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Abstract

This paper describes the submissions of the Ni-
uTrans Team to the WNGT 2020 Efficiency
Shared Task. We focus on the efficient imple-
mentation of deep Transformer models (Wang
et al., 2019; Li et al., 2019) using NiuTensor1,
a flexible toolkit for NLP tasks. We explored
the combination of deep encoder and shal-
low decoder in Transformer models via model
compression and knowledge distillation. The
neural machine translation decoding also ben-
efits from FP16 inference, attention caching,
dynamic batching, and batch pruning. Our sys-
tems achieve promising results in both transla-
tion quality and efficiency, e.g., our fastest sys-
tem can translate more than 40,000 tokens per
second with an RTX 2080 Ti while maintain-
ing 42.9 BLEU on newstest2018.

1 Introduction

In recent years, the Transformer model and its vari-
ants (Vaswani et al., 2017; Shaw et al., 2018; So
et al., 2019; Wu et al., 2019; Wang et al., 2019)
have established state-of-the-art results on machine
translation (MT) tasks. However, achieving high
performance requires an enormous amount of com-
putations (Strubell et al., 2019), limiting the deploy-
ment of these models on devices with constrained
hardware resources.

The efficiency task aims at developing MT sys-
tems to achieve not only translation accuracy but
also memory efficiency or translation speed across
different devices. This competition constraints sys-
tems to translate 1 million English sentences within
2 hours. Our goal is to improve the quality of trans-
lations while maintaining enough speed. We partic-
ipated in both CPUs and GPUs tracks in the shared
task.

Our system was built with NiuTensor, an open-
source tensor toolkit written in C++ and CUDA

1https://github.com/NiuTrans/NiuTensor

based on dynamic computational graphs. NiuTen-
sor is developed for facilitating NLP research and
industrial deployment. The system is lightweight,
high-quality, production-ready, and incorporated
with the latest research ideas.

We investigated with a different number of en-
coder/decoder layers to make trade-offs between
translation performance and speed. We first trained
several strong teacher models and then compressed
teachers to compact student models via knowledge
distillation (Hinton et al., 2015; Kim and Rush,
2016). We find that using a deep encoder (up to
35 layers) and a shallow decoder (1 layer) gives
reasonable improvements in speed while maintain-
ing high translation quality. We also optimized the
Transformer model decoding in engineering, such
as caching the decoder’s attention results and using
low precision data type.

We present teacher models and training details
in Section 2, then in Section 3 we describe how
to obtain lightweight student models for efficient
decoding. Optimizations for the decoding across
different devices are discussed in Section 4. We
show the details of our submissions and the results
in Section 5. Section 6 summarizes this paper and
describes future work.

2 Deep Transformer Teachers

2.1 Deep Transformer Architectures

Recent years have witnessed the success of
transformer-based models in MT tasks. Many
works (Dehghani et al., 2019; Zhang et al., 2019;
Li et al., 2020) focus on designing new attention
mechanisms and Transformer architectures. Shaw
et al. (2018) extended the self-attention to con-
sider the relative position representations or dis-
tances between words. Wu et al. (2019) replaced
the self-attention components with lightweight and
dynamic convolutions. Deep Transformer mod-

https://github.com/NiuTrans/NiuTensor
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els also attracted a lot of attention. Wang et al.
(2018) proposed a multi-layer representation fu-
sion approach to learn a better representation from
the stack. Wang et al. (2019) analyzed the high
risk of gradient vanishing or exploring in the stan-
dard Transformer, which place the layer normal-
ization (Ba et al., 2016) after the attention and
feed-forward components. They showed that a
deep Transformer model can surpass the big one
by proper use of layer normalization and dynamic
combinations of different layers. In their method,
the input of layer l + 1 is defined by:

xl+1 = G (y0, . . . , yl) (1)

G (y0, . . . , yl) =
l∑

k=0

W
(l+1)
k LN (yk) (2)

where yl is the output of the lth layer and W is the
weights of different layers.

We employed the dynamic linear combination of
layers Transformer architecture incorporated with
relative position representations as our teacher net-
work, call it Transformer-DLCL-RPR.

2.2 Training Details

We followed the constrained condition of the WMT
2019 English-German news translation task and
used the same data filtering method as (Li et al.,
2019). We also normalized punctuation and to-
kenized all sentences with the Moses tokenizer
(Koehn et al., 2007). The training set contains
about 10M sentences pairs after processed. In
our systems, the data was tokenized, and jointly
byte pair encoded (Sennrich et al., 2016) with 32K
merge operations using a shared vocabulary. Af-
ter decoding, we removed the BPE separators and
de-tokenize all tokens.

We trained four teacher models using new-
stest2018 as the development set with fairseq (Ott
et al., 2019). Table 1 shows the results of all
teacher models and their ensemble, where we re-
port SacreBLEU (Post, 2018) and the model size.
The difference between teachers is the number of
encoder layers and whether they contain a dynamic
linear combination of layers. All teachers have
6 decoder layers, 512 hidden dimensions, and 8
attention heads. We shared the source-side and
target-side embeddings with the decoder output
weights. The maximum relative length was 8, and
the maximum position for both source and target
was 1024. We used the Adam optimizer (Kingma

Model Param. BLEU
Transformer-35-6 152M 43.3
Transformer-35-6+DLCL 152M 43.7
Transformer-40-6 168M 44.5
Transformer-40-6+DLCL 168M 43.9
Ensemble 640M 45.5

Table 1: Results on newstest18 - Teacher Models. 35-6
means that the model contains 35 encoder layers and 6
decoder layers.

and Ba, 2015) with β1 = 0.9, β2 = 0.997 and
ε = 10−8 as well as gradient accumulation due
to the high GPU memory footprint. Each model
was trained on 8 RTX 2080Ti GPUs for up to 21
epochs. We batched sentence pairs by approximate
length and limited input/output tokens per batch to
2048/GPU. Following the method of (Wang et al.,
2019), we accumulated every two steps for a better
batching. This resulted in approximately 56000
tokens per training batch. The learning rate was
decayed based on the inverse square root of the
update number after 16000 warm-up steps, and the
maximum learning rate was 0.002. Furthermore,
we averaged the last five checkpoints in the training
process for all models.

As shown in Table 1, the best single teacher
model achieves 44.5 BLEU (beam size 4) on new-
stest2018. Then we obtained an improvement of 1
BLEU via a simple ensemble strategy used in (Li
et al., 2019).

3 Lightweight Student Models

After the training of deep Transformer teachers, we
compressed the knowledge in an ensemble into a
single model through knowledge distillation (Hin-
ton et al., 2015; Kim and Rush, 2016). Then we
analyzed the decoding time of each part in the deep
Transformer. We further pruned the encoder and
decoder layers to improve the decoding efficiency.

3.1 Knowledge Distillation

Knowledge distillation approaches (Hinton et al.,
2015; Kim and Rush, 2016) have proven success-
ful in reducing the size of neural networks. They
learn a smaller student model to mimic the orig-
inal teacher network by minimizing the loss be-
tween the student and teacher output. We applied
the sequence-level knowledge distillation on the
teacher ensemble described in Section 2. We used
the ensemble to generate multiple translations of
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Figure 1: Profiling of the throughput during inference
on newstest2018 using a 35-6 model.

the raw English sentences. In particular, we col-
lected the 4-best list for each sentence against the
original target to create the synthetic training data.
Our base student model consists of 35 encoder lay-
ers and six decoder layers (call it 35-6) with nearly
150M parameters. It achieves 44.6 BLEU on the
test set.

3.2 Fast Student Models

Although the deep model can obtain high-quality
translations, its speed is not satisfactory. For ex-
ample, it costs 6.7 seconds to translate 2998 sen-
tences on a 2080Ti GPU using a 35-6 model with
the greedy search. Statistics show that the most
time-consuming part of the decoding process is the
decoder, as presented in Figure 1, so the most effi-
cient optimization is to use a lightweight decoder.
To make a comparison, we kept the 35 encoder lay-
ers and reduced the decoder layer to 1. In practice,
we copied the bottom layers’ parameters from big
models to small models for initialization. Then we
trained the small models as usual. Similar to (Wang
et al., 2019), the encoder has a more significant in-
fluence on the translation quality than the decoder.
Reducing the number of decoder layers brings us a
speedup of more than 30% with a slight loss of 0.3
BLEU.

We further compressed the model by shrinking
the encoder. Unless otherwise stated, the follow-
ing student models have only one decoder layer.
We copied the bottom layer parameters from big
models to initialize small models to stabilize the
training. We trained two small models with an 18-
layer encoder and a 9-layer encoder, respectively.
Table 2 shows the comparison of different teach-
ers and students. Compared with the 35-1 model,

Model Param. Speedup BLEU
Teacher-40-6 168M 1x 44.5
Student-35-6 152M 1.1x 44.6
Student-35-1 131M 1.6x 44.3
Student-18-1 77M 2.0x 43.4
Student-9-1 49M 2.4x 42.9
Student-tiny 25M 2.9x 37.2

Table 2: Results on newstest18. The students were
trained by sequence-level knowledge distillation. The
tiny setting keeps the 9-1 model’s configurations except
for using a model size of 256. We report the translation
speed on a single 2080Ti.

cutting off half of the encoder layer reduces the pa-
rameters by nearly half and gives a speedup of 20%
with a decrease of 0.2 BLEU. The 9-1 model is the
fastest model we run on the GPU. It can translate
newstest2018 within 3 seconds on a 2080Ti GPU
and obtain 42.9 BLEU.

All models mentioned above can translate 1 mil-
lion sentences on the GPU in 2 hours. However,
using a CPU to achieve this goal is not easy, so we
need smaller models. We set the 9-1 model size to
256 for the CPU version, namely 9-1-tiny, which
has only half the 9-1 model parameters. This model
achieves 37.2 BLEU on newstest2018 and reduces
90% parameters compared to the 35-6 model.

4 Optimizations for Decoding

4.1 General Optimizations

First, we discuss some device-independent opti-
mization methods.
Caching We can cache the output of the top
layer of the encoder and each step of the decoder
since we use an autoregressive model. More specif-
ically, we cache the linear transformations for
keys and values before the self-attention and cross-
attention layers.
Faster Beam Search Beam search is a common
approach in sequence decoding. The standard beam
search strategy generates the target sequence in a
self-regression manner and keeps a fixed amount
of active candidates during decoding. We adopt a
basic strategy to accelerate beam search: the search
ends when any candidate predicts the EOS sym-
bol, and there are no candidates with higher scores.
This strategy brings us up to a 20% speedup on
the WMT test set. Other threshold-based pruning
strategies (Freitag and Al-Onaizan, 2017) are not
appropriate due to the complex hyper-parameters.
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Batch Pruning The length of target sequences
may vary for different sentences in a batch, which
makes the computation inefficient. We prune the
finished hypotheses in a batch during decoding but
only gain little accelerations on CPUs.

4.2 Optimizing for GPUs

For the GPU-based decoding, we mainly explored
dynamic batching, FP16 inference, and profiling.
Dynamic Batching Unlike the CPU version, the
easiest way to reduce the translation time on GPUs
is to increase the batch size within a specific range.
We implemented a dynamic batching scheme that
maximizes the number of sentences in the batch
while limiting the number of tokens. This strategy
significantly accelerates decoding compared to us-
ing a fixed batch size when the sequence length is
short.
FP16 Inference Since the Tesla T4 GPU sup-
ports calculations under FP16, our systems execute
almost all operations in 16-bit floating-point. All
model parameters are stored in FP16, which re-
duces the model size on disk by half. We tried to
run all operations at a 16-bit floating-point. How-
ever, in our test, some particular inputs will cause
numerical instability, such as large batch size or se-
quence length. To escape overflow, we convert the
data type around some potentially problematic op-
erations, i.e., all operations related to reduce sum.

4.3 Optimizing for CPUs

As mentioned above, the goal we set for the CPU
version is to translate 1 million sentences in 2 hours.
We used the same settings as the 9-1 model except
that the model size is 256 and therefore sacrifice
about 6 BLEU on the WMT test set. We employed
two methods to speed up the decoding on CPUs.
Using of MKL To make the full use of the In-
tel architecture and to extract the maximum per-
formance, the NiuTensor framework is optimized
using the Intel Math Kernel Library for basic oper-
ators. We can take advantage of this convenience
with only minor changes to the configuration.
Decoding in Parallel The target machine in
this task has 96 logical processors (with hyper-
threading) and 192 GB RAM so that we can run
our multi-threading system. We split the input into
several parts according to the number of lines and
start multiple processes to translate simultaneously.
Then we merge each part of translations to one file
in the original order.

4.4 Other Optimizations

In addition to the methods above, we also tried to
find the optimal settings for our system.
Greedy Search In the practice of knowledge dis-
tillation, we find that our systems are insensitive to
the beam size. It means that the translation quality
is good enough even we use greedy search in all
submissions.
Better decoding configurations As mentioned
earlier, our GPU versions use a large batch size,
but the number on the CPU is much smaller. We
use a fixed batch size (number of sentences) of 512
on the GPU and 64 on the CPU. We also set the
number of processes on the CPU as 24 and use
2 MKL threads for each process. The maximum
sequence length is 120 for the source and 200 for
the target.
Profile-guided optimization To further im-
prove our systems’ efficiency, we identified and op-
timized the performance bottlenecks in our imple-
mentation. There are many off-the-shelf tools for
performance profiling such as the gprof2 for C++
and the nvprof3 for CUDA. We run our systems on
the WMT test set for ten times and collect profile
data for all functions. Figure 2(a) shows the pro-
filing results for different operations on GPUs be-
fore optimizing. Before optimizing, the most time-
consuming functions on CPUs is pre-processing
and post-processing. We gain 2x speedup on CPUs
by using multi-threads for Moses (4 threads) and
replacing the Python subword tool with the C++
implementation4.

For GPU-based decoding, the bottleneck is
matrix multiplication and memory management.
Therefore we use a memory pool to control allo-
cation/deallocation, which dynamically allocates
blocks during decoding and releases them after the
translation finished. Compared with the on-the-fly
mode, this strategy significantly improves the ef-
ficiency of our systems by up to 3x speedup and
slightly increases the memory usage. We further
remove the log softmax in the output layer for
greedy search and other data transfers with a slight
acceleration of about 10%. Figure 2(b) shows the
statistics of optimized operations. The data type
conversion overhead takes about 12% of the decod-
ing time.

2https://ftp.gnu.org/old-gnu/Manuals/
gprof-2.9.1/html_node/gprof_toc.html

3http://docs.nvidia.com/cuda/
profiler-users-guide/index.html

4https://github.com/glample/fastBPE

https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_node/gprof_toc.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_node/gprof_toc.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/glample/fastBPE
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(a) Operations before optimizing.
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(b) Operations after optimizing

Figure 2: Profiling results of all operations during inference before or after optimizing on newstest2018 using a 9-1
model on a 2080Ti. We performed decoding for ten times to get more convincing results. Before optimizing, the
decoding time is 76.9 seconds. The combination of different optimizations reduces the time to 24.9 seconds. MM
is matrix multiplication, and CopyBlocks is used in the tensor copy.

5 Submissions and Results

We submitted five systems to this shared task, one
for the CPU track and four for the GPU track, sum-
marized as Table 3. We report file sizes, model
architectures, configurations, metrics for transla-
tion, including BLEU on newstest2018 and the real
translation time on a combination of test sets. The
BLEU and translation time were measured by the
shared-task organizers on AWS c5.metal (CPU)
and g4dn.xlarge (GPU) instances.

For the GPU tracks, our systems were measured
on a Tesla T4 GPU. GPU versions were compiled
with CUDA 10.1, and the executable file is about
96 MiB. Our models differ in encoder and decoder
layers. The base model (35-6) has 35 encoder lay-
ers and six decoder layers and achieves 44.6 BLEU
on the newstest2018. Then we see a speedup of
more than one-third and a slight decrease of only
0.2 BLEU by reducing the decoder layer to 1 (35-
1). We continue to reduce the number of encoder
layers for more accelerations. The 18-1 system
reduces the translation time by one-third with only
half of the encoder layers compared to the 35-1
model. Our fastest system consists of 9 encoder
layers and one decoder layer, which has one-third
parameters of the 35-6 model, achieves 40 BLEU
on the WMT 2019 test set, and speeds up the base-
line by 3x.

For the CPU track, we used the entire machine,
which has 96 virtual cores. Our CPU version is
compiled with MKL static library, and the exe-
cutable file is 22 MiB. We used a tiny model for the
CPU with 256 hidden dimensions and kept other

hyper-parameters as the 9-1 model in the GPU ver-
sion. Interestingly, using half of the hidden size
significantly reduces the translation quality. The
main reason is that the parameters of large models
cannot be reused when using smaller dimensions.
This also proves that reducing the number of en-
coder and decoder layers is a more effective com-
pression method. The CPU system achieves 37.2
BLEU on the newstest2018 and is 1.2x faster than
the fastest GPU system.

We made fewer efforts to reduce the model size
and memory footprint. Our systems use a global
memory pool, and we sort the input sentences in
descending order of length. Thus the memory con-
sumption will reach a peak in the early stage of
decoding and then decrease. Our base model con-
tains 152 million parameters, and the file size is 291
MiB when stored in 16-bit floats. The docker im-
age size ranges from 724 MiB to 930 MiB for our
GPU systems, while the CPU version is 452 MiB.
All systems running in docker are slightly slow
down, and we plan to improve this in subsequent
versions.

6 Conclusion

To maximize the decoding efficiency while en-
suring sufficiently high translation quality, we ex-
plored different techniques, including knowledge
distillation, model compression, and decoding al-
gorithms. The deep encoder and shallow decoder
networks achieve impressive performance in both
translation quality and speed. We speed up the de-
coding by 3x with lightweight models and efficient
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Model MiB Time BLEU

Student-35-6 305 3166.4 44.6
Student-35-1 264 2023.3 44.3
Student-18-1 156 1355.0 43.4
Student-9-1 99 977.6 42.9

Student-9-1-tiny† 67 810.9 37.2

Table 3: Results of all submissions. † indicates the
CPU system. All student systems were running with
greedy search. The time was measured by the organiz-
ers on their test set and we only report the BLEU on the
newstest2018.

implementations.
For the GPU system, we plan to optimize the

FP16 inference by reducing the type conversion
and applying kernel fusion (Wang et al., 2010) for
Transformer models. For the CPU system, we will
further speed up the inference by restricting the
output vocabulary to a subset of likely candidates
given the source (Shi and Knight, 2017; Senellart
et al., 2018) and using low precision data type
(Bhandare et al., 2019; Kim et al., 2019; Lin et al.,
2020).
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