@inproceedings{liu-zhang-2020-corpora,
title = "Corpora for Document-Level Neural Machine Translation",
author = "Liu, Siyou and
Zhang, Xiaojun",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2020.lrec-1.466/",
pages = "3775--3781",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Instead of translating sentences in isolation, document-level machine translation aims to capture discourse dependencies across sentences by considering a document as a whole. In recent years, there have been more interests in modelling larger context for the state-of-the-art neural machine translation (NMT). Although various document-level NMT models have shown significant improvements, there nonetheless exist three main problems: 1) compared with sentence-level translation tasks, the data for training robust document-level models are relatively low-resourced; 2) experiments in previous work are conducted on their own datasets which vary in size, domain and language; 3) proposed approaches are implemented on distinct NMT architectures such as recurrent neural networks (RNNs) and self-attention networks (SANs). In this paper, we aims to alleviate the low-resource and under-universality problems for document-level NMT. First, we collect a large number of existing document-level corpora, which covers 7 language pairs and 6 domains. In order to address resource sparsity, we construct a novel document parallel corpus in Chinese-Portuguese, which is a non-English-centred and low-resourced language pair. Besides, we implement and evaluate the commonly-cited document-level method on top of the advanced Transformer model with universal settings. Finally, we not only demonstrate the effectiveness and universality of document-level NMT, but also release the preprocessed data, source code and trained models for comparison and reproducibility."
}
Markdown (Informal)
[Corpora for Document-Level Neural Machine Translation](https://preview.aclanthology.org/jlcl-multiple-ingestion/2020.lrec-1.466/) (Liu & Zhang, LREC 2020)
ACL