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Abstract
We introduce Causal Bayesian Networks as
a formalism for representing and explaining
probabilistic causal relations, review the state
of the art on learning Causal Bayesian Net-
works and suggest and illustrate a research
avenue for studying pairwise identification of
causal relations inspired by graphical causality
criteria.

1 From Bayesian networks to Causal
Graphical Models

Bayesian networks (BNs) are a class of probabilis-
tic graphical models, originally conceived as effi-
cient representations of joint probability distribu-
tions.

Figure 1: Bayesian network representing the
probability distribution P (x1, x2, x3, x4, x5) =
P (x1)P (x2|x1)P (x3|x1), P (x4|x2, x3)P (x5|x4)

A great deal of work has been dedicated in the
last decades to understanding how to represent
knowledge as BNs, how to perform efficient in-
ference with BNs and how to learn BNs from data
(Koller and Friedman, 2009).

Despite having been overshadowed by subsym-
bolic approaches, BNs are attractive because of
their flexibility, modularity and straightforward sta-
tistical interpretation.

On top of that, BNs have a natural interpretation
in terms of causal relations. Human-constructed
BNs tend to have arrows whose directionality re-
spects the causal intuitions of their architects.

Furthermore, recent work has extended Bayesian
Networks with causal meaning (Pearl, 2009;
Spirtes et al., 2001). The result are Causal Bayesian
Networks and Causal Structural Models, that as-
cribe new meaning to BNs and extend classical
inference with new causal inference tasks such as
interventions (eg will the floor get wet if we turn
the sprinkler on?) and counterfactuals (eg would
this person have received a good credit rating if
they had a stable job?).

In this paper we will review work on the area of
using Bayesian networks to model causal relation-
ship, and consider one future research direction to
explore, concerning the identification of the causal
link between pairs of variables.

2 Learning Causal Bayesian Networks

Considerations of causality also affect how
Bayesian Networks should be learnt. Manually
built Bayesian networks usually respect our causal
intuitions. But Bayesian networks learnt from data
may not respect the underlying causal structure that
generated the data.

Indeed, each probability distribution can be rep-
resented by several different Bayesian Networks
- and we can group Bayesian Networks graphs in
classes capable of representing the same probabil-
ity distributions, their Markov equivalence class.

Traditional BN learning methods such as score
maximization (Cussens et al., 2017) cannot distin-
guish between members of the same Markov equiv-
alence class, and will be biased towards outputting
a Bayesian structure that fits the data well but does
not necessarily match the underlying causal mech-
anisms.
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Figure 2: Three Bayesian Networks. The left and the
middle one are Markov-equivalent, but the third one
isn’t equivalent to the other two - in fact, the left one
is the only member of its reference class. Hence, if the
data is compatible with the right BN and there are no
latent variables BN we will be able to conclude that A
causes B. But if the data is compatible with the left
(and therefore the middle) BN then the orientation of
the edge A − B is arbitrary, and we cannot infer just
from the data the causal relations between the variables.

This is a key problem for explaining the outcome
of Bayesian Network learning algorithms. Experts
usually avoid altogether a causal language - instead
framing their explanations in terms of association.
But we would like to be able to actually explain
when a relation is causal and when we do not have
enough information to tell one way or another.

In order to do this, we need our learning methods
to distinguish and explain when their edge orien-
tation decisions are arbitrary (ie there is another
BN compatible with the data 1where the edge is
oriented in a different way) or necessary (ie the
edge has this orientation in every diagram compati-
ble with the data we have) - since only in the latter
situation can we guarantee that the orientation will
respect causality.

3 Previous work

This problem of causal discovery based on graphi-
cal models is reviewed in depth in (Glymour et al.,
2019). In this article the authors introduce three
families of causal discovery algorithms:

• Constraint based algorithms that rely on con-
ditional independence tests to orient the edges

1We have glossed over what compatible exactly means. A
necessary condition is that all the independence conditions
represented via d-separation in the graph are present in the
joint probability distribution of the data (Spirtes, 1996). We
usually also require the reverse, that all conditional indepen-
dencies in the joint probability distribution are represented
via d-separation in the graph - this is called the faithfulness
assumption. The faithfulness assumption renders conditional
independence and d-separation effectively equivalent, and
restricts the output of the algorithm to a single Markov equiv-
alence class. A justification of why we should expect our data
to be faithful to the underlying model can be found in (Pearl,
2009, Chapter 2).

in a graph. See for example the PC algorithm
(Spirtes et al., 2001).

• Score based algorithms that greedily opti-
mize a score function to orient the edges in
a graph. See for example the Greedy Equiva-
lence Search (Chickering, 2002).

• Functional algorithms that use stronger as-
sumptions about the relation between two di-
rectly related variables to distinguish cause
and effect. See for example the post-nonlinear
causal model (Zhang and Hyvarinen, 2009).

The problem is considerably more difficult when
we allow the possibility of unmeasured (‘latent’)
common causes of the variables in our dataset.

This situation is arguably more representative of
usual datasets, and requires specialized methods to
be addressed. (Zhang, 2008) proposed a constraint-
based learning algorithm that is provably sound and
complete, assuming correct conditional indepen-
dence decisions. The algorithm was later refined in
(Claassen and Heskes, 2011).

4 A graphical test of causality and
missing confounders

However, J. Zhang’s and similar methods rely on
frequentist and high order conditional indepen-
dence tests to learn the causal structure, which are
prone to error. The serial nature of the algorithm
means that early errors in the conditional indepen-
dence decisions lead to more errors later.

Ideally, we would like to have our methods of
learning causality from observational data be more
robust to statistical noise, and do not let errors
propagate through the graph.

This is especially important when we are not
interested in learning the complete structure of the
graph, but rather we want to study the particular
relation between a variable we could manipulate
(the ‘exposure’) and a variable we care about (the
‘outcome’).

This problem has been discussed in depth in
the context of econometrics, where structural equa-
tion modelling (Kaplan, 2020) and instrumental
variable estimation methods (Reiersöl, 1945) are
widely used tools for causal inference.

While structural equation modelling provides
satisfactory answers to many questions of causal es-
timation, they are hard to interpret and use. Graph-
ical models could lead us to better explanations of
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the models of causality used in econometrics and
other contexts. For example, instead of providing
models as mathematical equations, the causality we
can infer from the data could be represented graph-
ically, and described via text using similar tech-
niques to those that apply to explaining Bayesian
Networks with natural language generation tech-
niques (see (Reiter, 2019) for discussion).

In particular, under certain conditions we can use
insights derived from causal discovery in graphical
models to test conditions usually taken on faith.

For example, if we identify two additional vari-
ables Z,W and a context S = s such that:

• A and B are conditionally dependent given
S = s

• Z and W are conditionally independent given
S = s, but are conditionally dependent given
S = s and A = a for some value a

• Z and B are conditionally dependent given
S = s, but conditionally independent given
S = s and A = a for every value a

then lemma 1 from (Claassen and Heskes, 2011)
implies under mild assumptions that there is a di-
rected path from A to B in every causal bayesian
network compatible with the data we have ob-
served.

To ground this example, let’s suppose that we are
interested in studying the effect of a drug (A) on the
health of a patient (B). We furthermore have access
to information about the patient’s income (Z) and
whether they have health insurance (W). We also
have access to a set of background information
variables (O) like for example age and gender.

We assume that the causal relationships between
the variables can be represented as an acyclic graph-
ical model.

We check that the income (Z) and the drug (A)
are independent conditional on some of the back-
ground variables (S ⊂ O), but dependent when we
condition on S ∪ {A}.

Then we check that the income (Z) and the pa-
tient’s health outcome (B) are conditionally depen-
dent given the same subset of background variables
S, but independent when we condition on the drug
A.

Then we will be able to assert that no matter
what the true acyclic causal diagram is, there will
always be a causal path that starts in the treatment
(A) and ends in the patient’s health outcome (B).

This guarantee holds as long as we can guaran-
tee acyclity - even if there are unmeasured latent
variables in the true causal diagram.

Hence it would be appropriate to describe the
data as providing evidence for the natural language
explanation ”the drug has an effect on the health
of the patient”. Note that we can only provide this
explanations because of our explicit causal anal-
ysis. A traditional Bayesian analysis would only
be able to conclude that the drug and the health
outcome are somehow related - but it would not
have been able to distinguish the direction of causa-
tion (perhaps sicker patients are more likely to be
treated with the new drug!) or rule out confounding
common causes (perhaps richer patients are both
more likely to receive the treatment and have better
health outcomes for reasons unrelated to the drug!).

Figure 3: If the underlying causal structure follows this
diagram, then because of d-separation properties we
will be able to conclude that A,B,Z,W and S = ∅
satisfy the conditions we listed. Hence, every Bayesian
network in the Markov-equivalence class of the di-
agram (including diagrams with latent variables) in-
cludes a directed path from A to B. So we will be able
to unequivocally conclude that A causes B.

Like J. Zhang’s causal discovery algorithm, this
criteria allows the possibility of latent common
causes. Unlike J. Zhang’s, this criteria only de-
pends on locally testing the conditional indepen-
dence relations between A,B,Z,W, S to conclude
that A is a cause of B. A similar approach is con-
sidered in (Mani et al., 2012), though in the context
of global structure learning.

From an econometric perspective, the interest
of the criteria above is that this condition pro-
vides a graphical test for causality and missing
confounders, under the assumption of no cyclical
causal relations. In particular, the conditions out-
lined above imply that S = s blocks all confound-
ing paths that spuriously relate A and B but blocks
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no causal path between the variables. Thus if we
found that the criteria holds we would be able to
use standard tools such as ordinary least squares
regression to quantify the strength of the causal
relation A→ B.

Related tests already exist in the literature - for
example the overidentification J-test for testing the
exogeneity of instrumental variables (Stock and
Watson, 2011, Section 12.3), and selection of ob-
servables for testing the sensibility of an estimate
to hidden confounders (Altonji et al., 2000).

Understanding the relationship between these
traditional tests and the tests derived from the
graphical criteria will be an interesting multidis-
ciplinary exercise.

5 Conclusion and next steps

In summary, the development of a local causal cri-
teria will give us a powerful tool to build causal
explanations of data, that under certain conditions
can distinguish the direction of causality and quan-
tify the strength of the underlying causal relation.

The development of this criteria will be of great
help to fields eager to extract causal conclusions
from historical data. For example, this could help
medics and patients gain an understanding of how
much of a difference a treatment would make based
on the history of past patients, so they can make an
informed decision about it.

It is unclear how to generalize these conditions
to cover more cases and possible causal relations,
how often these conditions are met, how reliable
procedures of proving causality based on this type
of criteria would be and how to deal with possibly
contradictory evidence of causality.

Our intention is to explore these questions
through our work. This will involve three avenues
of research:

• Formulating and formally studying criteria for
proving causal relations through mathematical
definitions and proofs

• Developing my own algorithms of causal dis-
covery based on such criteria and refining
them by evaluating them on synthetic data

• Testing the performance the resulting algo-
rithms on real datasets

We do not expect this work to be easy.
Specially challenging in the context of econo-

metrics will be the validation of the methods used.

Only seldom do we have direct experimental evi-
dence of the causal relations in a economic domain.
Because of this, initial experimentation should fo-
cus on explaining observational data in domains
where there is a strong and well-established theory
of causation, such as price-demand modelling.

Another key difficulty is the requirement of con-
ditional independencies - it will often be impossible
in econometric contexts to render variables condi-
tionally independent. Thus part of our work will
require us to relax the conditions of Y-structure
based causal discovery to exploit weaker forms of
conditional independence. For example, we could
look into interaction information (McGill, 1954) or
related concepts from information theory.

Finally, there is a problem on explaining this
graphical reasoning to users. It is not obvious why
Y-structures imply a causal relationship. It may be
fruitful to draw an analogue between this method
and how humans infer causation, to make them
more intuitive.

We believe that this work will help us better
understand how to study causal relationships from
observational data, which will have long reaching
applications in econometrics, medicine and other
fields of practice that routinely need to rely on
observational data for their analyses.

Furthermore, causal graphical models have an
advantage compared to black box learning and rea-
soning models due to their ability to address causal
queries. This could be leveraged to marginally
push the field of AI towards methods inspired by
probabilistic graphical models, which are arguably
more transparent and will facilitate goal alignment.

Acknowledgements

I thank my supervisors Ehud Reiter and Nava
Tintarev for thorough discussion and support.

I also thank the anonymous reviewers for the
NL4XAI for kindly providing constructive feed-
back to improve the paper.

This research has been supported by the
NL4XAI project, which is funded under the Eu-
ropean Union’s Horizon 2020 programme, grant
agreement 860621.

References
Joseph G Altonji, Todd E Elder, and Christopher R

Taber. 2000. Selection on Observed and Unobserved
Variables: Assessing the Effectiveness of Catholic

37



Schools. Working Paper 7831, National Bureau of
Economic Research. Series: Working Paper Series.

David Maxwell Chickering. 2002. Optimal Structure
Identification With Greedy Search. Journal of Ma-
chine Learning Research, 3(Nov):507–554.

Tom Claassen and Tom Heskes. 2011. A structure
independent algorithm for causal discovery. In In
ESANN’11, pages 309–314.

James Cussens, Matti Järvisalo, Janne H. Korhonen,
and Mark Bartlett. 2017. Bayesian Network Struc-
ture Learning with Integer Programming: Polytopes,
Facets and Complexity. Journal of Artificial Intelli-
gence Research, 58:185–229.

Clark Glymour, Kun Zhang, and Peter Spirtes. 2019.
Review of Causal Discovery Methods Based on
Graphical Models. Frontiers in Genetics, 10. Pub-
lisher: Frontiers.

David Kaplan. 2020. Structural Equation Modeling
(2nd ed.): Foundations and Extensions, 2nd edition.
Thousand Oaks, California.

Daphne Koller and Nir Friedman. 2009. Probabilis-
tic Graphical Models: Principles and Techniques -
Adaptive Computation and Machine Learning. The
MIT Press.

Subramani Mani, Peter L. Spirtes, and Gregory F.
Cooper. 2012. A theoretical study of Y structures
for causal discovery. arXiv:1206.6853 [cs, stat].
ArXiv: 1206.6853.

William J. McGill. 1954. Multivariate information
transmission. Psychometrika, 19(2):97–116.

Judea Pearl. 2009. Causality: Models, Reasoning and
Inference, 2nd edition edition. Cambridge Univer-
sity Press, Cambridge, U.K. ; New York.

Olav Reiersöl. 1945. Confluence analysis by means of
instrumental sets of variables.

Ehud Reiter. 2019. Natural Language Generation Chal-
lenges for Explainable AI. In Proceedings of the 1st
Workshop on Interactive Natural Language Technol-
ogy for Explainable Artificial Intelligence (NL4XAI
2019), pages 3–7. Association for Computational
Linguistics.

Peter Spirtes. 1996. Using d-separation to calculate
zero partial correlations in linear models with corre-
lated errors. Publisher: Carnegie Mellon University.

Peter Spirtes, Clark Glymour, and Richard Scheines.
2001. Causation, Prediction, and Search, 2nd Edi-
tion, volume 1. The MIT Press. Publication Title:
MIT Press Books.

James Stock and Mark Watson. 2011. Introduction to
Econometrics (3rd edition). Addison Wesley Long-
man.

Jiji Zhang. 2008. On the completeness of orientation
rules for causal discovery in the presence of latent
confounders and selection bias. Artificial Intelli-
gence, 172(16):1873–1896.

Kun Zhang and Aapo Hyvarinen. 2009. On the Identifi-
ability of the Post-Nonlinear Causal Model. page 9.

38


