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Abstract

End-to-end encoder-decoder approaches to
data-to-text generation are often black boxes
whose predictions are difficult to explain.
Breaking up the end-to-end model into sub-
modules is a natural way to address this prob-
lem. The traditional pre-neural Natural Lan-
guage Generation (NLG) pipeline provides
a framework for breaking up the end-to-end
encoder-decoder. We survey recent papers that
integrate traditional NLG sub-modules in neu-
ral approaches and analyse their explainability.
Our survey is a first step towards building ex-
plainable neural NLG models.

1 Motivation

The end-to-end encoder-decoder is a popular neu-
ral approach that is efficient to generate fluent texts.
However it has often been shown to face some
adequacy problems such as hallucination, repeti-
tion or omission of information. As the end-to-end
encoder-decoder approaches are often “black box”
approaches, such adequacy problems are difficult
to understand and solve.

In contrast, pre-neural NLG has often integrated
a number of sub-modules implementing three main
NLG sub-tasks (Reiter and Dale, 2000): macroplan-
ning (“What to say”), microplanning and surface
realisation (“How to say”).

To improve adequacy and provide for more ex-
plainable approaches, recent work has proposed in-
tegrating traditional pre-neural NLG sub-modules
into neural NLG models. In this paper, we survey
some1 of this work, focusing mainly on generation
from data- and meaning representations2. Table 1

1Given the space limitations, the survey is clearly not ex-
haustive.

2We also include (Shen et al., 2019)’s model for text-to-
text generation as it provides an interesting module for content
selection which few of the papers we selected address.

lists the approaches we consider. We start by iden-
tifying which NLG sub-tasks have been modeled in
these approaches using which methods (Sec. 2-4).
We then go (Sec. 5) on to briefly discuss to which
extent the methods used by each of these models
may facilitate explainability.

2 Macroplanning

Macroplanning is the first subtask of the traditional
pre-neural NLG pipeline. It answers the “what to
say” question and can be decomposed into selecting
and organising the content that should be expressed
in the generated text.

2.1 Content Determination
Content determination is the task of selecting infor-
mation in the input data that should be expressed
in the output text. The importance of this subtask
depends on the goal of a generation model. In
the papers surveyed, papers which verbalise RDF
or Meaning Representations (MR) input do not
perform content determination, while Shen et al.
(2019), who generate headlines from source text,
do.

In this approach, content selection is viewed as
a sequence labelling task where masking binary
latent variables are applied to the input. Texts are
generated by first sampling from the input to decide
which content to cover, then decoding by condition-
ing on the selected content. The proposed content
selector has a ratio of selected tokens that can be
adjusted, bringing controllability in the content se-
lection.

It should also be noted that in template-based ap-
proaches such as (Wiseman et al., 2018), which use
templates for text structuring (cf. Sec. 2.2), the tem-
plate choice determines the structure of the output
text but also has an influence on the content selec-
tion since some templates will not express some of
the input information. For instance, the output 2 in
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Contribution Content Selection Document Structuring REG Input
Moryossev 19b Supervised RDF triples
Moryossev 19a Supervised Rule-based with LM score RDF triples
Sha 17 Attention Tables
Ferreira 19 Supervised Neural RDF triples
Laha 20 Rule-based RDF triples
Gehrmann 18 LV Template Coverage and length penalty MR
Shen 20 LV Hierarchical + Attention RDF triples
Shen 19 LV Text
Wiseman 18 LV Template LV Template Tables
Zhao 20 Supervised RDF triples
Shao 19 LV Hierarchical Plan variations Tables
Distiawan 18 Structure encoding RDF triples

Table 1: Summary of the NLG models for the sub-tasks Content Selection, Document structuring and REG. The
bold types indicates the main sub-task(s) modeled in each contribution and normal type the sub-task(s) that are of
lesser importance in the contribution. The input type is given in the last column. LV stands for Latent Variable.

Table 2 does not include the input customer rating
information.

2.2 Document structuring

Document structuring is the NLG sub-task in which
the previously selected content is ordered and di-
vided into sentences and paragraphs. The goal of
this task is to produce a text plan. Many approaches
choose to model document structuring. Four main
types of approaches can be distinguished depend-
ing on whether the content plan is determined by
latent variables, explicit content structuring, based
on the input structure or guided by a dedicated
attention mechanism.

Latent Variable Approaches One possible way
to model content structure is to use latent variables.

Wiseman et al. (2018) introduce a novel, neural
parameterization of a hidden semi-markov model
(HSMM) which models latent segmentations in
an output sequence and jointly learns to generate.
These latent segmentations can be viewed as tem-
plates where a template is a sequence of latent
variables (transitions) learned by the model on the
training data. Decoding (emissions) is then con-
ditioned on both the input and the template latent
variables. Intuitively, the approach learns an align-
ment between input tokens, latent variables and
output text segments (cf. Table 2). A key feature of
this approach is that this learned alignment can be
used both to control (by generating from different
templates) and to explain (by examining the map-
ping between input data and output text mediated
by the latent variable) the generation model.

Similarly, Gehrmann et al. (2018) develop a mix-
ture of models where each model learns a latent
sentence template style based on a subset of the

input. During generation and for each input, a
weight is assigned to each model. For the same
input information, two templates could produce the
outputs “There is an expensive British restaurant
called the Eagle” and “The Eagle is an expensive
British Restaurant”. The template selection defines
in which order the information should be expressed
and therefore acts as a plan selection.

Latent variable approaches have also been pro-
posed for so-called hierarchical approaches where
the generation of text segments, generally sen-
tences, is conditioned on a text plan. Thus, Shen
et al. (2020) propose a model where, given a set of
input records, the model first selects a data record
based on a transition probability which takes into
account previously selected data records and sec-
ond, generates tokens based on the word genera-
tion probability and attending only to the selected
data record. This “strong attention” mechanism
allows control of the output structure. It also re-
duces hallucination by using the constraints that
all data records must be used only once. The
model automatically learns the optimal content
planning by exploring exponentially many segmen-
tation/correspondence possibilities using the for-
ward algorithm and is end-to-end trainable.

Similarly Shao et al. (2019) decompose text gen-
eration into a sequence of sentence generation sub-
tasks where a planning latent variable is learned
based on the encoded input data. Using this la-
tent variable, the generation is made hierarchically
with a sentence decoder and a word decoder. The
plan decoder specifies the content of each output
sentence. The sentence decoder also improves high-
level planning of the text. Indeed this model helps
capture inter-sentence dependencies in particular
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Input name[Travellers Rest Beefeater], customerRating[3 out of 5], area[riverside], near[Raja Indian Cuisine].
Output 1 [Travellers Rest Beefeater]55 [is a]59 [3 star]43 [restaurant]11 [located near]25 [Raja Indian Cuisine]40 [.]53
Template 1 zi = 〈55, 59, 43, 11, 25, 40, 53〉.
Output 2 [Travellers Rest Beefeater]55 [is a]59 place to eat]12 [located near]25 [Raja Indian Cuisine]40 [.]53
Template 2 zi = 〈55, 59, 12, 25, 40, 53〉.

Table 2: Example templates and outputs segmentation from (Wiseman et al., 2018)’s approach

thanks to the global planning latent variable and
attention mechanisms in the sentence decoder.

Remark. Learning a template can cover differ-
ent NLG subtasks at once. For instance Gehrmann
et al. (2018) use sentence templates, which deter-
mine the order in which the selected content is ex-
pressed (document structuring), define aggregation
and for some cases encourage the use of referring
expressions and of some turns of phrase (usually
included in the lexicalisation sub-task) and defines
to some extent the surface realization.

Explicit Content Structuring using Supervised
Learning. Other approaches explicitly generate
content plans using supervised learning.

In (Moryossef et al., 2019b), a text plan is a
sequence of sentence plans where each sentence
plan is an ordered tree. Linearisation is then given
by a pre-order traversal of the sentence trees. The
authors adopt an overgenerate-and-rank approach
where the text plans are generated using symbolic
methods and ranked using a product of expert
model integrating different probabilities such as
the relation direction probability (e.g. the proba-
bility that the triple {A, manager, B} is expressed
as “A is the manager of B” or, in reverse order,
as “B is managed by A”) or the relation transition
probability (which relations are usually expressed
one after the other, e.g. birth place and birth date).
Moryossef et al. (2019a) propose a variant of this
model where the generation and choice of the plan
to be realized is done by a neural network controller
which uses random truncated DFS traversals. This
new planner is achieving faster performance com-
pared to (Moryossef et al., 2019b).

In (Castro Ferreira et al., 2019) templates are
lists of ordered triples divided into sentences. Cas-
tro Ferreira et al. (2019) first order the input triples
in the way they will be expressed and then divides
this ordered list into sentences and paragraphs.
This ordering of triples and segmentation into sen-
tences is studied with different models : two rule-
based baselines (which apply either random se-
lection of triples or most frequent order seen on
the training set) and two neural models (GRU and

Transformer). They show that neural models per-
form better on the seen data but do not generalize
well on unseen data.

Zhao et al. (2020) model a plan as a sequence
of RDF properties which, before decoding, is en-
riched with its input subject and object. A Graph
Convolutional Network (GCN) encodes the graph
input and a Feed Forward Network is used to pre-
dict a plan which is then encoded by an LSTM.
The LSTM decoder takes as input the hidden states
from both encoders. In this approach the document
structuring sub-task is tackled by an additional plan
encoder.

Input structure encoding Some approaches use
the structure of the input to constrain the order
in which input units are verbalised. Thus, Disti-
awan et al. (2018) capture the inter and intra RDF
triples relationships using a graph-based encoder
(GRT-LSTM). It then combines topological sort
and breadth-first traversal algorithms to determine
in which order the vertices of the GRT-LSTM will
be input with data during training thereby perform-
ing content planning.

Dedicated Attention mechanisms Instead of
encoding input structure, some of the approaches
use attention mechanisms to make their model fo-
cus on specific aspects of the data structure. Sha
et al. (2018) take advantage of the information
given by table field names and by relations between
table fields. They use a dispatcher before the de-
coder. The dispatcher is a self-adaptative gate that
combines content-based attention (on the content
of the field and on the field name of the input ta-
ble) and link-based attention (on the relationships
between input table fields).

3 Microplanning

Microplanning is the NLG sub-task which aims
at defining “how to say” the information that was
selected and structured during macroplanning.

18



3.1 Referring Expression Generation (REG)

Few approaches explicitely model the REG sub-
tasks. In (Moryossef et al., 2019a), REG is handled
in a postprocessing step, using names for first men-
tions, and subsequently the pronoun or string with
the highest BERT LM score. Similarly, Laha et al.
(2020) use heuristic sentence compounding and co-
reference replacement modules as postprocessing
steps. Castro Ferreira et al. (2019) explore both a
the baseline model which systematically replaces
delexicalised entities with their Wikipedia identi-
fiers and the integration in the NLG pipeline of the
NeuralREG model (Castro Ferreira et al., 2018).
NeuralREG uses two bidirectional LSTM encoders
which encode the pre- and post-contexts of the
entity to be referred to. An LSTM decoder with
attention mechanisms on the pre- and post-contexts
generates the referring expression. Gehrmann et al.
(2018) use copy-attention to fill in latent slots in-
side of learned templates where slots are most to
be filled with named entities.

3.2 Lexicalisation

Lexicalisation maps input symbols to words. In
neural approach, lexicalisation is mostly driven
by the decoder which produces a distribution over
the next word, from which a lexical choice is
made. The copy mechanism introduced by See
et al. (2017) is also widely used as it allows copy-
ing from the input (Sha et al., 2018; Moryossef
et al., 2019b; Laha et al., 2020). At each decoding
step, a learned “switch variable” is computed to
decide whether the next word should be generated
by the S2S model or simply copied from the input.
Inspecting the value of the switch variable permits
assessing how much lexicalisation tends to copy
vs to generate and can provide some explainability
in the lexicalisation sub-task. Finally, a few ap-
proaches use lexicons and rule-based mapping. In
particular, Castro Ferreira et al. (2019) use a rule-
based model to generate the verbalization of RDF
properties.

4 Surface realisation

Surface realisation is the last NLG task and con-
sists in creating a syntactically well-formed text
out of the representations produced by the previ-
ous step. While surface realisation is at the heart
of generation when generating from meaning rep-
resentations, it is largely uncharted in data- and
table-to-text NLG and results either from the de-

coder language model (which decides on the words
and thereby indirectly on the syntax of the gener-
ated text) or from the templates used for genera-
tion (Castro Ferreira et al., 2019; Moryossef et al.,
2019b; Wiseman et al., 2018).

5 Conclusion

Explainable models enable a clear understanding
of how the output generated by the model relates to
its input. In this short paper, we surveyed a number
of neural data-to-text generation models which im-
plement some or all of the NLG pipeline sub-tasks
with the aim of identifying methods which could
help enhance explainability in neural NLG.

Our survey highlights two main ways of enhanc-
ing explainability: explicit intermediate structures
produced by neural modules modeling the NLG
pipeline subtasks or latent variables modeling the
interface between these modules.

Thus (Castro Ferreira et al., 2019)’s supervised
pipeline model outputs content plans, sentence tem-
plates and referring expressions which can all be
examined, quantified and analysed thereby support-
ing a detailed qualitative analysis of each subtasks.
Similarly, Moryossef et al. (2019b,a) output ex-
plicit text plans and text plan linearisations and
Zhao et al. (2020) text plans.

In contrast, the models introduced in (Shao et al.,
2019; Wiseman et al., 2018; Gehrmann et al., 2018;
Shen et al., 2019, 2020) are based on latent vari-
ables which mediate the relation between input and
output tokens and intuitively, model a document
plan by mapping e.g., input RDF triples to text
fragments. As illustrated in Table 2 which shows
examples of latent templates used to generate from
the input, latent variables provide a natural means
to explain the model’s behaviour i.e., to understand
which part of the input licenses which part of the
output. They are also domain agnostic and, in con-
trast to the explicit pipeline models mentioned in
the previous paragraph, they do not require the ad-
ditional creation of labelled data which often relies
on complex, domain specific, heuristics.

A third alternative way to support explainability
is model analysis such as supported e.g., by the
AllenNLP Interpret toolkit (Wallace et al., 2019)
which provides two alternative means for interpret-
ing neural models. Gradient-based methods explain
a model’s prediction by identifying the importance
of input tokens based on the gradient of the loss
with respect to the tokens (Simonyan et al., 2014)
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while adversarial attacks highlight a model’s capa-
bilities by selectively modifying the input.

In future work, we plan to investigate whether
domain agnostic, linguistically inspired interme-
diate structures such as meaning representations
could be used to both support explainability and
improve performance. Another interesting direc-
tion for further research would be to develop com-
mon evaluation benchmarks and metrics to enable
a detailed analysis and interpretation of how neural
NLG models perform for each of the NLG pipeline
sub-tasks. Finally, while most of the approaches
we surveyed concentrate on modeling the interac-
tion between content planning and micro-planning,
it would be useful to investigate whether any of
the methods highlighted in this paper could be ex-
ploited to explore and improve the explainability
of the various micro-planning sub-tasks (lexicali-
sation, aggregation, regular expression generation,
surface realisation).
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