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Abstract
We present an in-depth comparison of three
clinical information extraction (IE) systems de-
signed to perform entity recognition and nega-
tion detection on brain imaging reports: EdIE-
R, a bespoke rule-based system, and two neu-
ral network models, EdIE-BiLSTM and EdIE-
BERT, both multi-task learning models with a
BiLSTM and BERT encoder respectively. We
compare our models both on an in-sample and
an out-of-sample dataset containing mentions
of stroke findings and draw on our error analy-
sis to suggest improvements for effective anno-
tation when building clinical NLP models for
a new domain. Our analysis finds that our rule-
based system outperforms the neural models
on both datasets and seems to generalise to the
out-of-sample dataset. On the other hand, the
neural models do not generalise negation to the
out-of-sample dataset, despite metrics on the
in-sample dataset suggesting otherwise.

1 Introduction

Information Extraction (IE) from radiology reports
is of great interest to clinicians given its potential
for automating large scale data linkage, targeted co-
hort selection, retrospective statistical analyses, and
clinical decision support (Pons et al., 2016). Accu-
rate IE from radiology reports has also received a
surge of attention due to the insatiable demand of
deep learning medical image classifiers for more
labelled training data (Irvin et al., 2019).

While IE from radiology reports is of increasing
value, the scarcity of annotated data and limited
transferability of previously developed models is
currently hindering progress. Despite recent break-
throughs in learning contextual representations for
clinical and biomedical text from large amounts
of unlabelled text (Devlin et al., 2019; Peng et al.,
2019; Alsentzer et al., 2019; Lee et al., 2019), la-
belled data scarcity remains the bottleneck to im-
provements and wider adoption of deep learning

methods. Data scarcity is even more prominent in
the general clinical domain with its vast quantity
of possible entity labels.

Existing approaches to overcome the lack of la-
belled data include using a rule-based system to
annotate more data (Smit et al., 2020) or propose
labels in an annotation tool (Nandhakumar et al.,
2017; Alex et al., 2019; Searle et al., 2019), lever-
aging semi-supervised learning to speed up anno-
tation (Wood et al., 2020) and creating artificial
data (Schrempf et al., 2020). It is also common for
rule-based systems to be developed alongside statis-
tical models to contrast their performance (Corne-
gruta et al., 2016; Gorinski et al., 2019; Sykes et al.,
2020). We need to understand the shortcomings
and benefits of rule-based and neural models to im-
prove annotation decisions and system evaluation,
a comparison which we explore in this paper both
on in- and out-of-sample data.

The use of end-to-end learning for document
labelling has been a recent trend in analysing
radiology reports (Smit et al., 2020; Schrempf
et al., 2020). Contextual representations of a docu-
ment such as Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al.,
2019) are used as input to a multi-label classifier
to label the report directly without first recognis-
ing named entities and negation. While such ap-
proaches make annotation simpler and faster and
rely less on complex modelling decisions, they
have various shortcomings. Firstly, they lack in
interpretability, as it is hard to probe which parts
of a document the model uses when making pre-
dictions. Some models employ an attention mecha-
nism highlighting tokens in the input used to arrive
at the decision (Mullenbach et al., 2018; Schrempf
et al., 2020). However, they are opaque as to the
exact sub-decisions that lead to the labels, which
is unsatisfactory in the clinical domain where inter-
pretability is of paramount importance. Secondly,
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they are not data-efficient. For example, Smit et al.
(2020) predict four labels per entity type (positive,
negated, uncertain and blank). To scale such ap-
proaches to more entity types a lot of annotated
data is needed, the absence of which is currently
a limiting factor. Lastly, a significant drawback of
end-to-end approaches is that no part of the system
other than the encoder is reusable in any domain
that has a different non-overlapping set of output
labels. For that new domain, the labelling proce-
dure needs to be initiated from scratch, leading to
a duplication of effort.

In this work, as in some previous neural ap-
proaches (Bhatia et al., 2019) and as is com-
mon in rule-based approaches (Cornegruta et al.,
2016; Fu et al., 2019), we employ a bottom up
approach to document labelling by factoring the
problem into sub-tasks. This way document la-
bels are interpretable as a sequence of decisions
with some sub-tasks being extendable and reusable
on other datasets. Our three IE systems, EdIE-R,
EdIE-BiLSTM and EdIE-BERT (a rule-based and
two neural models), recognise mentions of stroke,
stroke sub-types and other related findings such as
tumours and small vessel disease in text. They also
identify related temporal modifiers (recent or old)
and location modifiers (deep or cortical). For down-
stream document classification by phenotype, the
systems also mark findings and modifier entities
for negation (negation detection).

The contributions of our work are three-fold:

1. We compare our systems both on an in-sample
and an out-of-sample dataset, drawing atten-
tion to generalisation issues of our neural mod-
els’ negation detection on the out-of-sample
dataset which are opaque when inspecting
metrics on the in-sample one.

2. We draw on our error analysis to highlight
ways in which using previously developed
systems to suggest labels for new data can
go wrong and propose using pretrained neural
contextual models, such as BERT, to detect
and correct inconsistencies.

3. We make our code1, models and web inter-
face2 publicly available for re-use on brain
imaging reports, as a way to bring the soft-
ware to the data and assist research in this
area.

1https://github.com/Edinburgh-LTG/edieviz
2http://jekyll.inf.ed.ac.uk/edieviz/

2 Related Work

Named entity recognition (NER) is a standard
natural language processing (NLP) task and is com-
monly limited to identifying proper nouns in text
(e.g., person, organisation, and location) (Sang and
Meulder, 2003). In the clinical domain concepts of
interest are usually problems, tests and treatments,
as formulated in the clinical concept extraction i2b2
shared task (Uzuner et al., 2011). In our case, as
in previous work on text mining and IE applied to
radiology reports (Hassanpour and Langlotz, 2016;
Cornegruta et al., 2016; Zhu et al., 2019), we use
NER to refer to recognising entities that are either
relevant medical findings, such as ischemic stroke,
or modifiers, such as acute.

Approaches for NER in this domain, while not
mutually exclusive, can broadly be categorised
into the following: approaches leveraging lexi-
cons, such as cTAKES (Savova et al., 2010) and
RadLex (Langlotz, 2006); ontologies, such as
MetaMap (Aronson and Lang, 2010); rule-based
systems and pattern matching (Cornegruta et al.,
2016); feature based machine learning such as Con-
ditional Random Fields (CRFs) (Hassanpour and
Langlotz, 2016); and more recently, deep learning
(Cornegruta et al., 2016; Zhu et al., 2019).

Negation detection is commonly framed as
identifying negation or speculation cues and their
matching scopes in sentences (Fancellu et al.,
2017). In the clinical domain, however, it is com-
mon for approaches to tackle negation assertion,
namely, to verify whether each identified entity
mention in the text is negated or affirmed (Bhatia
et al., 2019), and in some cases, whether it is un-
certain (Peng et al., 2018), conditionally present,
hypothetically present or relating to some other
patient (Uzuner et al., 2011).

As with NER, some of the earlier negation de-
tection approaches were rule-based. NegEx (Chap-
man et al., 2001) relies on regular expressions to
detect negation patterns, and has been successfully
applied to discharge summaries. Hassanpour and
Langlotz (2016) and Cornegruta et al. (2016) use
NegEx for negation detection on extracted entities.

Context (Harkema et al., 2009) extends NegEx
to capture hypothetical mentions, experiencer in-
formation and temporality, albeit with limited suc-
cess on the latter. NegBIO (Peng et al., 2018),
another rule-based negation and uncertainty detec-
tion system extended through dependency parsing
information, has been shown to outperform NegEx.

https://github.com/Edinburgh-LTG/edieviz
http://jekyll.inf.ed.ac.uk/edieviz/
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Similarly, Cornegruta et al. (2016) demonstrated
that enhancing NegEx with Stanford dependencies
outperformed their bidirectional LSTM (BiLSTM)
negation model. BiLSTM approaches for negation
detection have been successful, with Fancellu et al.
(2017) reporting state of the art results for Bio-
Scope (Vincze et al., 2008) abstracts. Sergeeva
et al. (2019) outperformed the latter using pre-
trained transformer models.

Despite the amount of progress on negation de-
tection for clinical texts, however, there is still am-
ple evidence that while fitting systems on a partic-
ular dataset is straightforward, generalising nega-
tion detection across datasets is challenging (Wu
et al., 2014). This is true both for out-of-domain
evaluation, such as training on a dataset of medi-
cal articles with evaluation on a dataset of clinical
text (Wu et al., 2014; Miller et al., 2017), as well
as for out-of-sample evaluation, where the train-
ing and test datasets are from the same domain but
may have differences due to different annotation
style, or distribution of named entities (Sykes et al.,
2020). For the in-domain but out-of-sample case,
a domain fine-tuned rule based system seems to
transfer well (Sykes et al., 2020). For all other
cases, transfer is challenging, both for rule-based
and machine-learning models (Wu et al., 2014;
Miller et al., 2017; Sykes et al., 2020), with ma-
chine learning models benefiting from the addition
of in-domain data to the training set. Lin et al.
(2020) demonstrate that a pretrained BERT model
can improve the results of domain transfer for nega-
tion detection, but the results are still lower for out-
of-domain datasets than in-domain datasets if we
compare to the results of earlier models in Miller
et al. (2017). In our work we concur with previous
findings: our neural models do not generalise nega-
tion detection across datasets, despite both datasets
comprising radiology reports with stroke findings,
such as acute ischemic stroke (AIS).

Document classification In our work, we for-
mulate NER and negation detection as sub-tasks
towards document classification by phenotypes and
will report derived document classification results
for one label (acute ischemic stroke) on a freely
available data set of brain MRI radiology reports
(Kim et al., 2019) with the aim of testing gen-
eralisability of our systems. Kim et al. (2019)
compared different machine learning approaches
on this data and found a single decision tree per-
formed best (precision=91.1, recall=95.3, F1=93.2

Tokenisation
Sentence Split

POS tagging
Lemma

Chunking

NER
Negation
Detection

Text Analysis

Document
Classification

Input
EHR
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EHR

Figure 1: EdIE-R pipeline.

and acc=98%) on labelling reports as AIS or non-
AIS phenotypes.

On a dataset in a similar domain, Fu et al. (2019)
classify a set of 1000 radiology reports by Silent
Brain Infarct. Their rule-based system based on
MedTagger is superior to their word-level Convolu-
tional Neural Network (CNN) for predicting Silent
Brain Infarcts, but not for White Matter Disease.

For a broader exposition of NLP applied to radi-
ology reports, we refer to Pons et al. (2016).

3 System Descriptions

The rule-based system, EdIE-R, and the neural sys-
tems, EdIE-BiLSTM and EdIE-BERT, all factor
the document labelling task into the same three sub-
tasks. Namely, extracting finding mentions, extract-
ing modifier mentions and using negation detection
to assert whether the mentions imply their presence
or absence in the brain imaging report. All three
systems work at a sentence level granularity.

3.1 EdIE-R
The rule-based system consists of a pipeline with
four main components which are applied in se-
quence (see Figure 1). Two components perform
linguistic analysis of the text of radiology reports,
namely, NER for finding and modifier predictions
and negation detection to distinguish between af-
firmative and negative instances. The third com-
ponent computes document-level labels based on
the preceding linguistic analysis. These main com-
ponents are preceded by text pre-processing steps,
i.e. tokenisation, part-of-speech tagging (POS) and
shallow chunking.

The EdIE-R components make use of hand-
crafted rules and lexicons which were created in
consultation with radiology experts. The rules
and lexicons are applied using the XML tools
LT-XML2 (Grover and Tobin, 2006), in combina-
tion with Unix shell scripting. The NER rules are
lexicon- and regular expression-dependent but the
quality of the POS tagging and lemmatisation is
also important. We use the C&C POS tagger (Cur-
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ran and Clark, 2003) with a standard model trained
on newspaper text as well as a model trained on the
Genia biomedical corpus (Kim et al., 2003). After
running the POS tagger with each of the models, we
apply a rule-based correction stage to moderate dis-
agreements between them. After POS tagging, we
apply the morpha lemmatiser (Minnen et al., 2000)
to analyse inflected nouns and verbs and compute
their lemmas. The negation detection component
relies partly on the pre-processing (i.e. recognition
of negation-bearing tokens such as no, not, n’t),
and partly on the output of the chunker, which is
used to constrain the scope of negative particles.
The neural models we introduce in the next section
rely on EdIE-R’s preprocessing pipeline.

3.2 EdIE-BiLSTM
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Figure 2: EdIE-BiLSTM model with multitask output
for negation, finding and modifier prediction. Current
input ti and outputs ytaski , such as B-cortical, are high-
lighted. Other timesteps appear in grey.

In order to predict the spans of findings and mod-
ifiers jointly with whether they are negated, we
frame these sub-tasks as an instance of multitask
learning (Caruana, 1997), similar to Bhatia et al.
(2019), and train a neural network model. The net-
work depicted in Figure 2 has three task heads, with
a Conditional Random Field (CRF) output for mod-
ifiers and findings and a sigmoid binary classifier
for negation. To condition negation on finding and
modifier predictions, we feed the predicted findings
and modifiers to the negation Multilayer Percep-
tron (MLP) by adding a learned embedding to the
activations of the tokens that have been tagged as
findings or modifiers. We do not encode entity type

to avoid biasing our negation detector towards us-
ing type:negation correlations, since as we shall
see, such biases do not transfer across datasets. We
decide negation for tagged entities by assigning the
negation prediction made for the entity’s first token.
The part of the architecture mentioned so far is
the same for both EdIE-BiLSTM and EdIE-BERT,
the two models differ solely as to their choice of
sentence encoder.

The encoder for EdIE-BiLSTM is a character
CNN - word BiLSTM with randomly initialised
embeddings. Given such an initialisation, it has no
preconceptions about the text in the dataset and can
flexibly fit the data, with the risk of overfitting. We
obtain character aware token embeddings ci by us-
ing a character level convolutional network follow-
ing a modified version of the small CNN encoder
model of Kim et al. (2016) (see Appendix 3.2 for
details). A word-level embedding is obtained by
concatenating a projected character-level token rep-
resentation with a word embedding ei = ci ‖ wi.
Context-aware representations for sentence tokens
are computed by propagating word-level represen-
tations through a BiLSTM network.

3.3 EdIE-BERT

EdIE-BERT only differs from EdIE-BiLSTM by
replacing the BiLSTM encoder with a pretrained
BERT (Devlin et al., 2019) encoder. More specifi-
cally, since we are working with radiology reports,
we elected to use BlueBERT (Peng et al., 2019),
which is a BERT model that is adapted for the clini-
cal domain by being pretrained further on PubMed
biomedical abstracts and clinical texts from the
MIMIC-III dataset (Johnson et al., 2016). While
there is a menagerie of similar models to Blue-
BERT, such as BioBERT (Lee et al., 2019) and
ClinicalBERT (Alsentzer et al., 2019), BlueBERT
was found to outperform them when used for radi-
ology report document classification (Smit et al.,
2020). As a pretrained alternative, the BlueBERT
encoder comes with preconceptions about clinical
text. For example, synonyms occurring in similar
contexts are likely to have similar representations
and hence be assigned similar predictions by the
classification layer. We shall see that this results in
EdIE-BERT having increased recall but also many
false positives because of flagging similar concepts
that were not annotated in the data.
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4 In-Sample Evaluation

In this section we describe the dataset we used to
develop and fit our systems and report in-sample
performance of our models on the unseen test set.

ESS Dev ESS Test
Reports 364 266
Sentences 3,837 2,855
Tokens 32,229 22,842
Findings 2,373 1,494
Modifiers 1,959 1,430
Total Entities 4,332 2,924

Table 1: ESS data statistics.

4.1 Edinburgh Stroke Study (ESS) Dataset

The ESS dataset (Alex et al., 2019) is comprised of
English text reports produced by radiologists which
describe findings in imaging reports. The reports
are predominantly computerised tomography (CT)
brain imaging reports with fewer magnetic reso-
nance imaging (MRI) scans collected for a regional
stroke study.

An example of a radiology report can be seen in
Figure 7 in the Appendix. The language of radiol-
ogy reports is usually short and descriptive as it is
limited to descriptions of the image. Negation is
usually overt (Sykes et al., 2020), e.g. “no visible
infarct” with occasional hedging, e.g. “there may
be early signs of deterioration”. There is some
variation in radiologist styles, some use note style,
others use full sentences.

Manual annotation of the reports was accom-
plished in tranches by two experts, a neurologist
and a radiologist, correcting output of an early ver-
sion of EdIE-R. The data was split into develop-
ment (dev) and test data (see Table 1). Annotations
include different entity types (12 finding types and
4 modifier types), relations between corresponding
modifier and finding entities, negation of entities,
and 24 document level labels (phenotypes). We
note that negation labels are binary and are only as-
signed to findings or modifier entities. Annotators
were instructed to mark any mention of findings
and modifiers not clearly indicated to be present
as negated. This paper focuses only on the entity
and negation annotation. The entire ESS test set
was doubly annotated to allow us to calculate inter-
annotator agreement (IAA) using precision, recall
and F1. IAA F1 is 96.15 for findings and 97.83 for
modifiers. The combined NER and negation IAA
F1 is 96.11.

The version of EdIE-R presented here was fur-

System Task P R F1

EdIE-R
Mod 97.23 95.73 96.48
Find 90.67 95.58 93.06
Neg 92.46 94.32 93.38

EdIE-BiLSTM
Mod 94.99 95.38 95.18
Find 90.54 94.85 92.64
Neg 91.04 93.43 92.22

EdIE-BERT
Mod 94.66 96.71 95.68
Find 86.06 95.05 90.33
Neg 88.94 94.63 91.70

Table 2: Results for predicting finding (Find) and mod-
ifier (Mod) entities as well as their negation (Neg) in
the ESS test set. Best system per task in bold.

ther optimised on ESS dev. EdIE-BiLSTM and
EdIE-BERT were trained using 285/364 (≈80%) of
ESS dev reports, with validation and hyperparame-
ter tuning performed on the remaining 79 (≈20%)
reports. We report results on the unseen ESS test
set which was not used for system development
and hyperparameter tuning.

We used CoNLL scoring which considers a sys-
tem annotation as true positive only if both the en-
tity span and the label are correct as represented in
IOB encoding (Sang and Meulder, 2003). Negation
detection F1-score is computed for the predicted
findings and modifiers, and hence includes error
propagation from those tasks. F1-scores are com-
puted using precision (P) and recall (R) based on
the number of true positives (TP), false positives
(FP) and false negatives (FN).

4.2 Results

The performance of all models is high, but EdIE-R
outperforms both neural models in precision and
F1-score on all sub-tasks (Table 2). EdIE-BiLSTM
outperforms EdIE-BERT in F-score at detecting
findings. We hypothesise this is because randomly
initialised embeddings have little prior bias and can
fit any potential annotation inconsistencies unhin-
dered. Lastly, EdIE-BERT has lower precision but
high recall, which suggests that the model overzeal-
ously flags plausible spans as findings.

Our results so far seem to suggest that EdIE-
BERT is the worst performing model overall for
detecting findings. This comes as a surprise, since
other models using BlueBERT have reported state
of the art results on many tasks (Peng et al., 2019;
Smit et al., 2020). However, as we shall see in the
error analysis of Section 6, its errors are mostly
false positives and span-mismatch errors. When
looking at EdIE-BERT output, a large part of the
errors are plausible and may be spans that were
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missed or have boundaries that were annotated in-
consistently.

We also note that both neural models underper-
form EdIE-R on negation, but not by a lot. They
seem to generalise sensibly to the test set based on
the ≈ 92 F1 score, but as we shall see in the next
section, this in-sample high score is misleading.

5 Out-of-Sample Evaluation

We now test how well each of our systems gener-
alises to unseen radiology reports from a different
source, highlighting that our neural models do not
generalise negation detection to this other dataset.
By out-of-sample, we mean this dataset has simi-
lar labels but comes from a different distribution
than the one the systems were developed on. We
emphasise that we have not trained or adapted our
models to this dataset.

5.1 AIS Dataset

We evaluate all three systems on a dataset of brain
MRI reports labelled for AIS, collected at Hallym
University Chuncheon Sacred Heart Hospital in
South Korea and made publicly available in Kim
et al. (2019). The data is labelled with binary AIS
labels at the report level which correspond to the
presence or absence of AIS in the report.

The data contains reports for 432 patients with
MRI readings of confirmed AIS. To create it, a neu-
roradiologist read MRI images, and the labelling of
the corresponding reports as AIS or non-AIS was
derived from these readings. The 2,592 non-AIS
reports are from patients who underwent MRI brain
imaging for a variety of reasons not related to is-
chaemic stroke. Kim et al.’s training set (70%) con-
tains 303 AIS and 1,815 non-AIS reports, and their
test set (30%) contains 129 AIS and 777 non-AIS
reports. We note that the non-AIS reports are from
MRI scans that were carried out for non-stroke re-
lated reasons, which likely makes this task much
easier than in the general setting. Since the data
is shared as one file containing all reports without
specifying the exact split, we used the combined
train and test data for our experiment (see Table 3).

When testing on the AIS data we compute pre-
cision, recall and F1 (and other metrics reported
by Kim et al., 2019) but, in contrast to the ESS
data, we are dealing with document label predic-
tions. We inferred AIS and non-AIS labels based
on whether there was a sentence in the report which
contained both an ischaemic stroke finding and an

AIS Train & Test Data
Reports 3,024
Sentences 22,280
Tokens 168,718
AIS labelled reports 432
non-AIS labelled reports 2,592

Table 3: AIS data statistics. The sentence and token
figures are determined using the EdIE-R tokenisation
and sentence detection.

acute modifier (AIS), or not (non-AIS). Our tempo-
ral modifier time recent overlaps well with the use
of “acute” in the AIS data, with the exception of
the term “sub-acute”. For the purpose of inferring
AIS labels, we therefore defined the acute modifier
accordingly by excluding sub-acute mentions.

System SP NPV P R F1 Acc (%)
EdIE-R 96.64 99.56 82.55 97.45 89.38 96.70
EdIE-BiLSTM 97.92 93.65 82.80 60.19 69.71 92.53
EdIE-BERT 97.18 94.56 79.72 66.44 72.47 92.79
Kim et. al 2019
on 30% of
the data 98.50 99.20 91.10 95.30 93.20 98.00

Table 4: Results for classifying reports as AIS. We re-
port the same metrics as Kim et al. 2019 but on all
of the AIS data: Specificity (SP), Negative Predictive
Value (NPV), Precision (P≡Positive Predictive Value),
Recall (R≡Sensitivity), F1-score and Accuracy (Acc).

5.2 Results

Table 4 shows that EdIE-R achieves an F1-score
of 89.38. The results are lower than the best re-
sults reported in Kim et al. (2019), but this is partly
to be expected since we do not adapt any of our
systems to the AIS dataset, apart from formulating
the document level rules. Interestingly, EdIE-R’s
recall was two points higher but its precision was
considerably lower. A neurologist examined some
of the false positives which contributed to EdIE-
R’s lower precision and reported that they did, in
fact, indicate acute ischaemic stroke. It is possible
that in these cases AIS was not the primary finding
and that these reports were therefore not labelled
as AIS. Given that our systems are configured to
recognise all findings in a report at the entity level,
it is not surprising to find a difference in predic-
tions as compared to a binary document labelling
system, but we consider the EdIE-R results to be an
effective validation of our approach and can show
that it generalises to other similar data.

Both neural systems had much worse results
than EdIE-R, mostly due to considerably lower
recall, demonstrating poor generalisation. On in-
spection of their predictions, we found that this
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was overwhelmingly due to errors in negation de-
tection. When removing negation, the results were
very similar to those of EdIE-R. We found that one
reason for the discrepancy is that the distribution
of negation over findings in the ESS dataset com-
pared to AIS is very different, with acute ischemic
stroke being negated much more often in the ESS
dataset compared to the AIS dataset. Despite not
providing finding and modifier information to the
negation detection head explicitly, the neural mod-
els seem to be using superficial features such as
the distribution of negation for acute and ischemic
stroke rather than relying on other features, such
as overt negation cues, that would generalise. In
this respect, our findings are similar to Fancellu
et al. (2017), who demonstrated that neural net-
work models were using punctuation as a cue for
negation scope detection and failing to generalise
beyond that.

6 Error Analysis

In this section we provide a fine-grained break-
down of the types of errors made by EdIE-R, EdIE-
BiLSTM and EdIE-BERT, arguing that not all error
types are equally detrimental to the downstream
task of document labelling. Next, we investigate
the variability in error types between our systems
by exploiting BlueBERT’s context-aware embed-
dings to group together training and evaluation ex-
amples that are similar. We then compare their
labels to identify annotation artefacts that influence
system errors. Lastly, we investigate how our sys-
tems handle spelling errors.

6.1 Breakdown of Error Types
As alluded to in Section 4.2, CoNLL F1 score
harshly penalises wrong entity boundaries by
reducing both precision and recall simultane-
ously (Finkel et al., 2005). For a deeper under-
standing of the situation, we dissect the errors (FP
and FN counts) on the ESS test set into the follow-
ing types (Manning, 2006):

False Positive (FP): predicted spurious entity
False Negative (FN): missed gold entity
Label Error (LE): correct span, wrong label
Boundary Error (BE): span overlap, correct label
Label & Boundary Error (LBE): span overlap + LE

We note that when relying on finding and modi-
fier predictions for document classification by phe-
notype, some errors are worse than others. We

System Task FP FN LE BE LBE

EdIE-R Mod 33 50 0 1 5
Find 100 20 1 37 7

EdIE-BiLSTM Mod 45 37 3 13 5
Find 96 27 10 34 5

EdIE-BERT Mod 50 17 1 16 5
Find 164 13 11 45 4

Table 5: Number of error types made by each system
for findings and modifiers in ESS test set.
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Figure 3: Proportion of error types made by each sys-
tem for findings and modifiers in ESS test set.

disfavour FPs, LEs and LBEs as they are likely to
deteriorate document classification by hallucinat-
ing phenotypes. We also dislike FNs, but less so,
since usually radiology reports have some degree
of redundancy. Lastly, we argue the BEs are mostly
benign, since for document classification the span
of an entity should not affect label allocation.

Table 5 and Figure 3 show that EdIE-BiLSTM
and EdIE-BERT make a larger proportion of LEs,
which we found to be mostly due to ambiguity
in annotation between haemorrhagic stroke and
stroke. There was only one BE by EdIE-R, in con-
trast to more than ten by EdIE-BiLSTM (13) and
EdIE-BERT (16), but on recognising findings, all
three systems make more than 18% BEs. The large
percentage of BEs, especially on modifiers, suggest
inconsistencies in span selection during annotation.
Such span inconsistencies unfairly lower the score
of models when evaluating by NER F1. We con-
clude that care is needed when relying on a subtask
metric that may not correlate with the document
labelling goal as well as initially expected.

A striking difference is that EdIE-BERT has a
larger proportion of FPs than the other systems,
with the remaining errors being mostly BEs. This
highlights that the model flags multiple spurious
spans that are not annotated in the data, which as
we shall see in the next section, is mostly due to
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Figure 4: A EdIE-BERT False Positive and Boundary
Error from the ESS test set. Truth and Pred are the
gold annotations and EdIE-BERT predictions respec-
tively. The sentences below are the three most similar
training examples ordered by decreasing similarity.

inconsistencies in annotation than to model errors.
Lastly, EdIE-BiLSTM’s larger proportion of FNs

can be partly attributed to abbreviations, since
EdIE-BiLSTM misses some not present in the train-
ing set, such as CADASIL (Cerebral Autosomal
Dominant Arteriopathy with Subcortical Infarcts
and Leukoencephalopathy) and PICH (Primary In-
tracerebral Haemorrhage). On the other hand, inter-
estingly, EdIE-BERT tags some abbreviations that
were unseen during training, such as METS, which
can be short for metastatic tumour.

6.2 Nearest Neighbour Annotations

In this section, we exploit a pretrained3 BlueBERT
model’s context-aware embeddings to group to-
gether sentence examples from all ESS data that are
similar. We do so to gain insight into any potential
annotation artefacts by contrasting the annotations
of similar examples.

We follow Khandelwal et al. (2020): see equa-
tions (1) and (2) in their paper for technical details.
We create a datastore with key value pairs, where
the keys are BlueBERT embeddings of each token
in the ESS training set and values are the token’s
labels. We then conduct an error analysis. For each
token EdIE-BERT mislabelled during evaluation,
we find the k nearest neighbour tokens from the
training set and visualise their labels.

In Figure 4 we plot two examples of EdIE-BERT
errors on findings, a FP and a BE. Above on the
left is the gold annotation with the prediction on
the right and the error underlined. Below are the
three most similar training examples as ordered
by decreasing similarity using BlueBERT4. In the

3Not finetuned on radiology data as part of EdIE-BERT.
4The nearest neighbour search is among tokens such as

lesion, but we visualise the whole sentence for context.

FP example, we notice that lesion is tagged in one
example as tumour and in others as O, despite the
examples being very similar. In the BE example,
Moderate is not predicted to be part of the atro-
phy finding. However, it is also not annotated as
such in all similar training examples below, thus
highlighting how some errors can be explained by
identifying inconsistencies in annotations.

For such cases where the training set contains
many alternative possible labellings of tokens in
particular contexts, we propose visualising the un-
certainty by plotting the entropy of the kNN dis-
tribution along the sequence together with the sub-
set of labels deemed plausible from the retrieved
training examples. Figure 5 demonstrates how the
boundaries of the small vessel disease finding are
uncertain in the training set, with some instances
including periventricular as part of the entity, and
others tagging white as O in similar contexts.

To conclude, BlueBERT’s pretrained preconcep-
tions about which contexts are similar makes it
harder for the model to fit examples that are anno-
tated inconsistently with respect to spans or labels.
We believe it therefore to be an effective model for
fine-grained error analysis as well as for assisting
in annotation efforts in tandem with any rule-based
or other developed system when generating anno-
tations in a new domain.

Figure 5: Distribution over findings pkNN computed
using k=10 most similar training examples to highlight
uncertainty in conflicting annotations. The top subfig-
ure demonstrates plausible labels, with solid lines link-
ing more likely candidates. The bottom subfigure is a
plot of the entropy of pkNN , with higher entropy corre-
sponding to choices that are more uncertain.

6.3 Spelling Errors

Spelling variation and spelling mistakes are not
uncommon in radiology reports. For example,
the ESS data contains frequent mentions of the
British English spelling variant haemorrhage but
also several mentions of hemorrhage, its US En-
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glish version. It also includes spelling errors such
as (haemohhage, haemorrghage and heamrrhage).

Known spelling variants can be handled with a
few rules in a rule-based NLP system given a spe-
cific domain as brain imaging reports. However,
terms containing spelling errors are unpredictable
and hence more difficult to recognise using heuris-
tics. Even though EdIE-R slightly outperforms the
neural system overall, one main strength of EdIE-
BiLSTM and EdIE-BERT is that they are robust
towards spelling errors, since their model is context
and subword structure-aware.

EdIE-R does not currently contain a separate
spelling correction step but encodes a limited num-
ber of rules to deal with spelling errors and varia-
tions frequently observed in the data used for its de-
velopment. As a result, it regards most words con-
taining spelling errors as being out-of-vocabulary.

To examine how the neural systems dealt with
actual spelling errors in radiology reports, we iden-
tified those appearing in gold findings and mod-
ifier annotations in the ESS data and found 24
unique annotations containing spelling errors (see
Appendix B.1). 10 of them occur in the ESS valida-
tion and test data not used for training. Both EdIE-
BiLSTM and EdIE-BERT were able to correctly
recognise 6/10 and 5/10 annotations, respectively.
When presented with the correctly spelled variants
in the same context, they were able to identify 8/10
and 7/10 annotations accurately. While these ex-
amples are too few for a quantitative analysis of
the robustness of both models towards spelling er-
rors, it is clear that they can detect some of them
accurately.

7 Summary and Conclusions

Access to annotated clinical text is a bottleneck to
progress in clinical IE. While it is vital to strive for
high quality gold datasets that are annotated from
scratch with clear annotation guidelines, the reality
of the situation is that many teams face data acces-
sibility issues, strict time constraints and limited ac-
cess to expert annotators, whose time is extremely
valuable. Given finite resources, it is therefore com-
mon to leverage output from previously developed
systems to speed up annotation. Through extensive
error analysis, we exposed artefacts of annotations
originating from experts correcting system output
and recommend exploiting context-aware embed-
ding models, such as BERT, to improve recall and
ameliorate annotation inconsistencies. We are not

suggesting that standards of the annotation proce-
dure should be overlooked, but we highlight that
our approach may be of value for many teams that
are not in a position to label a dataset from scratch:
semi-automated expert data is extremely useful un-
der low resource settings, and therefore having a
way to guide such annotation processes is valuable.

We also highlighted the pitfall of blindly trusting
well-established metrics, both for ranking systems
on subtasks that do not directly match the down-
stream task and, more importantly, in the case of
generalisation, where metrics on in-sample data
were misleading as to how well our neural mod-
els were capturing negation. We concur with the
findings in Wu et al. (2014), negation detection is
straightforward to optimise for an in-domain sam-
ple of data, but generalisation to other datasets
without any adaptation is still challenging. There-
fore, negation detection models should be tested
across multiple datasets for generalisation.

To conclude, our rule-based system outperforms
our neural network models on the limited sized in-
sample dataset and generalises to an unseen dataset
of radiology reports. Through a manual error anal-
ysis, we found that a large proportion of errors
of our systems are due to ambiguities in annota-
tion. Given the fairly high performance of our
models, we extrapolate that we have likely distilled
most of the information available in our limited
labelled dataset. In future work we plan to extend
our annotations to a larger dataset to further assess
generalisation.
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Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada,
pages 8024–8035.

Yifan Peng, Xiaosong Wang, Le Lu, Mohammadhadi
Bagheri, Ronald Summers, and Zhiyong Lu. 2018.
Negbio: a high-performance tool for negation and
uncertainty detection in radiology reports. AMIA
Joint Summits on Translational Science proceed-
ings. AMIA Joint Summits on Translational Science,
2017:188—196.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: An evaluation of BERT and ELMo on
ten benchmarking datasets. In Proceedings of the
18th BioNLP Workshop and Shared Task, pages 58–
65, Florence, Italy. Association for Computational
Linguistics.

Ewoud Pons, Loes M. M. Braun, M. G. Myriam
Hunink, and Jan A. Kors. 2016. Natural Language
Processing in Radiology: A Systematic Review. Ra-
diology, 279(2):329–343.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning, CoNLL 2003, Held in cooper-
ation with HLT-NAACL 2003, Edmonton, Canada,
pages 142–147.

Guergana K. Savova, James J. Masanz, Philip V. Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C. Kipper-
Schuler, and Christopher G. Chute. 2010. Mayo
clinical Text Analysis and Knowledge Extraction
System (cTAKES): architecture, component evalua-
tion and applications. Journal of the American Med-
ical Informatics Association, 17(5):507–513.

Patrick Schrempf, Hannah Watson, Shadia Mikhael,
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A Supplemental Material

A.1 Training and hyperparameter details

A.1.1 EdIE-BiLSTM
As mentioned in Section 3.2, we employ a character
level convolutional network following a modified
version of the small CNN encoder model of Kim
et al. (2016), details of which can be seen tabulated
in Table 6. We replace tanh non-linearities with
ReLUs. We also remove the highway layer since
we did not observe any improvements when using
it. To speed up training, we apply padding-aware
batch normalisation (Ioffe and Szegedy, 2015) to
the convolution activations before the ReLU non-
linearity.6 We project the character aware token
embedding ci to a vector of dimensionality 128
using an affine layer P . Word embeddings are also
of dimensionality 128. Both word and character
embeddings are randomly initialised.

Following Gal and Ghahramani (2016), we ran-
domly drop out word types with 0.5 probability for
words. We also follow this approach for characters,
but with a lower dropout rate of 0.1.

Optimisation-wise, we trained our model using
stochastic gradient descent with a batch size of 16
sentences padded to maximum length, a learning
rate of 1 and a linear warmup of the learning rate
over the first 200 parameter updates = 1 checkpoint.
Before performing backpropagation, we clip the
norm of the global gradient of the parameters to
5. We stop training when entity prediction does
not improve on the validation set for 10 consecu-
tive checkpoints. Our model is implemented using
PyTorch (Paszke et al., 2019).

A.1.2 EdIE-BERT
For the BlueBERT encoder we use the uncased
base model trained on PubMed and MIMIC-III.
We train the model using the Adam optimiser with
a learning rate of 5 · 10−5 and a batch size of 16.
We follow the original BERT paper and train using
a warmup linear schedule, increasing the learning
rate linearly for the first 400 training steps (10% of
training steps) until it reaches the maximum value
(5 · 10−5) and then decreasing it for the remaining
90% of training steps. A step is a parameter update,
namely a forward and backward propagation of a
batch. 200 parameter updates roughly correspond
to 15 epochs on our ESS training set. We chose the

6We adapt the mean and variance computation of each
batch to only consider tokens that do not consist of padding.

aforementioned hyperparameter values by conduct-
ing a search over learning rate {5 · 10−5, 2 · 10−5},
batch size {16, 32} and number of warmup steps
{200, 400} on the development set. We use the
Huggingface (Wolf et al., 2020) implementation
for BERT.

Hyperparameter Value
Char embedding dim 15
Char CNN filter widths [1, 2, 3, 4, 5, 6]
Char CNN number filters [25, 50, 75, 100, 125, 150]
Char project dim 128
Word embedding dim 128
BiLSTM dim 512
MLP hidden dim 512
MLP dropout 0.25
Word type dropout 0.5
Char type dropout 0.1
Non-linearity ReLU
Optimiser SGD
Learning rate 1
Batch size 16
Gradient clipping global norm 5

Table 6: EdIE-BiLSTM hyperparameter choice.

B Spelling Errors

B.1 List of ESS Data Annotations with
Spelling Errors

basal galnglia, basal ganglia, centrum semiovale,
Esatblished, exta-axial collections, extra-axia col-
lection, extraxial collection, haemorraghic trans-
formation, infarcion, Low attenuation of perven-
tricular white matter, microvacular ischaemia, mir-
covascular ischaemia, parietooccpital, perfusion
defecit, periventicular low attenuation, periven-
tricualr white matter hypoattenuation, posterior
cerberal artery, resticted diffusion, thebasal gan-
glia, craniopharyngoma, lacumar, brainstsem, oc-
ciptal and subdural haemohhage

B.2 Synthetic Spelling Error Analysis
The example in Figure 6 shows EdIE-Viz output of
EdIE-BiLSTM for a synthetic report with a number
of deliberately inserted spelling errors.7

The report contains misspellings due to character
and whitespace insertions (vesssel, heamorrrhage,
a cute), character deletions (hypoattenuation,
infarct, atrophy, disease, infarcts, stroke) or
character substitutions (e→a: pariatal, ae→ea:
heamorrrhage). EdIE-BiLSTM is able to recognise
most of the misspelled entities, with the exception
of atrophy. As expected, EdIE-R was only able

7EdIE-Viz is a web-based interface to our IE models (see
Appendix C).
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Figure 6: EdIE-BiLSTM output for a synthetic brain
imaging report containing a series of spelling errors.

to tag the term stroke based on one of its rules al-
lowing for that error to occur. In the case of the
white-space insertion splitting acute into two valid
English words a cute, EdIE-BiLSTM interestingly
tags the word cute correctly as the temporal mod-
ifier recent, even though the span is wrong. Such
a neural system may therefore wrongly tag a word
similar in spelling but different in meaning to a
medical term it is trained to extract. EdIE-BERT
is able to recognise most of the misspelled find-
ings and modifiers in this report and only differs in
three cases to EdIE-BiLSTM. It is able to identify
atropy as atrophy, does not recognise White matter
hypoatenuation as small vessel disease and does
not mark up cute as a modifier, presumably because
during pretraining it has picked up that cute is a
word that occurs in a different context.

C EdIE-Viz: Interactive web demo

Our interactive web demo provides a user interface
to all three systems.

Figure 7: Home screen.

Figure 7 shows the home screen with a pre-
loaded synthetic example of a brain imaging report.
By clicking on the “Annotate” button, the demo
displays8 predicted findings (spans highlighted in

8The visualisation follows the style of the displaCy Named
Entity Visualiser. spacy.io/usage/visualizers

...

Figure 8: Predicted findings, modifiers and negation
for EdIE-R and EdIE-BERT. EdIE-BiLSTM output is
omitted; it is identical to that of EdIE-R for this exam-
ple.

purple and types displayed behind each span in all-
caps), modifiers (highlighted in orange and types
in all-caps) and negation (red types for negated an-
notations and green types for non-negated annota-
tions) (see Figure 8). In this example, EdIE-BERT
misses the negation of small vessel disease.

We differentiate between findings and modifiers
as they are notionally different (each modifier can
be mapped to a finding) and because some tokens
are tagged as both. For example, the abbreviation
POCI (posterior circulation infarct) is tagged as
ischaemic stroke and cortical.

The current use cases of this interface are the
research team’s own error analysis and system de-
velopment, visual output analysis by example and
system demonstrations to collaborators. However,
in future it could be modified to allow bespoke pro-
cessing of brain imaging reports, for example for
assisting radiologists, or extended to add function-
ality that allows the comparison of other systems
doing similar processing.

D Availability of Data

The annotated ESS data has much potential value
as a resource for developing text mining algorithms.
This data will be available on application to Prof.
Cathie Sudlow (email: Cathie.Sudlow AT ed.ac.uk)
to bona fide researchers with a clear analysis plan.

spacy.io/usage/visualizers

