wider range of values, rather
than syntactic features only, vastly improving the
performance. Second, we do this in the context of a
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language model based Transformer, that due to the
language-based nature of its representation – slots
are simply represented as tokens concatenated to
user utterances – is capable of transferring seam-
lessly between and working jointly on different
datasets without the need to change the underly-
ing architecture. In the future, we would like to
address other forms of targeted data augmentation,
addressing grammatical differences in addition to
vocabulary modifications.
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