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Abstract
We present a novel methodology for fast bottom-up creation of large-scale semantic similarity resources to support development and
evaluation of NLP systems. Our work targets verb similarity, but the methodology is equally applicable to other parts of speech. Our
approach circumvents the bottleneck of slow and expensive manual development of lexical resources by leveraging semantic intuitions of
native speakers and adapting a spatial multi-arrangement approach from cognitive neuroscience, used before only with visual stimuli,
to lexical stimuli. Our approach critically obtains judgments of word similarity in the context of a set of related words, rather than of
word pairs in isolation. We also handle lexical ambiguity as a natural consequence of a two-phase process where verbs are placed in
broad semantic classes prior to the fine-grained spatial similarity judgments. Our proposed design produces a large-scale verb resource
comprising 17 relatedness-based classes and a verb similarity dataset containing similarity scores for 29,721 unique verb pairs and 825
target verbs, which we release with this paper.
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1. Introduction

Verbs pose a particular challenge to machine interpretation
of sentence meaning due to their complex linguistic proper-
ties. The role as sentence pivots, encoding crucial informa-
tion about the structural and semantic relationships between
the elements of the clause, assigns a lot of weight to verbs
as carriers of information. This is why accurate, nuanced
analysis and representation of their meaning is especially
important for NLP systems to get closer to human levels
of language understanding (Jackendoff, 1972; Levin, 1993;
McRae et al., 1997; Altmann and Kamide, 1999; Resnik and
Diab, 2000; Ferretti et al., 2001; Sauppe, 2016, inter alia).
The demand for verb-specific resources to support NLP has
been recognised in recent years, as reflected in the publica-
tion of a large verb similarity dataset for English, SimVerb-
3500 (hereafter SimVerb) (Gerz et al., 2016). However,
the need for high-quality, wide-coverage lexical resources
targeting verb semantics has by no means been satisfied.
Rich lexical resources encoding information about verbs’
semantic properties such as FrameNet (Baker et al., 1998)
or VerbNet (Kipper Schuler, 2005; Kipper et al., 2006) are
still unavailable for most languages, and evaluation datasets
dedicated to or dominated by nouns are by far predominant
(Finkelstein et al., 2002; Agirre et al., 2009; Bruni et al.,
2012; Hill et al., 2015). Therefore, we propose methodology
aimed at alleviating the evaluation data scarcity problem and
overcoming the bottleneck of manual gold standard creation.
We present a novel approach to obtaining semantic simi-
larity data by means of a two-phase design consisting in
(1) bottom-up semantic clustering of verbs into relatedness-
based classes and (2) spatial similarity judgments obtained
via a multi-arrangement method so far employed only in
psychology and cognitive neuroscience research and with
visual stimuli (Kriegeskorte and Mur, 2012; Mur et al., 2013;

Charest et al., 2014). We show how it can be adapted for
the purposes of a large-scale linguistic task with polysemous
lexical stimuli and used to obtain verb similarity data. The
promise of this method lies in the intuitive nature of the task
(i.e., relative similarities between items are signaled by the
geometric distances within a 2D arena) and a user-friendly
drag-and-drop interface. This significantly facilitates and
speeds up the task, as many similarity judgments are ex-
pressed with a single mouse drag. Moreover, no structure or
criteria are pre-imposed on the annotators, and similarities
between individual verbs are judged in the context of other
verbs appearing in the arena, rather than in isolated pairs.
Crucially, the method allows for clustering of verbs and
pairwise semantic similarity ratings at the same time, which
can be of great benefit in NLP as a means of rapid creation
of evaluation data.
We make available 17 relatedness-based classes and SpA-
Verb, a large intrinsic evaluation dataset including 29,721
unique pairwise verb (dis)similarity scores for 825 target
verbs.1 The number of pairwise scores surpasses the largest
existing verb-specific evaluation resource, SimVerb with
3,500 pairwise scores, by a significant margin. We release
the data at the following link: https://github.com/
om304/SpA-Verb.

2. Related Work
Recent years have seen word representation learning take
center stage in NLP, with novel architectures pushing per-
formance to new heights. Further advances rely on the

1The scores are Euclidean distances corresponding to dissimi-
larities between words, with smaller scores for similar verbs and
larger scores for dissimilar verbs. The total number of pairwise
scores results from aggregating the scores recorded for all possible
unique pairings of verbs in each of the 17 classes (see Table 1).

https://github.com/om304/SpA-Verb
https://github.com/om304/SpA-Verb
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availability of high-quality evaluation resources, which are
still limited, and few and far between. Rich expert-created
resources such as WordNet (Miller, 1995; Fellbaum, 1998),
VerbNet (Kipper Schuler, 2005; Kipper et al., 2006), or
FrameNet (Baker et al., 1998) encode a wealth of seman-
tic, syntactic and predicate-argument information for En-
glish words, but are expensive and time-consuming to cre-
ate. Crowd-sourcing with non-expert annotators has been
adopted as a quicker alternative to produce evaluation bench-
marks. Semantic models have been predominantly evaluated
on datasets consisting of human similarity ratings collected
for sets of word pairs (Baroni et al., 2014; Levy and Gold-
berg, 2014; Pennington et al., 2014; Dhillon et al., 2015;
Schwartz et al., 2015; Wieting et al., 2016; Bojanowski et
al., 2017; Mrkšić et al., 2017).
Various views of what constitutes ‘semantic similarity’ be-
tween words have been adopted, and it is undecided what
kind of meaning relationship word embeddings should cap-
ture. The term semantic relatedness has been employed to
refer to words linked by any kind of semantic relation (Bu-
danitsky and Hirst, 2001; Budanitsky and Hirst, 2006; Tur-
ney and Pantel, 2010), including synonyms (baffle-perplex),
meronyms and holonyms (finger-hand) or antonyms (soft-
hard). Similarity defined as association, i.e., the mental
activation of a term when another is presented (Chiarello et
al., 1990; Lemaire and Denhiere, 2006), e.g., knife-murder,
has been estimated in terms of frequency of co-occurrence
of words in language (and the physical world) (Turney, 2001;
Turney and Pantel, 2010; McRae et al., 2012; Bruni et al.,
2012). In contrast to associative relatedness, a concept of
semantic similarity defined in terms of shared superordi-
nate category (Lupker, 1984; Resnik, 1995) (taxonomical
similarity (Turney and Pantel, 2010)) or shared semantic
features (Tversky, 1977; Frenck-Mestre and Bueno, 1999;
Turney, 2006) has been proposed. Here, similarity is quan-
tified in terms of degree of overlap in semantic properties,
e.g., shared function or physical features, with synonyms
occupying the top region of the similarity scale (e.g. fiddle-
violin (Cruse, 1986)). In this work, we reserve the term
(semantic) similarity for this latter definition of closeness of
meaning, and distinguish it from the more general related-
ness, which also includes association, as in previous work
(Resnik, 1995; Resnik and Diab, 2000; Agirre et al., 2009;
Hill et al., 2015; Gerz et al., 2016). We explore how this dis-
tinction is captured by native speaker judgments in the two
tasks constituting our annotation design: rough semantic
clustering and spatial arrangements of words.
Despite their wide usefulness, most available datasets used
for intrinsic evaluation in distributional semantics are re-
stricted in size and coverage, many do not distinguish simi-
larity and relatedness, and only a few target verbs in particu-
lar. The prominent word pair datasets include WordSim-353
(Finkelstein et al., 2002; Agirre et al., 2009), comprising 353
noun pairs, and SimLex-999 (Hill et al., 2015), comprising
999 word pairs out of which 222 are verb pairs. Verb-only
datasets include YP-130 (Yang and Powers, 2006) (130 verb
pairs) and the dataset of Baker et al. (2014) (143 verb pairs).
A resource aimed at addressing the problem of insufficient
verb-specific evaluation data is SimVerb (Gerz et al., 2016),
providing pairwise similarity scores for 3,500 verb pairs.

Although pairwise rating datasets have been ubiquitous in
intrinsic evaluation, alternative annotation approaches and
dataset types have been proposed to address some of their
limitations. These include best-worst scaling (Louviere and
Woodworth, 1991; Louviere et al., 2015; Avraham and Gold-
berg, 2016; Kiritchenko and Mohammad, 2016; Kiritchenko
and Mohammad, 2017; Asaadi et al., 2019), which relies on
relative judgments of several items to decide which displays
a given property to the highest and which to the lowest de-
gree, and paired comparisons (Dalitz and Bednarek, 2016)
(where annotators choose which of the two items has more of
a given property). Models have also been evaluated on syn-
onym detection datasets gathered via English as foreign or
second language tests (Landauer and Dumais, 1997; Turney,
2001) and word games (Jarmasz and Szpakowicz, 2003),
composed of 5-word tuples (one target word and 4 potential
synonyms, only one correct), and on analogy (Mikolov et al.,
2013; Gladkova et al., 2016) and semantic relation datasets
(Baroni and Lenci, 2011).
The largest verb-focused dataset currently available,
SimVerb, is a result of a crowd-sourcing effort involving
over 800 raters, each completing the pairwise similarity
rating task for 79 verb pairs. In this paper, we present an
alternative novel approach which allows an annotator to im-
plicitly express multiple pairwise similarity judgments by a
single mouse drag, instead of having to consider each word
pair independently. This lets us scale up the data collec-
tion and, starting from the same set of verbs as those used
in SimVerb, generate similarity ratings for over 8 times as
many verb pairs. This approach is coupled with a precursor
method for creating relatedness-based item classes within
which the similarity judgments are made.

3. Multi-Arrangement for Semantics
3.1. Spatial Arrangement Method (SpAM)
The spatial arrangement method (SpAM) has been used
before to collect similarity judgments through geometric
arrangements of visual stimuli in psychology and cogni-
tive neuroscience (Goldstone, 1994; Levine et al., 1996;
Kriegeskorte and Mur, 2012; Hout et al., 2013; Mur et al.,
2013; Charest et al., 2014). However, its applicability to se-
mantic similarity of lexical stimuli has not yet been explored.
To the best of our knowledge, this is the first adaptation of
SpAM to lexical stimuli.
In the pairwise rating method (e.g. used with SimVerb) a
rater is presented with a pair of words at a time and the
number of possible pairwise combinations of stimuli grows
factorially as the sample size increases. For a sample of n
stimuli there are n(n− 1)/2 pairwise combinations possi-
ble. However, in SpAM a subject arranges multiple stimuli
simultaneously in a two-dimensional space (e.g. on a com-
puter screen), expressing (dis)similarity through the relative
positions of items within that space. The inter-stimulus Eu-
clidean distances represent pairwise dissimilarities. This
set-up ensures that all stimuli are considered in the context
of the entire sample. Each placement simultaneously com-
municates similarity relationship of the item to all other
items in the set.
SpAM taps into the spatial nature of humans’ mental repre-
sentation of concept similarity (Lakoff and Johnson, 1999;
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Gärdenfors, 2004; Casasanto, 2008). It allows for a freer,
intuitive expression of similarity judgments as continuous
distances, rather than requiring assignment of discrete nu-
merical ratings. The latter, although ubiquitous in intrinsic
evaluation of distributional semantic models, have a number
of limitations (Batchkarov et al., 2016; Faruqui et al., 2016;
Gladkova and Drozd, 2016; Kiritchenko and Mohammad,
2017). Human ratings of isolated pairs of words are likely
to be biased by word frequency, prototypicality, order of
presentation and speed of association, rather than reflecting
semantic factors. At the same time, degrees of similarity
and subtle meaning distinctions between words are very dif-
ficult to quantify and translate onto a discrete scale without
context or points of reference. This leads to inconsisten-
cies in annotations by the same rater or across raters. By
allowing repeated multi-wise, relative continuous similarity
judgments, SpAM addresses shortcomings of the absolute
pairwise ratings to produce evaluation data capturing the
complexity of lexical relations in continuous semantic space.
In this work, we adapt the multi-arrangement method pro-
posed by Kriegeskorte and Mur (2012). It uses inverse
multidimensional scaling to obtain a distance matrix from
multiple spatial arrangements of subsets of items within a
2D space. The subsets of items displayed are designed by
an adaptive algorithm aimed at providing optimal evidence
for the dissimilarity estimates. The subject drags and drops
the stimuli within a circular arena on the computer screen,
placing items perceived as similar close together and those
dissimilar further apart.
The first arrangement of all items within a sample provides
an initial estimate of the representational dissimilarity ma-
trix (RDM). The subject then continues work on subsets
sampled from the entire stimuli set. The process can be
terminated at any time after the first arrangement onward.
The adaptive subset selection algorithm elicits repeated judg-
ments on items placed close together in the previous trial to
ensure enough evidence is gathered for the relative distances
between the similar items and for each possible pairing.
Therefore, an earlier termination entails a potentially noisier
final RDM. For each arrangement the subject is instructed
to use the entire space available. This spreads out items
previously clustered together thus reducing bias from place-
ment error. It is the relative inter-item distances, rather than
the absolute screen distances, that represent dissimilarities
between the items from trial to trial.
Adapting the underlying multi-arrangement approach for our
purposes concerns two key challenges, previously unsolved
by SpAM-based methods: scalability and semantic ambigu-
ity. In cognitive science the approach has been used on fairly
small stimuli sets (<100 items). In preliminary tests, we
found that handling larger samples is technically and cogni-
tively difficult for human subjects. First, the dimensions of
the arena within which the items are arranged are restricted
by the size and resolution of the computer screen (Figure 1).
With 100+ items, the arena becomes overcrowded, which
makes it difficult to distribute the items as required. With
longer sessions, participant fatigue affects the quality and
consistency of the judgments. Second, lexical stimuli ex-
hibit semantic ambiguity. Without multiple sense labels,
annotators consider different word senses and hence, differ

Figure 1: The arena layout (the first trial) with the complete
class to be arranged displayed around the circle.

in their similarity judgments. In what follows, we propose
a new SpAM-inspired framework that resolves both issues
with scalability and semantic ambiguity. We show how these
key challenges are addressed by our two-phase study design.

3.2. Two-Phase Design
First, in a rough clustering phase (Phase 1), the large sample
is split into smaller, broad classes of semantically similar and
related verbs. Second, in a spatial multi-arrangement phase
(Phase 2) the verbs in the classes created in the previous
phase are repeatedly arranged within the 2D space.
This solution allows us to overcome the challenges of am-
biguity and scale mentioned in §3.1. It divides the large
sample into manageable relatedness-based classes, which
can be accommodated by most computer screens without
a decrease in legibility. Furthermore, the two-phase set-up
handles ambiguity by permitting copying verb labels to cap-
ture different senses in Phase 1. The rough clustering phase
guarantees that each verb label is presented in the context
of related verbs in the arena in Phase 2, a necessary prereq-
uisite for meaningful similarity judgments in psychology
(Turner et al., 1987).2 The actual sense is implied by the sur-
rounding words: this helps avoid mismatches in similarity
judgments between participants for ambiguous verbs. What
is more, this avoids the common problem of ambiguous low
similarity scores (Milajevs and Griffiths, 2016) that conflate
similarity judgments on antonyms (vanish - appear) and
completely unrelated notions (fry - appear), and focuses on
judgments between comparable concepts.

3.3. Data
To test the scaling-up potential of our approach and to enable
direct comparisons with the standard pairwise similarity
rating methods, we select the 827 verbs from SimVerb (Gerz
et al., 2016) as our item sample.3 The sample presents a
challenge due to its size (i.e., it is almost nine times as

2Following Turner et al. (1987), ‘stimuli can only be compared
in so far as they have already been categorised as identical, alike,
or equivalent at some higher level of abstraction.’

3Two verbs, tote and pup, were removed from the final sample
due to their very low frequency, resulting in a 825-verb sample.
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Figure 2: The rough clustering task layout (zoomed in).
Verbs can be dragged onto the ‘new category’ circle to create
a new grouping, onto ‘copy’ to create a duplicate label, or
‘Trash’ to dispose of the unwanted duplicate.

numerous as the biggest stimuli sets used in SpAM to date),
and covers a wide range of verb meaning: each top-level
VerbNet class is represented by at least 3 member verbs.

3.4. Interface and Task Structure
Our study was set up on an online platform which allows
users to log in and out to save and resume tasks as required.4

Phase 1 and Phase 2 were set up consecutively as separate
experiments and participants were recruited for each indi-
vidually. Both experiments had guidelines embedded in the
task structure, available at any point, and included a short
qualification task of 7 verbs (averaging 1.5 mins for Phase 1
and 7 mins for Phase 2) simulating the full experiment.

4. Phase 1: Rough Clustering
In Phase 1, 825 English verbs were classified into groups
based on their meaning. The annotators were instructed to
group similar and related words together. The exact number
and size of the classes were left unspecified, but the guide-
lines instructed the participants to aim for broad categories
of similar and related verbs, so as to end up with groups
of roughly 30-50 words. Smaller or larger groupings were
permitted if unavoidable (i.e., a smaller or larger number of
verbs representing a coherent semantic category or ‘theme’
was identified).
The online interface contains a scrollable alphabetic list of
825 verbs at the bottom of the screen (Figure 2). The task
consists of placing the verbs from the list one by one into
empty circles representing clusters created by the user. Each
circle acts as a container for a single grouping of similar
and related verbs. If a single verb could be put in more than
one group, the annotators were instructed to copy the verb
label (as many times as needed) and put each in a different
circle.5 This allows handling of both polysemous and vague
verbs.

4www.meadows-research.com
5This was illustrated with the verb draw, clusterable with art-

related verbs like paint or verbs such as pull and drag.

4.1. Participants
The rough clustering task was first tested by two native En-
glish speakers. They produced clusters with an encouraging
degree of overlap. It was computed using the B-Cubed met-
ric (Bagga and Baldwin, 1998) extended by Amigó et al.
(2009) to overlapping clusters and by Jurgens and Klapaftis
(2013) to fuzzy clusters, as used in related work (Jurgens and
Klapaftis, 2013; Majewska et al., 2018). B-Cubed, based
on precision and recall, estimates the overlap between two
clusterings X and Y at the item level. Let U represent the
collection of items,Xi the set of clusters containing item i in
clustering X , Yi the set of clusters containing i in clustering
Y ; let Ji be the set of items in Xi but excluding i and Ki be
the set of items in Yi but excluding i. B-Cubed precision P
and recall R are defined as:

P =
1

|U |
∑
i∈U

1

|Ji|
∑
j∈Ji

min(|Xi ∩Xj |, |Yi ∩ Yj |)
|Xi ∩Xj |

R =
1

|U |
∑
i∈U

1

|Ki|
∑
k∈Ki

min(|Xi ∩Xk|, |Yi ∩ Yk|)
|Yi ∩ Yk|

Precision and Recall are combined into F-measure defined
as their harmonic mean where α = 0.5:

Fα(P,R) =
1

α( 1
P
) + (1− α)( 1

R
)

The B-Cubed Inter-Annotator Agreement (further IAA)
score obtained (0.400) compares favourably to other work
on verb clustering (Majewska et al., 2018) (scores ranged
between 0.172-0.338). It is also promising compared to
results obtained in SemEval (scores between 0.201-0.483)
(Jurgens and Klapaftis, 2013), given that cluster labels in
that task were selected from a small number of fixed classes
per item based on WordNet (Miller, 1995).
Next, 10 native speakers from the UK and the US, with a
minimum undergraduate level of education, completed the
task. It took 2.4 hours on average to complete the task across
annotators. Between 10-67 clusters (27.5 on average) were
produced, with an average of 12.3-82.5 verbs each.

4.2. Class Selection
The goal of Phase 1 was to obtain an average classification
where membership and size of each class is determined by
the intersection of the classes from individual annotators (the
core), extended by additional valid member verbs on which
there was partial agreement. These classes, subsequently
used in Phase 2, were determined as follows. Clusters ob-
tained from the verb pairings on which any 6+ participants
(majority) agreed were used as a starting point and deter-
mined the semantics of the classes (e.g., ‘movement’, ‘com-
munication’). Post-processing was limited to (1) merging
smaller semantically related clusters to obtain large, all-
encompassing classes based on semantic relatedness, and
(2) populating the thus created sets with the verbs missing
from the majority classes based on their relatedness. These
low-agreement verbs were reviewed and added manually to
related classes by one of the authors.6 The final number of

6Clusterability of Phase 1 verbs was guaranteed by balanced
sampling from across different VerbNet classes (Gerz et al., 2016).

www.meadows-research.com
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classes was 17.

5. Phase 2: Multi-Arrangement
In Phase 2, the spatial multi-arrangement task, each of the
17 verb classes was individually presented to the participant
on the screen, in random order, around a circular arena
(Figure 1). The guidelines instructed the participants to
arrange verbs based on similarity of their meaning, dragging
and dropping the verbs one by one onto the circle, putting
similar words closer together and less similar ones further
apart, with the relative positions and distances between the
words reflecting the degree of similarity.

5.1. Participants
The minimum number of annotators set for each class was
10. Each annotator was asked to arrange at least 3 classes,
presented in a random order. Participant recruitment was
ongoing until the minimum number of annotators per class
was satisfied. Overall, 40 native English speakers from the
UK and the US, with minimum undergraduate education
level, participated in the multi-arrangement task, producing
a total of 314,137 individual pairwise judgments. For each
class and annotator, we recorded time spent on each indi-
vidual trial (i.e., each consecutive arrangement of subsets
of a single class). The average total time spent completing
the task for all 17 classes was 735 minutes, with the aver-
age time spent on a single task (equivalent to arranging one
class) ranging from 15.5 minutes (for the smallest class) to
60 minutes (for the largest class).

5.2. Post-Processing
To ensure high quality of the resultant data, we discarded
annotations where word placements were executed too fast
in the first arrangement of each class (i.e., where the average
time spent on moving a single verb was less than 1 second).
Subsequently, for each arena we excluded outlier annotators
for whom the average pairwise Spearman correlation of
arena distances with distances from all other annotators was
more than one standard deviation below the mean of all such
averages. This criterion was the acceptability threshold used
in the creation of SimLex (Hill et al., 2015).
For each class, we calculated the average of the Euclidean
distances from all accepted annotators for each verb pair
and obtained an average RDM, as shown in Figure 3. The
averaged pairwise distances (= dissimilarity scores) in each
class were then scaled to have a root mean square of 1, as in
previous work using inverse MDS (Kriegeskorte and Mur,
2012; Mur et al., 2013), to ensure inter-class consistency.
For each class, the scaled distances d′i, ..., d

′
N were thus

obtained for N pairs by dividing each pairwise distance di
by the square root of the mean of N distances squared (d2i ):

d′i =
di√

1
N

∑N
i=1 d

2
i

In case of ambiguity, a verb could be added to several classes with
semantically related members. Six out of 10 annotators used the
copying functionality to capture ambiguity and 234 different verbs
(out of 825) were assigned to more than one class. The average
pairwise percent agreement on ambiguity decisions (i.e., a binary
choice whether a verb is ambiguous or not) was 91.1%.
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Figure 3: Average ordered dissimilarity matrix for one of
the verb classes (dark-to-light color scale for small-to-large
dissimilarities), with dark areas corresponding to clusters
of similar verbs (e.g., lower, decline, diminish, decrease,
reduce, shrink).

The final dataset collates the 17 classes and contains scaled
averaged dissimilarity scores for 29,721 unique verb pairs.

6. Inter-Annotator Agreement
IAA after Phase 2 is measured based on Spearman’s rank
correlation coefficient (ρ): for each class, we compute the
average correlation of an individual annotator with the aver-
age of all other annotators (mean) (Hill et al., 2015; Gerz et
al., 2016), see Table 1.7

The flexibility of similarity judgments expressed by mouse
drags in our setup, where pairwise similarity scores from
an annotator differ by fractions based on the verbs’ relative
positions within the circular space, leaves much more room
for divergence in scores across annotators than ordinal rat-
ing scales, nevertheless the obtained IAA scores (ρA) are

7We do not calculate IAA over the entire dataset as different
annotators worked on different classes.

# Example verbs N NA ρA ρSV NSV

1 beat, punch, smash 48 1128 0.53 0.50 92
2 accuse, condemn, forbid 80 3160 0.27 0.61 134
3 accelerate, decrease, shrink 30 435 0.64 0.71 38
4 achieve, aim, tackle 57 1596 0.34 0.41 98
5 acquire, have, keep 47 1081 0.40 0.50 102
6 dismay, frustrate, upset 38 703 0.24 0.35 73
7 ask, confess, discuss 85 3570 0.27 0.30 194
8 approve, desire, prefer 23 253 0.41 0.33 31
9 calculate, analyze, predict 75 2775 0.31 0.51 159
10 climb, jump, roam 100 4950 0.26 0.48 253
11 bake, grate, slice 53 1378 0.52 0.66 85
12 cough, gulp, inhale 56 1540 0.29 0.69 52
13 chirp, hoot, roar 34 561 0.53 0.65 51
14 build, fasten, mend 62 1891 0.24 0.46 89
15 drag, fling, haul 87 3741 0.19 0.36 129
16 demolish, erode, wreck 27 351 0.46 0.62 51
17 glance, observe, perceive 41 820 0.43 0.71 76

Table 1: IAA (mean Spearman’s ρ) by verb class (ρA) of N
verbs and NA unique verb pairs and set of NSV verb pairs
shared with SimVerb in that class (ρSV ), and examples of
verbs in each class.
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promising.8 Class size was the main factor affecting the
difficulty of the task, as reflected in the agreement scores:
we observe negative correlation between agreement and the
number of verbs in a class (Spearman’s ρ = −0.67).
The lowest IAA is observed for the 2nd (#15) largest class
(87 verbs); higher IAA scores are reported with smaller
classes (#3,#1,#13). However, we also note that the agree-
ment on the largest class of ‘movement verbs’ (#10, 100
members) is higher than could be expected based on its
size alone (ρ = 0.26). This is likely due to the fact that
many ‘movement verbs’ have well-defined, concrete mean-
ings, clusterable into smaller groupings (e.g. based on the
medium, i.e., movement on land, in water, in the air). The
lowest-agreement Class 15 was more heterogeneous, includ-
ing such members as add, dip, flush, spread. The potential
subcategories to which words belong or dimensions along
which they differ were harder to define (as indicated in anno-
tator feedback): their relative positions varied by participant.
Given the strong negative correlation between sample size
and IAA, we examined whether higher IAA scores can be
obtained on the same verbs pairs split into smaller samples
in a follow-up study with 5 annotators. We randomly split
the 87-word lowest-IAA class (15) into three equal 29-word
subsets. Each annotator worked on the three subsets one by
one, with breaks in between. The IAA on the smaller sets
was lower than in the full-class (87-word) setting (average
across the three subsets: ρ = 0.098, compared to ρ = 0.19
on the full class). This suggests that while big arenas are
generally harder, the difficulty of the task has much to do
with the verbs in the sample, and this class is especially chal-
lenging due to its heterogeneity (an issue further aggravated
by randomly splitting the big set and potentially separating
verbs clusterable together).
While similar verbs do end up placed together (e.g., seize -
snatch, smear - smudge), there is greater variability in the
distances between the less similar words. These results also
indicate that decreasing the number of words to be arranged
does not guarantee higher agreement, and being presented
with a semantically clusterable bigger set of words (like the
ones produced in Phase 1) may be preferable to imposing
an arbitrary size limit on the classes. As a consequence of
the difficulty of some verb sets, the inter-annotator agree-
ment scores for some classes show low positive correlation.
Therefore, evaluation of representation models would best
be focused on classes with higher inter-annotator agreement
and consequently clearer semantics.

7. SpAM vs Pairwise Ratings
We chose the SimVerb-3500 dataset for comparison of the
pairwise rating-based approach with our spatial arrangement-
based method as it is the most similar resource currently
available due to its scale and sole focus on verbs. Since our
verb sample is the same as SimVerb, we can compare our
IAA per class with the IAA that we obtain on the verb pairs

8Notably, the reported scores compare favourably with inter-
subject correlations reported for spatial multiple arrangements
of concrete visual stimuli (real-world objects) in cognitive neuro-
science research (Cichy et al., 2019), where Spearman’s correlation
scores are in the range of approx. 0.12-0.21 and are considered
high (p < 0.001)).

in that class also occurring in SimVerb. This is shown in
ρSV of Table 1. Also, we computed Spearman’s correlation
between SimVerb similarity scores and our average pairwise
distances on all shared verb pairs (1,682).
Despite the shared sample of verbs, the number of overlap
pairs is reduced due to the differences between SimVerb and
our design. In SimVerb, pairs are chosen to cover different
degrees of relatedness, including completely unassociated
pairs. Our Phase 1 separates the sample into classes based
on relatedness, therefore the possible pairwise combinations
of verbs are limited to related verbs. These differences are
highlighted in Figure 4 which shows score distributions in
both datasets. SimVerb has a peak at the 0-1 unrelated end
of the distribution. These are the easy to annotate unrelated
verb pairs which are filtered at Phase 1 in our approach.
The overlap sets are on average over one order of magnitude
smaller than our respective complete classes. Moreover, the
overlap pairs are more spread out in terms of degree of simi-
larity compared to the complete classes. For each grouping
of similar verbs within an arena, our dataset includes all
the possible pairwise combinations, which results in many
scores differing by small amounts. Only some of those pairs
are included in SimVerb (e.g., out of Class 9 pairs decide-
choose, decide-select, decide-elect, decide-pick, only the
first one is present in SimVerb). These differences explain
the lower correlation scores on most of the entire classes
with respect to overlap pairs (ρA vs ρSV ), which, in turn,
reflect the greater difficulty in making subtle distinctions
between very many semantically related words appearing
in the same arena in our task.9 While these datasets are
produced by different paradigms, there is still a reasonable
level of correlation between the two resources on shared
pairs: ρ = 0.62.
We did not give explicit guidance on how to treat antonyms
and how to distinguish between related and semantically
similar words. We observe that our Phase 1 set-up tends
to encourage placing antonymous words in the same broad
groups, based on their relatedness (e.g., antonymous pairs
stay and leave, and lose and gain end up clustered to-
gether).10 However, in Phase 2 antonyms are predomi-
nantly kept apart: out of 67 antonymy pairs shared with
SimVerb (i.e., pairs labeled ANTONYMS in SimVerb), only
2 are placed closer in the arena (inhale - exhale and sink
- swim). This tendency is also illustrated by the RDM in
Figure 3: separate clusters are formed by verbs such as raise,
rise, grow and diminish, decline, lower, and finish is kept
separate from begin and start.
Crucially, our spatial approach records simultaneous judg-
ments on multiple related words, which helps improve judg-
ment consistency (e.g., word pairs holding analogous rela-
tions have similar scores) and allows making subtle distinc-
tions based on varying degrees of similarity by means of

9The ρSV scores are promising compared to the ρ = 0.612
SimVerb IAA (Pilehvar et al., 2018), despite the fact that the easy
cases of verb pairs involving very disparate verbs (in different
classes) are not included in our results.

10There are exceptions: positive (e.g. love) and negative (e.g.
hate) emotion verbs form two different classes; there are also
separate groupings with ‘construction’ and ‘destruction’ verbs. See
Table 1.
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Figure 4: Score distribution for SpA-Verb (dissimilarities are Euclidean distances in the arena) and SimVerb (ratings on a
0-10 interval) in terms of frequency of each score interval (i.e., the number of pairwise scores falling within a given score
interval in each dataset). Each score interval label gives the upper bound.

small adjustments of relative distances between all members
of a class. For example, word pairs linked by the troponymy
relation in WordNet are placed at similar distances in the
arena (e.g., bounce - jump receive score 0.375, bounce -
spring 0.373). In SimVerb, where pairs are rated in isolation,
bounce - spring have a high 8.80 rating, but bounce - jump
receive a lower score of 6.81. Similarly, pairs of WordNet
synonyms jump - leap and jump - skip, which are placed
close together in the arena (scores 0.343 and 0.277), receive
quite divergent scores in SimVerb (9.63 and 5.48, respec-
tively). Notably, the score of 5.48 is the similarity rating
of embarrass - blush, which are strongly associated but dis-
similar, while jump - skip display a high degree of semantic
overlap (i.e., describe a similar kind of motion). Arranging
groups of words simultaneously in the same space helps
adjust relative similarities based on other words present,
without the need to refer back to a previously given score,
which is not necessarily possible when word pairs are judged
in small batches.
Moreover, by eliciting simultaneous judgments on multi-
ple lexical items we can significantly speed up the data
collection process. As an example, with our SpAM-based
approach 60 minutes of work of a single annotator produces
pairwise similarity scores for 4,950 unique verb pairs. In
the pairwise approach used for SimVerb, it would take over
8 hours for a single rater to record the same number of
similarity judgments (approx. 8 minutes to complete 79
questions by a single participant (Gerz et al., 2016)). Our
two-phase design and the modular nature of the task make it
particularly appropriate for crowd-sourcing.

8. Conclusion and Future Work
We presented a new method for bottom-up, large-scale col-
lection of semantic similarity data based on spatial arrange-
ments of lexical items. We adapted the spatial approach,
previously used only with visual stimuli, to polysemous lex-
ical items in a large-scale setting. We applied this approach
to a word sample almost nine times as numerous as the
biggest stimuli sets used in SpAM-based research to date.

The two-phase approach, consisting of rough clustering of a
large verb sample into classes of similar and related verbs
and subsequent spatial arrangements of these classes in a
2D arena, can be readily applied to other parts of speech
and types of stimuli. Crucially, the method produces both
semantic clusters and word pair scores within an integrated
framework. Moreover, the two-phase design enabled us to
handle lexical ambiguity as a natural consequence of overlap
in the first rough clustering phase. Our approach captures
non-expert intuitions about word meaning, allowing fine-
grained linguistic distinctions by considering the semantics
of multiple lemmas together that elude simple pairwise simi-
larity judgments. Furthermore, the method is easily portable
to other languages, demonstrating potential for faster cre-
ation of evaluation datasets to support multilingual NLP.
Our method yielded SpA-Verb, a dataset of fine-grained
similarity scores for 29,721 unique verb pairs, together with
17 relatedness-based verb classes, released online along with
the data collection guidelines.
The scale of SpA-Verb offers many possibilities for robust
analyses on semantically related classes allowing for bet-
ter informed tuning and comparison of the adequacy and
potential of representation learning architectures to capture
semantic distinctions present in the mental lexicon, while
helping achieve greater model interpretability. In future
work, in order to examine the properties of our dataset and
its potential as an evaluation resource, we will evaluate
state-of-the-art representation models on two tasks, corre-
sponding to the two phases of our design: (1) clustering,
using Phase 1 classes as gold truth, and (2) word similarity,
using pairwise scores from Phase 2 and selected subsets
with different semantic characteristics. Moreover, we will
carry out in-depth qualitative and quantitative analyses of
the information captured by each stage of our design, in
comparison with existing lexical-semantic resources. Future
work will also involve model evaluation on a verb classi-
fication task on clusters extracted from Phase 2 distance
matrices, to assess models’ capacity to create fine-grained
verb classes automatically, which could support creation of
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lexical resources in languages and domains where those are
still lacking. To investigate the method’s portability, we will
carry out data collection for other parts of speech and con-
duct experiments in other typologically diverse languages to
analyse cross-linguistic similarities and variation. The data
and annotation guidelines are available at the following link:
https://github.com/om304/SpA-Verb.
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Gerz, D., Vulić, I., Hill, F., Reichart, R., and Korhonen, A.
(2016). SimVerb-3500: A large-scale evaluation set of
verb similarity. In Proceedings of EMNLP, pages 2173–
2182.

Gladkova, A. and Drozd, A. (2016). Intrinsic evaluations of
word embeddings: What can we do better? In Proceed-
ings of REPEVAL, pages 36–42.

Gladkova, A., Drozd, A., and Matsuoka, S. (2016).
Analogy-based detection of morphological and semantic

https://github.com/om304/SpA-Verb


5757

relations with word embeddings: What works and what
doesn’t. In Proceedings of the NAACL Student Research
Workshop, pages 8–15.

Goldstone, R. (1994). An efficient method for obtaining
similarity data. Behavior Research Methods, Instruments,
& Computers, 26(4):381–386.

Hill, F., Reichart, R., and Korhonen, A. (2015). SimLex-
999: Evaluating semantic models with (genuine) simi-
larity estimation. Computational Linguistics, 41(4):665–
695.

Hout, M. C., Goldinger, S. D., and Ferguson, R. W. (2013).
The versatility of SpAM: A fast, efficient, spatial method
of data collection for multidimensional scaling. Journal
of Experimental Psychology: General, 142(1):256.

Jackendoff, R. (1972). Semantic Interpretation in Genera-
tive Grammar. MIT Press.

Jarmasz, M. and Szpakowicz, S. (2003). Roget’s thesaurus
and semantic similarity. In Recent Advances in Natural
Language Processing III, Selected Papers from RANLP
2003, Borovets, Bulgaria, pages 111–120.

Jurgens, D. and Klapaftis, I. (2013). SemEval-2013 Task 13:
Word sense induction for graded and non-graded senses.
In Proceedings of SEMEVAL, pages 290–299.

Kipper, K., Korhonen, A., Ryant, N., and Palmer, M. (2006).
Extending VerbNet with novel verb classes. In Proceed-
ings of LREC, pages 1027–1032.

Kipper Schuler, K. (2005). VerbNet: A broad-coverage,
comprehensive verb lexicon. Ph.D. thesis, University of
Pennsylvania.

Kiritchenko, S. and Mohammad, S. M. (2016). Capturing
reliable fine-grained sentiment associations by crowd-
sourcing and best–worst scaling. In Proceedings of
NAACL-HLT, pages 811–817.

Kiritchenko, S. and Mohammad, S. (2017). Best-worst
scaling more reliable than rating scales: A case study on
sentiment intensity annotation. In Proceedings of ACL,
pages 465–470, July.

Kriegeskorte, N. and Mur, M. (2012). Inverse MDS: Infer-
ring dissimilarity structure from multiple item arrange-
ments. Frontiers in Psychology, 3:245.

Lakoff, G. and Johnson, M. (1999). Philosophy in the
Flesh: The Embodied Mind and Its Challenge to Western
Thought, volume 4. University of Chicago Press.

Landauer, T. K. and Dumais, S. T. (1997). A solution to
Plato’s problem: The latent semantic analysis theory of
acquisition, induction, and representation of knowledge.
Psychological Review, 104(2):211.

Lemaire, B. and Denhiere, G. (2006). Effects of high-order
co-occurrences on word semantic similarity. Current Psy-
chology Letters. Behaviour, Brain & Cognition, 1(18).

Levin, B. (1993). English Verb Classes and Alternations:
Preliminary Investigation. University of Chicago Press.

Levine, G. M., Halberstadt, J. B., and Goldstone, R. L.
(1996). Reasoning and the weighting of attributes in atti-
tude judgments. Journal of Personality and Social Psy-
chology, 70(2):230.

Levy, O. and Goldberg, Y. (2014). Dependency-based word
embeddings. In Proceedings of ACL, pages 302–308.

Louviere, J. J. and Woodworth, G. G. (1991). Best-worst

scaling: A model for the largest difference judgments.
Technical report, University of Alberta.

Louviere, J. J., Flynn, T. N., and Marley, A. A. J. (2015).
Best-Worst Scaling: Theory, Methods and Applications.
Cambridge University Press.

Lupker, S. J. (1984). Semantic priming without association:
A second look. Journal of Verbal Learning and Verbal
Behavior, 23(6):709–733.

Majewska, O., McCarthy, D., Vulić, I., and Korhonen, A.
(2018). Acquiring verb classes through bottom-up seman-
tic verb clustering. In Proceedings of LREC.

McRae, K., Ferretti, T. R., and Amyote, L. (1997). The-
matic roles as verb-specific concepts. Language and Cog-
nitive Processes, 12(2-3):137–176.

McRae, K., Khalkhali, S., and Hare, M. (2012). Semantic
and associative relations in adolescents and young adults:
Examining a tenuous dichotomy. In V. F. Reyna, et al.,
editors, The Adolescent Brain: Learning, Reasoning, and
Decision Making, pages 39–66. American Psychological
Association.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781.

Milajevs, D. and Griffiths, S. (2016). A proposal for lin-
guistic similarity datasets based on commonality lists. In
Proceedings of REPEVAL, pages 127–133.

Miller, G. A. (1995). WordNet: A lexical database for
English. Communications of the ACM, 38(11):39–41.
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