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Abstract

We discuss the relationship between explain-
ability and knowledge transfer in reinforce-
ment learning. We argue that explainability
methods, in particular methods that use coun-
terfactuals, might help increasing sample ef-
ficiency. For this, we present a computa-
tional approach to optimize the learner’s per-
formance using explanations of another agent
and discuss our results in light of effective nat-
ural language explanations for both agents and
humans.

1 Introduction

The process of gaining knowledge from the interac-
tion between individuals needs to allow a two-way
flow of information, i.e., reciprocally active com-
munication. During this process explainability is
key to enabling a shared communication protocol
for effective information transfer. To build explain-
able systems, a large portion of existing research
uses various kinds of natural language technologies,
e.g., text-to-speech mechanisms, or string visual-
izations. However, to the best of our knowledge,
few works in the existing literature specifically ad-
dress how the features of explanations influence the
dynamics of agents learning within an interactive
scenarios.

Interactive learning scenarios are a much less
common but similarly interesting context to study
explainability. Explanations can contribute in defin-
ing the role of each agent involved in the interaction
or guide an agent’s exploration to relevant parts of
the learning task. Here, some of the known bene-
fits of explanability (e.g., increased trust, causality,
transferability, informativeness) can improve the
learning experience in interactive scenarios.

Although feedback and demonstration have
been largely investigated in reinforcement learn-
ing (Silva et al., 2019), the design and evaluation

of natural language explanations that foster knowl-
edge transfer in both human-agent and agent-agent
scenarios is hardly explored.

Our contribution aims to optimize this knowl-
edge transfer among agents by using explanation-
guided exploration. We refer to explanations as the
set of information that aims to convey a causality
by comparing counterfactuals in the task, i.e, pro-
viding the reward that could have been obtained
if a different action would have been chosen. In-
stead of providing the optimal solution for the task,
this approach lets the learner infer the best strat-
egy to pursue. In this work, we provide (1) an
overview on the topic of natural language explana-
tions in interactive learning scenarios, and (2) a
preliminary computational experiment to evaluate
the effect of explanation and demonstration on a
learning agent performance in a two-agents setting.
We then discuss our results in light of effective
natural language explanations for both agents and
humans.

2 On Natural Language Explanations in
Interactive Learning Scenarios

Humans use the flexibility of natural language to ex-
press themselves and provide various forms of feed-
back, e.g., via counterfactuals. To be successful,
artificial agents must therefore be capable of both
learning from and using natural language explana-
tions; especially in unstructured environments with
human presence. Recent advances in grounded-
language feedback state that, although there is a
conceptual difference between natural language ex-
planations and tuples that hold information about
the environment, natural language is still a favor-
able candidate for building models that acquire
world knowledge (Luketina et al., 2019; Schwartz
et al., 2020; Liu and Zhang, 2017; Stiennon et al.,
2020). Along this line, training agents to learn
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rewards from natural language explanations has
been widely explored (Sumers et al., 2020; Najar
and Chetouani, 2020; Najar et al., 2020; Krening
et al., 2017; Knox et al., 2013; Li et al., 2020;
Chuang et al., 2020). The interestigness of Sumers
et al. (2020) approach lays in grounding the im-
plementation of two artificial agents on a corpus
of naturalistic forms of feedback studied in educa-
tional research. The authors presented a general
method that uses sentiment analysis and contextu-
alization to translate feedback into quantities that
reinforcement learning algorithms can reason with.
Similarly, (Ehsan and Riedl, 2020) build a training
corpus of state-action pairs annotated with natural
language explanations with the intent of rational-
izing the agent’s action or behavior in a way that
closely resemble how a human would most likely
do.

Existing literature reviews and experimental
studies paired natural language feedback with
demonstrations of the corresponding tasks to learn
the mapping between instructions and actions (Na-
jar and Chetouani, 2020; Taylor, 2018). This aspect
has been studied also in the context of real-time in-
teractive learning scenarios in which the guidance
and the dialog with a human tutor is often realized
by providing explanations (Thomaz et al., 2005; Li
et al., 2020).

Following the idea of AI rationalization intro-
duced by (Ehsan and Riedl, 2020), our work ap-
proaches the generation of explanations as a prob-
lem of translation between ad-hoc representations
of an agent’s behavior and the shape of the reward
function. On the contrary, to achieve our goal we
use counterfactuals that can be easily encoded in
natural language.

2.1 Explanations for Humans

There exists a substantial corpus of research that
investigates explanations in philosophy, psychol-
ogy, and cognitive science. Miller (Miller, 2019)
argues that the way humans explain to each other
can inform ways to provide explanation in arti-
ficial intelligence. In this context, some authors
showed that revealing the inner workings of a sys-
tem can help humans better understand the system.
This is often realized by either generating natural
language explanations and visualizing otherwise
hidden information (Wallkotter, Tulli, Castellano,
Paiva, and Chetouani, 2020). Studies on human
learning suggest that explanations serve as a guide

to generalization. Lombrozo et al. (Lombrozo and
Gwynne, 2014) compared the properties of mecha-
nistic and functional explanations for generalizing
from known to novel cases. Their results show that
the nature of different kinds of explanations can
thus provide key insights into the nature of induc-
tive constraints, and the processes by which prior
beliefs guide inference.

Above literature highlights the central role of
causality in explanation and the vast majority of
everyday explanations invoke notions of cause and
effect (Keil, 2006). Therefore, we grounded our
explanation formalization in this idea of differen-
tiating properties of competing hypothesis (Hoff-
mann and Magazzeni, 2019) by comparison of con-
trastive cases (Madumal et al., 2019).

2.2 Explanations for Agents

Several attempts have been made to develop ex-
planations about the decision of an autonomous
agent. Many approaches focus on the interpreta-
tion of human queries by either mapping inputs to
query or instruction templates (Hayes and Shah,
2017; Lindsay, 2019; Krening et al., 2017), by us-
ing an encoder-decoder model to construct a gen-
eral language-based critique policy (Harrison et al.,
2018), or by learning structural causal models for
identifying the relationships between variables of
interest (Madumal et al., 2019).

However, for a model to be considered explain-
able, it is necessary to account for the observer of
the explanation. In this regard, the research of Lage
et al. (2019) investigates the effect of the mismatch
between the model used to extract a summary of
an agent’s policy and the model used from another
agent to reconstruct the given summary.

Focusing onto experimental work about knowl-
edge transfer between agents, there exist two main
approaches to solve this problem: (1) by reusing
knowledge from previously solved tasks, (2) by
reusing the experience of another agent. The latter
is called inter-agent transfer learning, and is of-
ten realized thought human feedback, action advis-
ing, and learning from demonstration (Argall et al.,
2009; Fournier et al., 2019; Jacq et al., 2019). Some
authors refer to policy summarization or shaping
when the feedback, advice or demonstration sum-
marize the agent’s behavior with the objective of
transferring information to another agent (Amir and
Amir, 2018). Heuristic based approaches extract di-
verse important states based on state similarity and
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q-values, while machine teaching and inverse re-
inforcement learning approaches extrapolate state-
action pairs useful for recovering the agent’s reward
function (Brown and Niekum, 2018). We take in-
spiration from policy summarization and learning
from demonstration approaches, and extend it by
considering explanation-based exploration. Differ-
ently from Fournier et al. (2019) and Jacq et al.
(2019) we investigate the topic of transfer learning
having a two-agents setting and a q-learner. Fur-
thermore, in contrast with the existing approaches
that evaluate explanation by measuring the accu-
racy of an agent’s prediction about another agent
behavior, we focus on the effect of the explanation
on the agent learning.

3 Experiments

To operationalize the constructs discussed above,
we have created an interactive learning scenario
allowing both human-agent, and agent-agent in-
teraction. We present initial results that use this
interactive scenario to compare different kinds of
information provided to the learner.

3.1 Hypothesis
We hypothesize that the agent receiving both, expla-
nations and demonstrations, will learn faster than
agents that only receive one of these additional
forms of teaching signals. Additionally, all three
agents will learn faster than an agent learning by
itself.

3.2 Materials
Environment The environment is based on
Papi’s Minicomputer1, a competitive two-player
game, and it enables learning from explanations,
demonstrations, and own experience. Papi’s Mini-
computer is a non-verbal language to introduce chil-
dren to mechanical and mental arithmetic through
decimal notation with binary positional rules. This
environment can be taken as an example of a dy-
namic, navigational environment. Previous studies
involving children, used the same environment, and
compared optimal and suboptimal actions, giving
an information about the effect of those actions in
a certain amount of future steps (Tulli et al., 2020).

Learning Agent The learning agent is an agent
that chooses moves using a Q-table. It learns
from own experience using q-learning (α = 0.8,

1http://stern.buffalostate.edu/CSMPProgram/String, con-
sulted on Oct 2020

γ = 0.99) to solve a Markov Decision Process
(MDP), in which the optimal Q-value function is
Q ∗ (s, a) = maxπQ

π(s, a) (Sutton and Barto,
2005). Examples from demonstrations are treated
in the same way (direct q-learning update). Exam-
ples from explanations are converted into a format
that allows using a q-learning update by summing
the reward from the explainer’s actual action with
the explained reward difference.

Explainer Agent The explainer agent is model-
based and plans moves using the depth limited min-
max algorithm with search depth of 3. The agent is
also capable of giving demonstrations and explana-
tions (see below).

Demonstrations Demonstrations are additional
examples given to the learning agent on top of the
self-exploration (plain condition). It allows the
agent to learn about states and transitions that it has
not explored directly by itself. Concretely, to gen-
erate a set of demonstrations, the explainer agent
selects 10 random states and generates actions for
these states according to its policy. It then uses
its task model to compute the corresponding next
state and computes the reward obtained by this tran-
sition. The explainer then gives this information
(state, action, next state, reward) to the learner.

Explanations Similar to demonstrations, expla-
nations are examples given to the learning agent on
top of the self-exploration (plain condition). How-
ever, differently from demonstrations, explanations
contrast alternative actions in the same state and
aim to suggest a casual relationship between ex-
amples by giving a measure of how good the per-
formed action is.

To generate a set of explanations, the explainer
agent first computes the actual action that it will
perform in the current state. It computes the next
state and the reward associated with this transition.
Then, it chooses up to three alternative actions at
random and simulates the resulting alternative state
and associated reward. Finally, the agent computes
the difference between the alternative reward and
the reward from the actual action.

All this information (current state, actual ac-
tion, next state, reward, alternative action, alter-
native state, reward difference) is then combined
and given to the learning agent as an explanation.
This is the agent-agent scenario equivalent to a nat-
ural language encoding using template sentences.
Turned into natural language, such an explanation
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could take the form of: “I am doing action which
would give me reward and lead to next state, be-
cause doing alternative action would lead to al-
ternative state and have reward difference points
more/less.”

3.3 Design

We designed an experiment with four conditions:
(1) learning from own experience only [plain],
(2) learning from experience and demonstrations
[demonstration], (3) learning from experience
and explanations [explanations], and (4) learning
from experience, demonstrations, and explanations
[both]. For each condition we let the learning agent
play against the explainer agent until it has seen
100, 000 examples in total from any source; i.e., to
compute the total number of examples we sum the
examples from exploration by itself, from demon-
stration, and from explanations.

In the condition plain the learner agent receives 1
example in each step (self-exploration). In the con-
dition demonstration, the learner agent receives 11
examples in each step (1 from self-exploration, 10
from demonstration). In the condition explanation,
the agent receives up to 4 examples in each step
(1 from self-exploration, and up to 3 from explana-
tions, depending on how many alternative actions
are available in that state). In the condition both the
learner agent receives up to 14 examples in each
step, one from self-explanation, 10 from demonstra-
tions, and up to 3 from explanations. This means
that the number of steps and episodes may differ
between conditions, but the total number of sam-
ples (i.e., examples) is matched between conditions.
This means we are providing the same amount of
search-space coverage in each condition.

During a single episode of the game, the learning
agent updates its policy at every turn. If it is the
learning agent’s turn, it performs an update based
on its own experience (all conditions). If it is the ex-
plainer’s turn, the learning agent may receive a set
of demonstrations and/or explanations - depending
on the condition -, which it uses to update its policy.
Then, the learning agent updates its policy again
based on the explainer’s move (all conditions). The
explainer does not update its policy in this setup.

To create a dataset to analyze the performance,
we train the agent in each condition for N = 100
trials (total of 400 trials). We track the outcome of
the game (win/loss) and a rolling average (window
size 10) of the current win rate.

Figure 1: Average (N=100) amount of examples
needed to obtain a desired winrate against the explainer
agent. The number of examples is calculated as the sum
of all examples obtained from self-exploration, demon-
strations, and explanations.

3.4 Results
After performing the experiment, we plotted the
average number of examples needed for a given
winrate grouped by condition (figure 1). The agent
begins to perform better than the explainer agent
very early in the learning process, which is visu-
alized by a suitable winrate with less than 250 ex-
amples. Then, agents from all conditions begin to
quickly learn to dominate the explainer agent, with
the agent from the explanation condition requiring
the least amount of samples to win the majority
of games. Having access to demonstrations also
yields a slight advantage in learning, especially
early in the training process. Interestingly, having
access to both, demonstrations and explanations,
does not lead to improvements.

4 Discussion

In above section we organized the literature on the
topic of natural language in interactive learning
scenarios involving humans and agents. To date,
several excellent works exist on the topic of ex-
plainability and natural language technologies, but
there it seems to be a gap for experimental work
that aims to investigate the concept of explainable
AI for transfer learning in both human-agent and
agent-agent scenarios.

We expected that the proposed counterfactual
structure of an agent’s explanations would affect
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the learning of another agent interacting in the same
environment. Overall, the data did not confirm this
hypothesis. We assume that the impact of the for-
malization of the demonstrations and the explana-
tions is less strong than other learning parameters.
Furthermore, the access to both demonstrations and
the explanations might have influenced erroneously
the agent’s reasoning about the task. Future work
should consider isolating the problem of compar-
ing different types of information employing other
rationale that can be suitable, such as inverse rein-
forcement learning.

Another challenging future direction is repre-
sented by the implementation of methods that
model the recipient of an explanation. Inferring
the learner understanding of the task through par-
tial observations of its state would help in driving
the explainer’s selection of informative examples.

One of the aspect we neglected in the current
study is more realistic and reactive behaviors on
both the part of the learner and the explainer. On
this subject, while any given agent may not be an
expert during learning, accounting for the explain-
able agency of agents that are not experts remains
a topic of future work.

Using counterfactuals to allow agents to under-
stand the effects of their actions seems a promising
approach. However, this is not always applicable
in complex environment involving humans. If we
consider the Hex Game with a number of states
of around 1092, generating counterfactuals in natu-
ral language might conduct to probabilistic expla-
nations and increase mental overload, leading to
performance degradation.

Considering a training corpus of annotated nat-
ural language explanations provided by humans
appear to be a necessary requirement to extend our
findings to human-agent scenarios. Following the
same line, testing the effect of agents’ explainabil-
ity on human learning requires challenging long-
term studies. The evaluation framework is, in fact,
an open challenge. Further evaluation about the
effects of the provided explanations on several met-
rics beyond the human’s performance is needed to
support our claims.

5 Conclusion

Throughout this paper, we contextualize natural lan-
guage explanations with a specific focus on learn-
ing scenarios. We gave an overview of the existing
literature bridging the concept of explanation in

humans and artificial agents and showing that ex-
plainability is receiving attention in the context of
multi-agent settings. We proposed a preliminary
computational experiment for comparing demon-
strations and explanations and discuss limitations
and future work.
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