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Abstract

This paper describes the ERMI system submitted to the closed track of the PARSEME shared
task 2020 on automatic identification of verbal multiword expressions (VMWEs). ERMI is an
embedding-rich bidirectional LSTM-CRF model, which takes into account the embeddings of
the word, its POS tag, dependency relation, and its head word. The results are reported for 14
languages, where the system is ranked 1st in the general cross-lingual ranking of the closed track
systems, according to the Unseen MWE-based F1.

1 Introduction

Multiword expressions (MWEs) are lexical items that consist of multiple lexemes. The challenge of
identifying MWEs comes from the fact that their properties cannot directly be deducted from the lexical,
syntactic, semantic, pragmatic, and statistical properties of their components (Baldwin and Kim, 2010).
Addressing this challenge, the PARSEME shared task 2020 is a campaign that encourages the develop-
ment of automatic verbal MWE (VMWE) identification models in a multilingual context. In this third
edition of the PARSEME shared task, the focus is on identifying VMWEs that are unseen in training
data. For this task, dev, test, train and raw corpora have been provided for 14 languages.

ERMI (Embedding-Rich Multiword expression Identification) is a multilingual system with a bidi-
rectional LSTM-CRF architecture, which can take as input the embeddings of the word, its POS tag,
dependency relation, and its head word. Since the main focus of the shared task is to identify unseen
VMWEs, we experiment with how the addition of the head word embedding affects the prediction re-
sults for different languages. In addition, we also take advantage of the raw corpora in a semi-supervised
teacher-student neural model carrying the same LSTM-CRF architecture for two languages (EL, TR).
We use no external resources in the training of our system, thus participating in the closed track.

The results for all 14 languages in the closed track have been submitted where language-specific
combinations of the above-mentioned embeddings have been used as input to the system. The system
has been ranked 1st in the general cross-lingual ranking of the closed track systems for the Unseen
MWE-based F1, and 2nd for the Global MWE-based and Global Token-based F1 metrics.

2 System Description

Named entity recognition (NER) and MWE detection can be considered similar tasks, thus encouraging
similar architectures. Neural models have been preferred frequently for NER (Lample et al., 2016;
Güngör et al., 2019), and for detecting VMWEs in the previous edition of PARSEME (Ehren et al.,
2018; Boros and Burtica, 2018; Berk et al., 2018; Taslimipoor and Rohanian, 2018; Stodden et al., 2018;
Zampieri et al., 2018).

In order to detect VMWEs, we develop a system1 consisting of three (two supervised, one semi-
supervised) neural network models, all of which carrying the same, bidirectional LSTM-CRF architec-
ture, as proposed by Huang et al. (2015) for sequence tagging tasks. All models consist of three layers:

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1ERMI is freely available at https://github.com/zeynepyirmibes/ERMI
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Figure 1: Our bi-LSTM-CRF models (a) ERMI; (b) ERMI-head; and (c) TeachERMI. For TeachERMI,
the input layer may or may not contain the head word embedding, decided according to validation results
per language.

the input layer, LSTM layer, and CRF layer, implemented using Keras (Chollet and others, 2015) with
Tensorflow backend (Abadi et al., 2015). The architecture of each model is shown in Figure 1.

The input of our neural networks is an embedding layer, where we provide the model with the con-
catenation of the embeddings of the word, its POS tag, its dependency relation to the head, and the head
of the word (for some languages). We do not use a pre-trained word embedding model. Instead, we
exploit the provided raw corpora 2, which are gathered specifically for this task and are in the same do-
main as the annotated corpora3; and train FastText word embedding models for each of the 14 languages
separately, using Gensim’s Fasttext implementation (Řehůřek and Sojka, 2010). The embedding vector
dimension for all languages is 300 (for word and head word embeddings), whereas the vocabulary size
of the embedding models vary due to different sizes of raw corpora. Due to computational limitations,
we only use a portion of the raw corpora for FR, PL and SV languages.

2.1 Supervised ERMI

We develop two supervised neural models (ERMI, and ERMI-head) differing only in the input layer.
For the input (embedding) layer, word and head word embeddings each of dimension 300 are extracted
from the Fasttext embedding models that we pretrained from the raw corpora. Dependency relation and
POS tag embeddings are represented as one-hot encodings, and then converted into embeddings during
training. Hence, the dimension of the dependency relation embedding for each language is the number
of unique DEPREL tags encountered in the training data plus one, for unknown tags in the test data. The
same logic holds for the POS tag embedding.

For our basic ERMI model, we use as input the concatenation of the embeddings of the word (CoNLL-
U’s FORM), its POS tag (UPOS), and its dependency relation to the head word (DEPREL). For our
second supervised model, ERMI-head, we also concatenate the embedding of the head of the word
(CoNLL-U’s HEAD) to the input layer, in order to incorporate the relationship the word has to its de-
pendent word, which, as we observe for some languages (EU, FR, HE, HI, PL, TR), aids in the decision
of whether a word is to be annotated as part of a VMWE.

Differing only in the input layer, both models pass the input features to the bidirectional LSTM layer,
where past (via forward LSTM states) and future (via backward LSTM states) information are taken into
account. The output of the LSTM layer is then passed to the CRF layer, which connects consecutive
output layers to produce the final output. With this approach, we incorporate both past and future in-
formation using the bi-LSTM architecture, and also the sentence level tag information using the CRF

2http://hdl.handle.net/11234/1-3416
3http://hdl.handle.net/11234/1-3367
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layer.

2.2 Semi-supervised ERMI

In the third edition of PARSEME, raw (unlabeled) corpora are provided for all languages, thus enabling
the possibility of semi-supervised learning. Hence, we exploit a portion of the raw corpus in addition
to the annotated training corpus, and propose a teacher-student model (TeachERMI). The aim is to be
able to also train on unlabeled data, as suggested by Wu et al. (2020), where they train a teacher-student
cross-lingual Named Entity Recognition (NER) model.

In this approach, we first train a teacher model for every language separately, on the labeled training
set. The teacher model is one of ERMI, or ERMI-head, depending on the validation results per language.
Afterwards, we take a portion of the unlabeled raw corpus (corresponding to the half of the size of the
training corpus for that language), and label it using the teacher model that we trained. Then, we combine
the annotated training corpus with the raw corpus labeled by the teacher model, and train a student model.
We observe that this approach only performs better than the teacher model (ERMI or ERMI-head) for
Greek (EL) and Turkish (TR). Thus, we employ this approach (TeachERMI) for only two languages.

3 Experimental Setup

Tagging Scheme: During pre-processing, we adopt the bigappy-unicrossy tagging scheme proposed by
Berk et al. (2019) to better represent overlapping (nesting and crossing) and discontinuous MWEs.

Datasets: During the validation runs (results of which are explained in Section 4.1), we concatenate
the training and development corpora for each language, and randomly split 90% for training and 10%
for testing. For the teacher-student model, we also use a portion of the raw corpora (roughly half the size
of the training sets). After selecting the best system (out of ERMI, ERMI-head, and TeachERMI) for
each language, we train our final models using the combined training and development sets, and use the
blind test data for testing. For Turkish (TR) and Greek (EL), we develop a teacher-student model, using
10,796 and 9,510 sentences, respectively, of the provided raw corpora in addition to the development and
training sets.

Hyperparameters: We choose the mini batch size and number of epochs with respect to the size of
training sets for each language (ref. Table 1). We limit the mini batch size between 8-32, drawn from the
conclusions of Reimers and Gurevych (2017), where they experiment with five sequence tagging tasks
with LSTM architectures, and deduct the optimal mini batch size for large training corpora. We use a
fixed dropout rate of 0.1 for all bi-LSTM layers.

4 Results and Discussion

We make validation runs on the training and development data, and compare our three neural models for
each language. Afterwards, we report the official results of the selected systems on the blind test set.

4.1 Validation Results

The validation results of our three systems (ERMI, ERMI-head, TeachERMI) are compared for all lan-
guages, and the best-performing system (with respect to Unseen MWE-based, Global MWE-based, and
Global Token-based F1) for each language is selected for the final submission. In Table 1, we report the
validation results together with the hyperparameters used during training.

For us, the most interesting part of evaluating the validation runs is the comparison between ERMI
and ERMI-head. We observe that the addition of head word embeddings to the input layer improves the
Unseen MWE-based F1 score significantly for the EU, FR, HE, HI, PL and TR languages (4.98% on
average for these languages). We also have the opportunity to observe that the teacher-student model
enables the enlargement of the training corpus by around 50%, thus enabling better generalization for
EL and TR.
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System
Batch
Size

Epochs
Unseen

MWE-based F1

Global
MWE-based F1

Global
Token-based F1

System
Batch
Size

Epochs
Unseen

MWE-based F1

Global
MWE-based F1

Global
Token-based F1

DE
ERMI 21.93 52.59 57.51 ERMI 17.18 43.12 44.73

ERMI-head 16 20 20.49 47.27 55.13 IT ERMI-head 16 15 7.74 31.63 33.96
TeachERMI 21.89 48.70 53.71 TeachERMI 18.40 38.40 40.35

EL
ERMI 30.77 60.07 66.02 ERMI 25.45 69.94 72.13

ERMI-head 32 20 30.51 55.13 59.76 PL ERMI-head 32 20 32.03 70.85 72.23
TeachERMI 33.33 60.11 64.82 TeachERMI 22.97 63.61 64.57

EU
ERMI 39.39 77.55 80.12 ERMI 22.64 57.89 58.23

ERMI-head 16 15 42.42 77.81 80.50 PT ERMI-head 32 20 25.59 53.57 55.18
TeachERMI 28.57 69.16 72.01 TeachERMI 21.05 54.12 54.16

FR
ERMI 24.83 59.62 66.31 ERMI 24.24 82.88 84.38

ERMI-head 32 20 27.18 62.75 66.15 RO ERMI-head 16 15 28.57 80.57 81.20
TeachERMI 20.39 57.39 63.10 TeachERMI 27.91 81.85 83.59

GA
ERMI 4.82 9.80 27.23 ERMI 30.23 60.16 60.41

ERMI-head 8 12 2.27 1.92 23.08 SV ERMI-head 8 12 25.00 55.85 58.26
TeachERMI ~0 ~0 ~0 TeachERMI 27.50 51.33 50.28

HE
ERMI 10.67 27.87 31.02 ERMI 42.86 64.95 64.92

ERMI-head 32 20 14.18 27.19 34.65 TR ERMI-head 32 20 45.71 65.98 66.50
TeachERMI 7.21 13.04 11.76 TeachERMI 52.25 67.32 68.72

HI
ERMI 42.11 54.84 69.35 ERMI 42.99 62.39 66.67

ERMI-head 8 12 53.66 63.64 74.63 ZH ERMI-head 32 20 39.30 59.43 63.83
TeachERMI 35.90 53.12 70.97 TeachERMI 39.44 59.61 61.96

Table 1: Validation results and hyperparameters of our three models for each language.

Unseen MWE-based Global MWE-based Global Token-based
Language System P R F1 Rank P R F1 Rank P R F1 Rank

DE ERMI 24.02 20.27 21.98 1 63.23 44.66 52.35 2 76.14 42.66 54.68 2
EL TeachERMI 28.70 31.00 29.81 1 67.20 56.16 61.19 2 75.19 58.82 66.00 2
EU ERMI-head 21.13 37.33 26.99 1 75.95 70.35 73.04 2 80.10 72.25 75.97 2
FR ERMI-head 18.54 35.67 24.40 1 61.52 61.30 61.41 2 70.86 65.53 68.09 2
GA ERMI 14.79 6.98 9.48 1 32.62 13.99 19.58 2 69.71 21.15 32.45 1
HE ERMI-head 11.49 6.62 8.40 1 41.81 24.85 31.17 2 46.72 26.22 33.59 2
HI ERMI-head 37.09 41.67 39.25 1 63.48 56.32 59.69 1 79.48 62.00 69.66 1
IT ERMI 17.44 10.00 12.71 1 66.27 32.75 43.84 2 75.45 32.55 45.48 2
PL ERMI-head 23.28 29.24 25.92 1 73.92 64.91 69.12 2 77.87 65.86 71.36 2
PT ERMI 24.63 33.33 28.33 1 68.84 59.46 63.81 2 73.62 58.80 65.38 2
RO ERMI 16.45 30.10 21.28 1 85.67 81.57 83.57 1 88.69 82.97 85.74 1
SV ERMI 31.16 28.67 29.86 1 72.68 55.73 63.08 2 77.24 52.53 62.53 2
TR TeachERMI 37.28 35.67 36.46 1 67.11 61.86 64.38 1 69.11 62.42 65.60 1
ZH ERMI 47.49 34.67 40.08 1 66.67 55.98 60.86 1 70.92 58.99 64.41 1

Total 25.25 27.23 26.20 1 64.78 52.85 58.21 2 73.65 54.48 62.63 2

Table 2: Official Language-specific Results of ERMI

4.2 Test Results

We evaluate the validation runs (Table 1), and train the ERMI system for DE, GA, IT, PT, RO, SV and
ZH languages; the ERMI-head system for EU, FR, HE, HI, and PL languages. For Turkish (TR), we
train TeachERMI using the ERMI-head input layer (including the head word embedding), and for Greek
(EL), we train TeachERMI using the ERMI input layer (excluding the head word embedding), judging
from these languages’ validation results. Having selected the most appropriate system for each language,
we present the official results in the closed track for all 14 languages on the blind test data in Table 2.

4.3 Discussion

We have been able to observe from the validation results that the addition of head word embeddings to
the input layer significantly aided in detecting unseen VMWEs for EU, FR, HE, HI, PL and TR. In order
to observe the effect of head word embeddings on VMWE detection in the final test set, we removed
the head word embeddings from the input layer for one of those languages (EU), and obtained a 24.64%
Unseen MWE-based F1 score from the ERMI model, as compared to the 26.99% that we’ve obtained in
the official results with ERMI-head.

For DE, GA, IT, PT, RO, SV and ZH, our ERMI model (without head word embeddings in the input
layer) performed better than ERMI-head and TeachERMI during the validation runs. To examine this
phenomenon in the blind test set, we also trained the ERMI-head system for one of those languages (IT).
The 43.84% Global MWE-based F1 score of ERMI for IT drops to 36.88% when head-word embeddings
are added to the input layer.
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Analyzing the presence and absence of head-word embeddings in the embedding layer for each lan-
guage, we deduct that feeding a language-specific input layer to the neural models increased our overall
performance. Using also the raw corpora for EL and TR languages with the teacher-student model, we
have been able to benefit from training on unlabeled data, which may be preferable for low resource sce-
narios. For TR, the validation results show the superiority of ERMI-head over ERMI, and of TeachERMI
over ERMI-head. Hence, the final system for Turkish is TeachERMI with the ERMI-head input layer.
We also run ERMI-head for the final test set, where we obtain a Global MWE-based F1 score of %63.47,
whereas the official score of TeachERMI for TR is %64.38, showing us the benefit of using the teacher-
student model for this language.

When we look at the performance of our system for the MWE-based F1 score per VMWE category,
we can see that our system outperforms the other closed track system in the LVC.full category for HI,
TR and ZH, and is ranked 2nd among all seven (open and closed track) systems for HI. Our system also
predicts MVCs better than other systems that submitted their results for IT and PT.

Our overall system ranked 1st among 2 systems in the closed track, and 3rd among 9 systems in both
open and closed tracks with respect to Unseen MWE-based F1, which was the focus of this edition of
PARSEME. It is worth noting that, although we did not make use of any external resources (participating
in the closed track), we outperformed most of the systems in the open track that exploit such resources.
Our system also ranked 1st in the closed track for the HI, RO, TR and ZH languages in the Global
MWE-based F1 metric and 5th for all 14 languages among all systems in the Global MWE-based and
Token-based F1 metric.

5 Conclusion

In this paper we proposed an embedding-rich bidirectional LSTM-CRF system. In addition to word,
POS and dependency relation embeddings, we exploited head word embeddings, especially to tackle the
issue of predicting unseen VMWEs. Within the closed track, we have used the raw corpora to train word
embeddings, as well as proposing a semi-supervised teacher-student model, providing the opportunity of
training on unlabeled data for VMWE identification. These methods have increased the generalisation
power, enabling our system to perform best in predicting unseen VMWEs in the closed track.
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lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. Tensor-
Flow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

Timothy Baldwin and Su Nam Kim. 2010. Multiword expressions. In Nitin Indurkhya and Fred J. Damerau,
editors, Handbook of Natural Language Processing, Second Edition, pages 267–292. CRC Press, Taylor and
Francis Group, Boca Raton, FL. ISBN 978-1420085921.
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